

Description

The ACE2301 is the P-Channel logic enhancement mode power field effect transistor are produced using high cell density, DMOS trench technology.

This high density process is especially tailored to minimize on-state resistance.

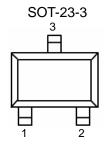
These devices are particularly suited for low voltage application such as cellular phone and notebook computer power management and Battery powered circuits, and low in-line power loss are needed in a very small outline surface mount package.

Features

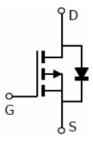
- VDS=-20V
- RDS(ON), $V_{gs}@-4.5V$, $I_{ds}@-2.8A=100m\Omega$
- RDS(ON), $V_{gs}@-2.5V$, $I_{ds}@-2.0A=150m\Omega$
- Advanced trench process technology
- High Density Cell Design For Ultra Low On-Resistance

Absolute Maximum Ratings

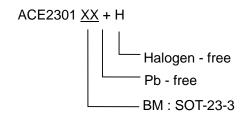
Parameter		Symbol	Max	Unit
Drain-Source Voltage		V_{DS}	-20	V
Gate-Source Voltage		V_{GS}	±12	V
Continuous Drain Current		I_D	-2.2	Α
Pulsed Drain Current ¹⁾		I_{DM}	-8	Α
Maximum Power Dissipation	T _A =25°C	P_{D}	1.25	W
	T _A =70°C	ט י	0.8	V V
Operating Junction Temperature		T_J	-55 to 150	οС
Storage Temperature Range		T _{STG}	-55 to 150	°С
Junction to Ambient Thermal Resistance (PCB mounted) ²⁾		$R_{\theta JA}$	140	°C/W


Note: 1.Repetitive Rating: Pulse width limited by the maximum junction temperature.

^{2.1-}in² 2oz Cu PCB board.


^{3.} Guaranteed by design; not subject to production testing.

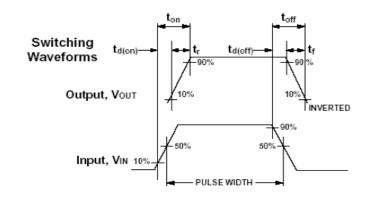
Packaging Type



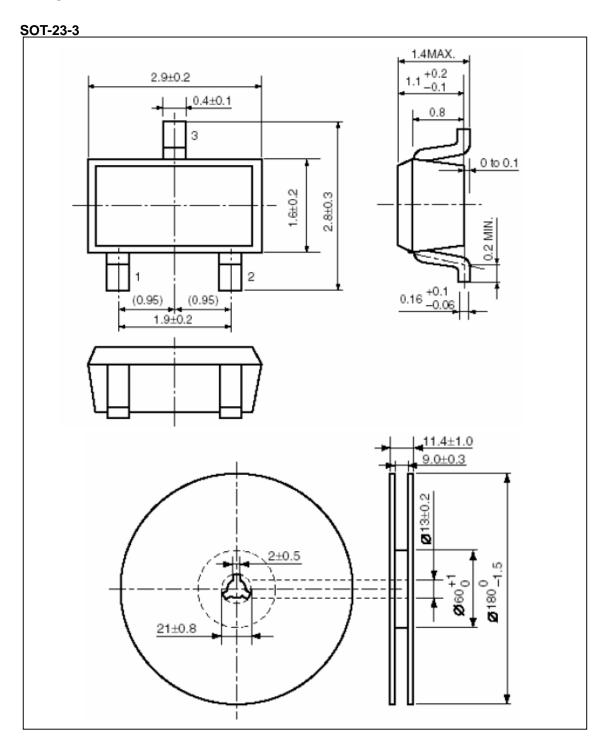
Pin	Symbol	Description	
1	G	Gate	
2	S	Source	
3	D	Drain	

Ordering information

Selection Guide



Electrical Characteristics


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit			
Static									
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250uA	-20			V			
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-2.8A V _{GS} =-2.5V, I _D =-2.0A		70.0	100.0	~			
Drain-Source On-State Resistance	R _{DS(ON})			85.0	150.0	$m\Omega$			
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} =VGS, I _D =250uA	-0.4		-0.9	V			
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-9.6V, V _{GS} =0V			-1	uA			
Gate Body Leakage	I _{GSS}	$V_{GS}=\pm 8V, V_{DS}=0V$			±100	nA			
Forward Trans conductance	G _{fs}	V _{DS} =-5V, I _D =-2.8A		6.5		S			
	Dy	namic ³⁾							
Total Gate Charge	Q_g	V_{DS} =-6V, I_{D} =-2.8A V_{GS} =-4.5V		5.8	10				
Gate-Source Charge	Q_gs			0.85		nC			
Gate-Drain Charge	Q_{gd}			1.7					
Turn-On Delay Time	$T_{d(on)}$	V_{DD} =-6V,RL=6 Ω I_{D} =-1A, V_{GEN} =-4.5V R_{G} =6 Ω		13	25	ns			
Turn-On Rise Time	T _f			36	60				
Turn-Off Delay Time	t _{d(off)}			42	70				
Turn-Off Fall Time	t _f			34	60				
Input Capacitance	C _{iss}	VDS=-6V, VGS=0V		415					
Output Capacitance	C _{oss}			223		pF			
Reverse Transfer Capacitance	C_{rss}	F=1.0MHz		87					
		-Drain Diode		•		•			
Max. Diode Forward Current	Is				-1.6	Α			
Diode Forward Voltage	V_{SD}	I _S =-1.6A,V _{GS} =0V			-1.2	V			

Note: Pulse test pulse width<=300us, duty cycle<=2%.

Packing Information

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/