DigitroniK ${ }^{T M}$ Digital Indicating Controller SDC40B

Features

The Digitronik SDC40B is a single loop digital indicating controller for controlling temperatures, pressures, flow rates, levels, PH values, etc.
A compact instrument with PID control and various auxiliary functions, it offers instrumentation with a high level of cost performance.
A PC loader allows the user to design any combination of functions

A host of I/O functions

- Three analog inputs
- Input 1: Thermocouple, RTD (resistance temperature detector), DC voltage and DC current
- Input 2: 4 to 20 mAdc or 1 to 5 Vdc
- Input 3: 1 to 5 Vdc
- Capable of accepting and processing the following inputs:

Approximation by linearization table, temperature and pressure compensation, and square-root extraction.

- 12 digital inputs
- No-voltage contact (relay contact) or open collector
- The digital input processor can convert data to 2^{n} index data.
- In addition to mode switching and selections, the controller can be directly linked to internal processing.
- Three (5G) and two (2G) analog outputs
- 5G output: 4 to 20 mAdc (3 analog outputs)
- 2G output: M/M driven relay (1 analog output) 4 to 20 mAdc (1 analog output)
- 8 digital outputs
- SPST relay outputs (2 digital outputs), SPDT relay output (1 digital output), open collector outputs (5 digital outputs)
- Results of internal processing can be assigned to any output.

- Functions

- Inputs Analog inputs : 3 Digital inputs : 12
- Outputs Analog outputs : 3 (5G), 2 (2G) Digital outputs : 8
- Number of computational expressions: Approx. 80
- Number of computational units: 50
- Variable parameters \%: 40, Time: 10, Flag: 20, Index: 10
- Fixed parameters unlimited number
- Number of PID units: Up to 2 units
- Number of parameter groups: 8
- Engineering unit parameters: 8 per PID, a total of 16
- Linearization tables: 3 tables (connectable), 16 points per table
- PTB $(\% \rightarrow \%)$ tables: 4 tables with 16 points per table that can be used as linearization tables
- TTB $(\% \rightarrow$ time $)$ tables: 4 tables with 16 points per table

A great number of control functions

- Four types of controllers combined with numerous computational units allow not only local control and cascade control, but feed forward control, non-linear control, dead time compensation control, override control and more.
- In addition to conventional PID auto-tuning, the following three functions can be selected and combined (only normal PID computation mode):
- PID with two degrees of freedom:
- Independent rising edge characteristics PID and disturbance response characteristics PID functions are provided and are automatically switched through the use of fuzzy rules.
- Smart tuning: Helpful in suppressing overshoots
- Neural network: Supports a wide-range of response characteristics and automatically finetunes constants.
- Approximately 80 computational expressions (addition, subtraction, multiplication, division, selector, linearization table, etc.) A total of 50 computational units can be assigned.
- An auto balance function prevents output shear for smooth mode switching.
- Analog input errors and computational errors can be detected and an interlock function is available.

Easy to configure and operate

- Configurations (combining computational units) can be simplified with the use of a PC loader.
- Two user definable function keys each of which can store up to 8 data items.
- Trends can be monitored on a PC loader.

■ Block Diagram

Specifications

Performance specifications

Analog input 1 (AIR 1)	Type of inputs	Multirange indication of thermocouple, RTDs, and DC voltage/currents (See Table 1.)
	Input indicating accuracy	$\pm 0.1 \%$ FS $\pm 1 \mathrm{U}$ (This may be affected by indication value conversion and ranges under standard conditions)
	Input sampling cycle	0.1 to 0.5 sec . (depends on computation cycle)
	Input bias current	Thermocouple and DC voltage input : $\pm 1.3 \mu \mathrm{~A}$ max. (peak value under standard conditions) Range above 1 V or more, $-3 \mu \mathrm{~A}$
	Input impedance	DC current input: $50 \Omega \pm 10 \%$ (under operating conditions)
	Measuring current	RTD: $1.04 \mathrm{~mA}, \pm 0.02 \mathrm{~mA}$, Current input on terminal A. (under operating conditions)
	Effect of wiring resistance	Thermocouple, DC current and DC voltage : Variation in indicated value due to input conversion when the wiring resistance at both ends is 250Ω - 0 to 10 mV , -10 to $+10 \mathrm{mV}: 35 \mu \mathrm{~V}$ or less - 0 to 100 mV , $: 60 \mu \mathrm{~V}$ or less - Others $\quad: 750 \mu \mathrm{~V}$ or less RTD: $\pm 0.01 \% \mathrm{FS} / \Omega$ max. in a wiring resistance range of 0 to 10Ω $\pm 0.02 \% \mathrm{FS} / \Omega$ max. in a range with a minimum resolution of $0.01^{\circ} \mathrm{C}$ The allowable wiring resistance is 85Ω max (A zener barrier is available only for the $0.1^{\circ} \mathrm{C}$ resolution range and requires on-site adjustment.)
	Allowable parallel resistance	Allowable parallel resistance for thermocouple break detection : $1 \mathrm{M} \Omega$ or more
	Maximum allowable input	Thermocouple and DC voltage input: -5 to +15 V DC current input $: 28 \mathrm{~mA}$
	Burnout	Internal upscale and downscale selection
	Over range detection threshold	110% FS or more: Upscaled-10% FS or less: Downscaled (However, inputs in the -200.0 to $+500.0^{\circ} \mathrm{C}$ range of JIS Pt100 and the -200.0 to $+500.0^{\circ} \mathrm{C}$ range of JIS Pt100 are not downscaled. The indicating values lower limit for B input $\left(0.0\right.$ to $\left.1800.0^{\circ} \mathrm{C}\right)$ is $20^{\circ} \mathrm{C}$.)
	Cold junction compensation accuracy	$\pm 0.5^{\circ} \mathrm{C}$ (under standard conditions)
	Cold junction compensation method	Internal or external compensation (at $0^{\circ} \mathrm{C}$) selectable
	Scaling	-19999 to ± 26000 (These settings are available for linear inputs only. Reverse scaling and decimal point repositioning can be performed with resolutions to $1 / 20000$.)
Analog input 2 (AIR 2)	Type of inputs	4 to 20mAdc, 1 to 5Vdc (See Table 1.)
	Input indicating accuracy	$\pm 0.1 \%$ FS $\pm 1 \mathrm{U}$ (display value conversion under standard conditions)
	Input sampling cycle	0.1 to 0.5 s (depends on computation cycle)
	Input bias current	1 to 5 Vdc input : $\pm 10 \mu \mathrm{~A}$ max. (under operating conditions)
	Input impedance	1 to 5 Vdc input : $1 \mathrm{M} \Omega$ or more (under operating conditions) 4 to 20 mAdc input : $50 \Omega \pm 10 \%$ (under operating conditions)
	Maximum allowable input	1 to 5 Vdc input $: 0$ to 6 V 4 to 20 mAdc input $: 28 \mathrm{~mA}$
	Burnout	Downscale
	Over range detection threshold	110% FS or more: Upscaled -10% FS or less : Downscaled
	Scaling	-19999 to +26000 (Reverse scaling and decimal point repositioning can be performed with resolutions to $1 / 20000$.)
Analog input 3 (AIR 3)	Type of inputs	1 to 5Vdc (See Table 1.)
	Input indicating accuracy	$\pm 0.1 \%$ FS $\pm 1 \mathrm{U}$ (display value conversion under standard conditions)
	Input sampling cycle	0.1 to 0.5 sec . (depends on computation cycle)
	Input bias current	$\pm 10 \mu \mathrm{~A}$ max. (under operating conditions)
	Input impedance	$1 \mathrm{M} \Omega$ or more (under operating conditions)
	Maximum allowable input	0 to 6V
	Burnout	Downscale
	Over range detection threshold	110\% FS or more: Upscaled -10% FS or less : Downscaled
	Scaling	-19999 to +26000 (Reverse scaling and decimal point repositioning can be performed with resolutions to $1 / 20000$.)

Computation Processing book	Computation cycle setting PID control and output unit	0.1 to 0.5 sec . (Settable in 0.1 sec . increments.)						
		Performed by PID computational unit 1 (PID 1) or PID computational unit 2 (PID 2) in the computational expressions. Of the 50 computational units only one each can be assigned as computational units 1 and 2.						
		Control type			PID computational unit 1 (PID 1)	PID computational unit 2 (PID 2)	Type 0 to 3 are set at setup. Only one MAN computational unit can be used for two PID computational units.	
				Type 0	Local setting	Not used		
				Type 1	Remote/Local setting	Not used		
				Type 2	Remote/Local setting	Remote setting		
				Type 3	Local setting	Remote/Local setting		
		Control output model No.		2G		5G		
		Analog output	A01	M/M drive relay contact output		Current output (4 to 20mAdc)		
			A02	None		Current output (4 to 20mAdc)		
		signal	A03	Current output (4 to 20mAdc)		Current output (4 to 20mAdc)		
		Control operation		Position proportional PID and current proportional PID		Current proportional PID		
		Computation mode		Normal or derivative-based is selectable using PID computational units.				
		Proportional band (P)		0.1 to 999.9\% (ON/OFF disabled)				
		Integral time		0.0 to 6000.0 sec . (PD activates at $\mathrm{I}=0$)				
		Derivative time (D)		0.0 to 6000.0 sec . (Pl activates at $\mathrm{D}=0$)				
		Integral limit (I)		Lower limit: -200.0 to upper integral limit \%, Upper limit: Lower integral limit to 200.0\%				
		Dead band		0.0 to 100.0\% (no dead band at 0)				
		Output deviation rate limit		0.0 to 100.0\% / Computation cycle (no limit at 0)				
		Manual reset		0.0 to 100.0\%				
		No. of PID groups		8 groups (shared by PID computational units 1 and 2)				
		PID auto-tuning (Only normal PID computation mode)		Neuro, fuzzy (with two degrees of freedom) and smart methods are used in addition to the limit cycle method to set PID auto-tuning.				
		RSP ratio		-999.9 to +999.9\% of RSP of PID computational units 1 and 2				
		RSP bias		-999.9 to +999.9\% of RSP of PID computational units 1 and 2				
		Deviation alarm		0.0 to 100.0% of \|SP-PV	, the absolute value of PID computational units 1 and 2			
		Upper PV alarm limit		-10.0 to $+110.0 \%$ of PV of PID computational units 1 and 2				
		Lower PV alarm limit		-10.0 to $+110.0 \%$ of PV of PID computational units 1 and 2				
		Alarm hysteresis		0.0 to 100.0% for deviation alarm, upper PV alarm limit and lower PV alarm limit				
Output processor	Analog output (A01 to A03)	Model No. 2G A01	M/M drive relay contact output					
		Model No. 2G AO3 Model No. 5G A01, AO2, AO3	Current output (4 to 20 mA)	Current output $: 4$ to 20 mAdc Allowable load resistance $: 680 \Omega$ or less (under operating conditions) Output accuracy $: \pm 0.1 \%$ FS or less (under operating conditions) Output resolution $: 1 / 10000$ Inrush current $: 25 \mathrm{~mA}$ or less, 50 ms or less (with 250Ω load) Maximum output current $: 21.6 \mathrm{mAdc}$ Minimum output current: 2.4 mAdc Opening terminal voltage $: 25 \mathrm{~V}$ or less Output update cycle $: 0.1$ to 0.5 sec. (depends on computation cycle)				

Output processing block	Digital output (DO1 to DO8)	D01	SPST relay contact		Electric rating: $250 \mathrm{Vac}, 30 \mathrm{Vdc}, 1 \mathrm{~A}$ resistive load Mechanical life: $20,000,000$ repetitions Electrical life: 100,000 repetitions (at rated capacity) Minimum switching voltage: 10 V Minimum switching current: 10 mA	
		D03	SPST relay contact		Electric rating: $250 \mathrm{Vac}, 30 \mathrm{Vdc}, 2 \mathrm{~A}$ resistive load Mechanical life: 50,000,000 repetitions Electrical life: 100,000 repetitions (at rated capacity) Minimum switching voltage: 10 V Minimum switching current: 10 mA	
		$\begin{aligned} & \hline \text { D04 } \\ & \text { to } \\ & \text { D08 } \end{aligned}$	Open collector		External supply voltage: 10 to 29 Vdc Maximum load current: 70 mA per point Leakage current when off: 0.1 mA	
Indications and settings	Display panel 1	Green 5-digit, 7-segment LED This panel normally displays values. Item codes are displayed in control data setting mode and alarm codes are displayed when alarms are generated.				
	Display panel 2	Orange 5-digit, 7-segment LED This panel normally displays SP values. Set values are displayed in control data setting mode.				
	Display panel 3	Orange 2-digit, 7-segment LED This panel displays the difference between LSP and RSP values in normal indicating mode when display panel 2 shows SP values. In control data setting mode, item codes are displayed.				
	LED bar display	12 green and amber LEDs Analog monitor (includes control output) which doubles as a digital monitor.				
	Status display	18 LEDs SP, LCK, OUT, CH1 (PID computational unit 1), CH2 (PID computational unit 2), FLW (follow mode), AUT (auto mode), MAN (manual mode), CAS (cascade mode), IM (interlock manual mode), AT (auto-tuning), FZY (during fuzzy switching), OUT1, OUT2, OUT (bar graph control output), UF1,UF2, UF3 (user defined)				
	Operation keys	13 rubber keys (of which two are user definable)				
	Loader connecting port	1 (dedicated cable with stereo miniplugs)				
Modes	Normal operating mode	Auto mode		PID computational units control constants (LSP).		
		Manual mode		MAN computational units output manual settings. (However, only one MAN computational unit can be used.)		
				Only PID computational units perform integral operations.		
		Cascade mode PID computational units control cascade settings (RSP).				
		Follow mode MAN computational units outputs follow inputs to the SDC40B.				
	Emergency operating mode	Interlock manual mode: This mode is activated when an analog overflow, computational overflow or computational overload is detected				
Communications	Communications system	Communications standard		RS-485		RS-232C
		Network		Multidrop (SDC40B provided with only slave node functionality) 1 to 16 units or less (DIM), 1 to 31 units or less (CMA, SCM)		Point-to-point (SDC40B provided with only slave node functionality)
		Data flow		Half duplex		Half duplex
		Synchronization		Start-stop synchronization		Start-stop synchronization
	Interface system	Transmission system		Balanced (differential)		Unbalanced
		Data line		Bit serial		Bit serial
		Signal line		5 transmit/receive lines (3-wire connection is also possible.)		3 transmit/receive lines
		Transmission rate		4800, 9600bps		4800, 9600bps
		Transmission distance		500m max. (total) (300m for MA500DM connection)		15m max.
		Misc		Comforms to RS-485 standard		Comforms to RS-232C standard
	Display characters	Char. bit count		11 bits per character		11 bits per character
		Format		1 start bit, even parity, 1 stop bit; or 1 start bit, no parity, and 2 stop bits		1 start bit, even parity, 1 stop bit; or 1 start bit, no parity, and 2 stop bits
		Data length		8 bits		8 bits
	Isolation	Input and output are completely isolated.				
	Note 1: RS-485 communications can be performed by connecting to a computer equipped with an RS-485 interface or Yamatake MX200, MA500 AH (DK link II DIM) or CMA50 controllers.					

General specifications	Memory backup Rated power voltage	User settings (design data and control data): Non-volatile semiconductor memory (EEPROM) Mode, local SP, control output (AO1) and hold computations: RAM backed up by super-capacitor (stored for 24 hours)									
		AC model DC model	100 to 240Vac 50/60 hz								
			24 Vdc								
	Allowable power supply voltage	AC model	90 to $264 \mathrm{Vdc} 50 / 60 \mathrm{~Hz}$								
		DC model	21.6 to 26.4 Vdc								
	Power consumption	AC model	30 VA max.								
		DC model	12W max.								
	Power switching inrush current	15A max. for (under operating conditions) Note: When starting up a number of SDC 40B, simultaneously, ensure ample power is supplied or stagger their startup times. Otherwise the controllers may not start normally due inrush current induced-voltage drop. Voltage must stabilize within 2 seconds after power on.									
	Power ON operation	Reset time: 15 sec. max. (time until normal operation possible under normal operating conditions)									
	Allowable transient power loss	AC model	$20 \mathrm{~ms} \mathrm{min}. \mathrm{(under} \mathrm{operating} \mathrm{conditions)}$								
		DC model	No power failure allowed.								
	Power failure recovery operations	Hot start or cold start selectable (see below)									
		Selection	RAM backup		Actual outage recovery process		Description				
					Mode	Local SP	Controloutput (A01)				
		Hot start	During normal operation				Hot start		Before outage	Before outage	Before outage
			During failure		Cold start		Preset mode	Preset LSP	Preset value		
		Cold start	N/A not applicable								
	Insulation resistance	Min. $20 \mathrm{M} \Omega$ or more between power terminal (1) or (2) and ground terminal (3) (using a 500Vdc megger).									
	Dielectric strength	AC model	$1500 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ for 1 min across power terminal and ground terminal $1500 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ for 1 min across relay output and gruond terminal $500 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ for 1 min across non-power terminal and ground terminal $500 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ for 1 min across isolated terminal								
		DC model	$500 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ for 1 min across power terminal and ground terminal $1500 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ for 1 min across relay output and gruond terminal $500 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ for 1 min across non-power terminal and ground terminal $500 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ for 1 min across isolated terminal								
	Standard conditions	Ambient temperature		$23 \pm 2^{\circ} \mathrm{C}$							
		Ambient humidity		$60 \pm 5 \% \mathrm{RH}$							
		Rated power voltage		AC model		$105 \mathrm{Vac} \pm 1 \%$					
				DC model		$24 \mathrm{Vdc} \pm 5 \%$					
		Power frequency		AC model		$50 \pm 1 \mathrm{~Hz}$ or $60 \pm 1 \mathrm{~Hz}$					
		Vibration resistance		$0 \mathrm{~m} / \mathrm{s}^{2}$							
		Impact resistance		$0 \mathrm{~m} / \mathrm{s}^{2}$							
		Mounting angle		Reference plane (vertical) $\pm 3^{\circ}$							
	Operating conditions	Ambient temperature range		0 to $50^{\circ} \mathrm{C}$							
		Ambient humidity range		10 to 90% RH (non-condensing)							
		Rated power voltage		AC model: 100 to 240 Vac DC model: 24 Vdc							
		Power frequency		AC model: $50 \pm 2 \mathrm{~Hz}$ or $60 \pm 2 \mathrm{~Hz}$							
		Vibration resistance		0 to $1.96 \mathrm{~m} / \mathrm{s}^{2}$							
		Impact resistance		0 to $9.81 \mathrm{~m} / \mathrm{s}^{2}$							
		Mounting angle		Reference plane (vertical) $\pm 10^{\circ}$							
		Installation mode		Parmanently connected type controller, indoor installation, panel-mounted							
		Application standards		EN61010-1, EN 61326 (CE statement)							
		Over-voltage category		Category II (IEC60364-4-443, IE60664-1)							
		Pollution degree		2							
		Altitude		2000m max.							
	Shipping and storage conditions	Ambient temperature range		-20 to $70^{\circ} \mathrm{C}$							
		Ambient humidity range		10 to 95\% RH (non-condensing)							
		Vibration resistance		0 to $4.90 \mathrm{~m} / \mathrm{s}^{2}$ (10 to 60 Hz for 2 hours each in X, Y and Z directions)							
		Impact resistance		0 to $4.90 \mathrm{~m} / \mathrm{s}^{2}$ (3 times vertically)							
		Package drop test		Drop height: 90 cm (1 angle, 3 edges and 6 planes; free fall)							
	Materials of mask and case	Mask: Multilon Case: Polycarbonate									
	Colors of mask and case	Mask: dark gray Case: Light gray									
	Installation	Specially designed mounting bracket									
	Weight (Mass)	Approx. 900g									
Standard accessories	Parts name	Parts number		Quantity	Options		Parts name		Parts number		
	Unit indicating label	N-3132		1			Hard dust-proof cover set		81446083-001		
	Mounting bracket	81405411-001		2			Soft dust-proof co	er set	81 446087-001		
	User's manual: Basic Operations	CP-UM-1679E		1			Terminal cover set		81446084-001		
				Smart Loader package			SLPC4B-001H				
Related Publications	User's manual: Computational Functions	CP-UM-1680E									
	User's manual: CPL Communication Functions	CP-UM-1683E									

Table 1. Input types and ranges (selected at setup) Input 1 Thermocouples, RTDS, DC current and DC Voltage

Symbol	${ }^{\circ} \mathrm{C}$ range			${ }^{\circ} \mathrm{F}$ range		
K (CA)	0.0	to	1200.0	0	to	2400
K (CA)	0.0	to	800.0	0	to	1600
K (CA)	0.0	to	400.0	0	to	750
K (CA)	-200.0	to	+1200.0	-300	to	+2400
K (CA)	-200.0	to	+300.0	-300	to	+700
K (CA)	-200.0	to	+200.0	-300	to	+400
E (CRC)	0.0	to	800.0	0	to	1800
J (IC)	0.0	to	800.0	0	to	1600
T (CC)	-200.0	to	+300.0	-300	to	+700
B (PR30-6)	0.0	to	1800.0	0	to	3300
R (PR13)	0.0	to	1600.0	0	to	3100
S (PR10)	0.0	to	1600.0	0	to	3100
W (WRe5-26)	0.0	to	2300.0	0	to	4200
W (WRe5-26)	0.0	to	1400.0	0	to	2552
PR40-20	0.0	to	1900.0	0	to	3400
Ni-Ni $\cdot \mathrm{Mo}$	0.0	to	1300.0	32	to	2372
N	0.0	to	1300.0	32	to	2372
PL II	0.0	to	1300.0	32	to	2372
DIN U	-200.0	to	+400.0	-300	to	+750
DIN L	-200.0	to	+800.0	-300	to	+1600
JIS '89 Ptl00 (IEC Pt100 $)$	-200.0	to	+500.0	-300.0	to	+900.0
	-200.0	to	+200.0	-300.0	to	+400.0
	-100.0	to	+150.0	-150.0	to	+300.0
	-50.0	to	+200.0	-50.0	to	+400.0
	-60.00	to	+40.00	-76.00	to	+104.00
	-40.00	to	+60.00	-40.00	to	+140.00
	0.0	to	500.0	0.0	to	900.0
	0.0	to	300.0	0.0	to	500.0
	0.00	to	100.00	0.0	to	200.00

Symbol	${ }^{\circ} \mathrm{C}$	ran			ran	
	-200.0	to	+500.0	-300.0	to	+900.0
JIS '89 JPtl00	-200.0	to	+200.0	-300.0	to	+400.0
	-100.0	to	+150.0	-150.0	to	+300.0
	-50.0	to	+200.0	-50.0	to	+400.0
	-60.0	to	+40.0	-76.00	to	+104.00
	-40.0	to	+60.0	-40.00	to	+140.00
	0.0	to	500.0	0.0	to	+900.0
	0.0	to	300.0	0.0	to	+500.0
	0.00	to	100.00	0.00	to	+200.00
4 to 20 mA						
0 to 20 mA						
0 to 10 mA	$-19999 \text { to }+26000$					
-10 to +10 mA	(Decimal point repositioning					
0 to 1V	and reverse scaling possible.)					
-1 to +1V						
1 to 5V						
0 to 5 V						
0 to 10 V						

Input 2 DC current and DC voltage

Input format	Range
4 to 20 mA	Scale setting range: -19999 to +26000 (Decimal point repositioning and reverse scaling possible.)
1 to 5 V	

Input 3 DC voltage

Input format	Range
1 to 5 V	Scale setting range: -19999 to +26000 (Decimal point repositioningand reverse scaling possible.)

- Items that do not meet stated indication accuracy

 ($\pm 1 \%$ FS $\pm 1 \mathrm{U}$)- K and T thermocouples: $\pm 1^{\circ} \mathrm{C} \pm 1 \mathrm{U}$ for temperatures below $-100^{\circ} \mathrm{C}$
- B thermocouples:
$\pm 4.0 \% \mathrm{FS} \pm 1 \mathrm{U}$ for temperatures below $260^{\circ} \mathrm{C}$
$\pm 0.4 \% \mathrm{FS} \pm 1 \mathrm{U}$ for temperatures ranging from 260 to $800^{\circ} \mathrm{C}$
$\pm 0.2 \% \mathrm{FS} \pm 1 \mathrm{U}$ for temperatures ranging from 800 to $1800^{\circ} \mathrm{C}$
- R and S thermocouples:
$\pm 0.2 \% \mathrm{FS} \pm 1 \mathrm{U}$ for temperatures below $100^{\circ} \mathrm{C}$
$\pm 0.15 \% \mathrm{FS} \pm 1 \mathrm{U}$ for temperatures ranging from 100 to $1600^{\circ} \mathrm{C}$
- PR40-20 thermocouples:
$\pm 2.5 \% \mathrm{FS} \pm 1 \mathrm{U}$ for temperatures below $300^{\circ} \mathrm{C}$
$\pm 1.5 \%$ FS $\pm 1 \mathrm{U}$ for temperatures ranging from 300 to $800^{\circ} \mathrm{C}$
$\pm 0.5 \% \mathrm{FS} \pm 1 \mathrm{U}$ for temperatures ranging from 800 to $1900^{\circ} \mathrm{C}$
- RTDs:
$\pm 0.15 \% \mathrm{FS} \pm 1 \mathrm{U}$ for the range below 2 decimal places $\pm 0.15 \% \mathrm{FS} \pm 1 \mathrm{U}$ for the range 0 to 10 mV
- DIN U thermocouples:
$\pm 2.0^{\circ} \mathrm{C} \pm 1 \mathrm{U}$ for temperatures below $-100^{\circ} \mathrm{C}$
$\pm 1.0^{\circ} \mathrm{C} \pm 1 \mathrm{U}$ for temperatures ranging from -100 to $0^{\circ} \mathrm{C}$
- DIN L thermocouples:
$\pm 1.5^{\circ} \mathrm{C} \pm 1 \mathrm{U}$ for temperatures below $-100^{\circ} \mathrm{C}$

Data andsetting procedures © : can be set \bigcirc : can sometimesbe set \triangle : can be monitored - : cannot be set or monitored

Category	Data	Description	From console	From PC loader
Design data	Computational unit data	Specifies computational expressions, connections, etc.	\triangle	©
	Output processing data	Specifies output processing connections	\triangle	(
Control data	Setup data	Specifies control types and computation cycles	\bigcirc	($)$
	Input processing data	Specifies input processing types, etc.	\bigcirc	©
	Control Computational data	Specifies PID computation modes, PID groups to be used, etc.	\bigcirc	(
	PID parameters	Specifies control parameters for PID groups 0 to 7	()	(
	Linearization data	Specifies linearization format	\bigcirc	()
	Variable parameters	Specifies computation coefficients, constants, etc.	(O
	Engineering unit parameters	For setting engineering units	()	(
	UF key processing data	Specifies functions assigned to user function keys (UF) 1 and 2	\bigcirc	()
	Digital input processing data	Used as DI1 to DI12 index data	\triangle	©
	ID data	Identifiers for hardware type, ROM and others not in EEPROM	\triangle	\triangle
	Protector	Specifies key lock, etc	(()
	Trend processing data	Specified when using data trend functions on PC loader	-	()

List of computationalexpressions

No.	Computational expressions	Symbol	Description
1	Addition	ADD	OUT=P1×H1+P2×H2
2	Subtraction	SUB	$\mathrm{OUT}=\mathrm{P} 1 \times \mathrm{H} 1-\mathrm{P} 2 \times \mathrm{H} 2$
3	Multiplication	MUL	OUT $=\mathrm{H} 1 \times \mathrm{H} 2$
4	Division	DIV	$\mathrm{OUT}=\mathrm{H} 1 / \mathrm{H} 2+\mathrm{P} 1$
5	Absolute Value	ABS	OUT $=\|\mathrm{H} 1\|$
6	Square-Root Extraction	SQR	$\mathrm{OUT}=\sqrt{\mathrm{H} 1}$
7	Maximum Value	MAX	OUT=MAX (H1, H2, P1, P2)
8	Minimum Value	MIN	OUT $=$ MIN (H1, H2, P1, P2)
9	4-point Addition	SGM	$\mathrm{OUT}=\mathrm{H} 1+\mathrm{H} 2+\mathrm{P} 1+\mathrm{P} 2$
10	High Selector/Low Limiter	HSE	When $\mathrm{H} 1 \geq \mathrm{H} 2$, OUT is H 1 . When $\mathrm{H} 1<\mathrm{H} 2$, OUT is H 2 . When used as a low limiter, H 2 is the lower limit value.
11	Low Selector/High Limiter	LSE	When $\mathrm{H} 1 \geq \mathrm{H} 2$, OUT is H 1 . When $\mathrm{H} 1<\mathrm{H} 2$, OUT is H 2 . When used as a low limiter, H 2 is the lower limit value.
12	High and low limiter	HLLM	H 1 is limited by the high limit value P1 and the low limit value P2.
13	High Monitor	HMS	Output is asserted when H1 exceeds high monitor value H2. (Hysteresis width is P2.)
14	Low Monitor	LMS	Output is asserted when H 1 falls below the low monitor value H2. (Hysteresis width is P2.)
15	Deviation Monitor	DMS	Output is asserted when the deviation between H 1 and H 2 exceeds deviation monitor value P1. (Hysteresis width is P2.)
16	Deviation Rate Limiter	DRL	Limits input H 1 s deviation rate per minute to $\mathrm{H} 2 \%$ on positive side and to $\mathrm{P} 1 \%$ on the negative side.
17	Deviation Rate Monitor	DRM	Output is asserted when input H 1 exceeds $\mathrm{H} 2 \%$ on positive side and is within $\mathrm{P} 1 \%$ on negative side compared to inputs made one minute earlier.
18	Manual Output	MAN	Enables manual output from system console.
19	Controller \#1	P1D1	PID controller 1 (with auto-tuning)
20	Controller \#2	P1D1	PID controller 2 (with auto-tuning)
21	Dead Time	DED	OUT=e-P1 $\cdot \mathrm{S} \times \mathrm{H} 1$ (Input H1, the dead time, is output after P1 seconds.)
22	Lead/Lag	L/L	$\mathrm{OUT}=(1+\mathrm{P} 1 \cdot \mathrm{~S}) /(1+\mathrm{P} 2 \cdot \mathrm{~S}) \times \mathrm{H} 1$
23	Derivative	LED	OUT=P1 S $(1+\mathrm{P} 2 \cdot \mathrm{~S}) \times \mathrm{H} 1$
24	Integral	INT	OUT=H1/P1 - S (Integration performed on input H1 in integral time of P1 seconds.)
25	Moving Average	MAV	$\text { OUT }=\frac{1}{30} \sum_{i=1}^{30} H_{1}\left(\frac{i}{30} P_{1}\right)$
26	Flip-Flop	RS	Set input H1 holds flag data; H 2 input resets the data.
27	Logical Product	AND	OUT= $\mathrm{H}_{1} \wedge \mathrm{H} 2 \wedge \mathrm{P} 1 \wedge \mathrm{P} 2$
28	Logical OR	OR	OUT=H1 V H2 \vee P1 \vee P2
29	Exclusive OR	XOR	OUT $=\mathrm{H} 1 \forall \mathrm{GH} 2$
30	Invert	NOT	OUT= $\overline{\mathrm{H} 1}$
31	2-Position Transfer Switch	SW	P 1 switches between H 1 and H 2 percent data.
32	Softening Transfer Switch	SFT	Switches between H1 and H2 using a P2 (\%) slope for smooth switching.
33	Timer switch	TSW	Switches between H1 and H2 using P1 time data,
34	Flag switch	FSW	Switches between H 1 and H 2 using P1 flag data.
35	Alternate switch	ALSW	Inverts output when the rising edge of H 1 is detected.
36	Timer	TIM	Pulse generation per P1 seconds.
37	On delay timer	ONDT	Asserts output aftter P1 seconds.
38	Off delay timer	OFDT	Inhibits output after P1 seconds.
39	One-shot timer	OST	Generates pulse for P1 seconds.
40	Integration pulse output 1	CPO	Outputs the number of pulses proportional to input H_{1}.
41	Integration pulse output II	CPX	Performs integration on input H 1 and outputs one pulse when the output pulse value set by P1 is reached.
42	Pulse width modulation	PWM	Asserts output in proportion to input H1 within the P1 cycle.
43	Ramp signal	RMP	Outputs a waveform with a rising slope.
44	LOG	LOG	OUT=LOG ${ }_{10}\left(\mathrm{H}_{1}\right)$ or OUT=LOG ${ }_{\text {e }}\left(\mathrm{H}_{1}\right)$
45	Exponent	EXP	OUT $=10^{\mathrm{H1}}$ or $\mathrm{OUT}=\mathrm{e}^{\mathrm{H} 1}$
46	(Not used)		
47	(Not used)		
48	(Not used)		
49	(Not used)		
50	(Not used)		
51	Control variable change \#1	PMD1	Changes PID 1 control variables, (enables changing of PID group numbers also.)
52	Control variable change \#2	PMD2	Changes PID 2 control variables, (enables changing of PID group numbers also.)
53	Mode select (status detection)	MOD	Cycles through follow, manual, auto and cascade modes
54	Mode select (edge detection)	MODX	Cycles through follow, manual, auto and cascade modes
55	Auto-tuning start/stop 1	AT1	Starts/stops PID 1 unit auto-tuning.
56	Auto-tuning start/stop 2	AT2	Starts/stops PID 2 unit auto-tuning.
57	Data hold	HOLD	Retains input H1 during outage, and outputs it as is after restore.
58	Raise lower unit	RL	Raises output when H 1 is ON (raise) and lowers it when H 2 is ON (lower).
59	Reset unit	RST	Resets the interlock manual mode.
60	(Not used)		
61	Linearization Table \#1	TBL1	Linearization Table \#1 (16 points)
62	Linearization Table \#2	TBL2	Linearization Table \#2 (16 points)
63	Linearization Table \#3	TBL3	Linearization Table \#3 (16 points)

No.	Computational expressions	Symbol	Description
64	Inverse linearization Table \#1	TBR1	Inverse function of linearization Table \#1 (16 points)
65	Inverse linearization Table \#2	TBR2	Inverse function of linearization Table \#2 (16 points)
66	Inverse linearization Table \#2	TBR2	Inverse function of linearization Table \#3 (16 points)
67	Time \rightarrow \% conversion	TTP	Converts time data to percent data.
68	\% \rightarrow Time conversion	PTT	Converts percent data to time data.
69	Engineering unit parameter selection \#1	E_P1	Selects engineering unit parameters for PID 1 units.
70	Engineering unit parameter selection \#2	E_P2	Selects engineering unit parameters for PID 2 units.
71	(Not used)		
72	(Not used)		
73	(Not used)		
74	(Not used)		
75	(Not used)		
76	(Not used)		
77	(Not used)		
78	(Not used)		
79	(Not used)		
80	(Not used)		
81	\% \rightarrow \% table \#1	PTB1	Not connectable, but otherwise identical to linearization tables.
82	\% \rightarrow \% table \#2	PTB2	Not connectable, but otherwise identical to linearization tables.
83	\% \rightarrow \% table \#3	PTB3	Not connectable, but otherwise identical to linearization tables.
84	\% \rightarrow \% table \#4	PTB4	Not connectable, but otherwise identical to linearization tables.
85	\% \rightarrow time table \#1	TTB1	Uses linearization table to convert \% data to time data.
86	\% \rightarrow time table \#2	TTB2	Uses linearization table to convert \% data to time data.
87	\% \rightarrow time table \#3	TTB3	Uses linearization table to convert \% data to time data.
88	\% \rightarrow time table \#4	TTB4	Uses linearization table to convert \% data to time data.
89	(Not used)		
90	(Not used)		
91	User lamp ouput \#1	UF1	User lamp control unit \#1
92	User lamp ouput \#2	UF2	User lamp control unit \#2
93	User lamp ouput \#3	UF3	User lamp control unit \#3
94	Bar graph display switch	BLED	Selects bar graph display.
95	Additional display unit \#1	DSP1	Additional display unit \#1 of display panels 1 and 2
96	Additional display unit \#2	DSP2	Additional display unit \#2 of display panels 1 and 2
97	Additional display unit \#3	DSP3	Additional display unit \#3 of display panels 1 and 2
98	Additional display unit \#4	DSP4	Additional display unit \#4 of display panels 1 and 2
99	(Not used)		

Model Selection Guide

Example: C40B5G4AS09100

Basic Model No.	Control output	Function	Power supply	Options 1	$\begin{array}{\|c\|} \hline \text { Options } \\ 2 \\ \hline \end{array}$	Additional Processing	Specifications
C40B							Digital indicating controller
	2G						Position proportional output
	5G						Current output (4 to 20mAdc / 0 to 20mAdc)
		4					Input 1: Thermocouples, RTDs, DC current, DC voltage of multi-range Input 2: 4 to $20 \mathrm{mAdc}, 1$ to 5 Vdc Input 3: 1 to 5 Vdc
			AS				AC power supply (90 to 264Vac: Free power supply)
			DS				DC power supply (21.6 to 26.4 Vdc)
				06*			1 auxiliary output, 12 digital inputs, 8 digital outpus (3 relays, 5 open collectors)
				09*			2 auxiliary outputs, 12 digital inputs, 8 digital output (3 delays, 5 open collectors)
					1		No xommunication interface
					2		RS-485 communications
					3		RS-232C communications
						00	Additional processing not provided
						T0	Tropical treatment
						K0	Antisulfide treatment
						D0	Inspection certificate provided
						B0	Tropical treatment + inspection certificate provided
						LO	Antisulfide treatment + inspection certificate provided
						Y0	Complying with the traceability certifications

* An option 06 can specify only at the time of control output 2G. An option 09 can specify only at the time of control output 5G.

Soft dust-proof cover set: Parts No. 81446087-001 (Transparent silicon rubber)

Terminal cover set: Parts No. 81446087-001
[Installable on standard and expanded terminal bases] (Transparent silicon rubber)

Hard dust-proof cover set: Parts No. 81446087-001 (Transparent silicon rubber)

Hard dust-proof cover

Side-by-side mounting

Wiring

- Standard terminal layout

AC model

DC model

Layout of expanded terminals

- RS-485 communications

- RS-232C communications

Precautions on wiring

1. Internal instrument isolation

Solid line (-) indicates isolated area.
Dashed line (.....) indicates areas that are not isolated.

Input 1 (AR1) (full multi)	$\begin{aligned} & 0 \\ & \frac{0}{3} \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \hline 0 \end{aligned}$	Analog output 1 (A01) (control output 4 to 20mA)
		Analog output 2 (AO2) (auxiliary output 4 to 20mA)
(4 to 20mA / 1 to 5V)		Analog output 3 (AO3)
Input 3 (AIR3) (1 to 5V)		(auxiliary output 4 to 20mA)
Loader communication I/O		Digital output 1 (relay output 1a)
12 digital inputs		Digital output 2 (relay output 1a)
		Digital output 3 (relay output 1a1b)
Communications I/O (RS-485/RS-232C)		Digital output 4 to 8 (open collector output)

<Control output 5G (current output)>

Input 1 (AIR1) (full multi)		Analog output 1 (A01) (control output 4 to 20mA)
		Analog output 2 (AO2) (auxiliary output 4 to 20mA)
(4 to 20mA / 1 to 5V)		Analog output 3 (AO3)
Input 3 (AIR3) $(1 \text { to } 5 \mathrm{~V})$		(auxiliary output 4 to 20mA)
Loader communication I/O		Digital output 1 (relay output 1a)
12 digital inputs		Digital output 2 (relay output 1a)
		Digital output 3 (relay output 1a1b)
Communications I/O (RS-485/RS-232C)		Digital output 4 to 8 (open collector output)

<Control output 2G (position proportional)>

2. Power supply noise countermeasures

(1) Noise reduction

Even if the noise is negligible, use a line filter to minimize line noise.
(2) When noise is excessive

Use an insulation transformer and a line filter to reduce the noise.

- AC model

To supply power to the SDC40B, use an instrument-dedicated single-phase power supply subject to minimal electrical interference.

- DC model

Connect the SDC40B DC model to a $24 \mathrm{Vdc} \pm 10 \%$ power source.

3. Noise sources in installation environment and countermeasures

The following are possible noise sources in the installation environment: relays, contacts, magnetic coils, solenoid valves, power lines (especially 90Vac or above), inductive loads, inverters, motor rectifiers, phase control SCR, radio equipment, welding equipment, high-voltage ignition devices, etc.
(1) Counteracting quick rising noise

Use a CR filter to counteract quick rising noise.
Recommended filter:
Yamatake part No.: 81446365-001
(2) Counteracting noise with high peaks

Use a varistor to counteract noise with high peaks, but note that a defective varistor is short-circuited and has to be handled with care.
Recommended varistor:
Yamatake part No.: 81446366-001 (100Vac)
81446367-001 (200Vac)

4. Grounding

To ground the SDC40B, connect the GND (FG) terminal (terminal 3) to a single ground point without jumpering. Use a grounding terminal board (earth bar) when shielded wire is not available.

Grounding standard: Class 3 or better (100Ω or less)
Grounding wire: Soft steel wire (AWG14) with a cross section of $2 \mathrm{~mm}^{2}$ or more
Length of ground wire: 20 m max.

5. Wiring precautions

(1) When noise countermeasures have been taken, do not bundle primary and secondary cables together or rout them through the same distribution box or ducts
(2) Inputs and communication lines should be at least 50 cm away from power lines carrying voltages of 90 Vac or more and do not route them through the same distribution box or ducts.

6. Inspections after wiring

When all wiring procedures have been performed, inspect the wiring carefully since incorrect wiring could damage the instruments.

Downloaded from Elcodis.com electronic components distributor

Downloaded from Elcodis.com electronic components distributor

\triangle RESTRICTIONS ON USE

This product has been designed, developed and manufactured for general-purpose application in machinery and equipment. Accordingly, when used in the applications outlined below, special care should be taken to implement a fail-safe and/or redundant design concept as well as a periodic maintenance program.

- Safety devices for plant worker protection - Start/stop control devices for transportation and material handling machines
- Aeronautical/aerospace machines - Control devices for nuclear reactors

Never use this product in applications where human safety may be put at risk.

Yamatake Corporation
Advanced Automation Company
1-12-2 Kawana, Fujisawa
Kanagawa 251-8522 Japan
URL: http://www.azbil.com

