512Mb B-die DDR2 SDRAM Specification Version 0.91

September 2003

Contents

1. Key Feature

2. Package Pinout/Mechnical Dimension & Addressing

- 2.1 Package Pintout & Mechnical Dimension
- 2.2 Input/Output Function Description
- 2.3 Addressing

3. Command Truth Table

- 3.1 Command truth table
- 3.2 Clock Enable (CKE) Truth Table for Synchronous Transitions
- 3.3 DM Truth Table

4. Absolute Maximum Rating

5. AC & DC Operating Conditions & Specifications

512Mb B-die DDR2 SDRAM

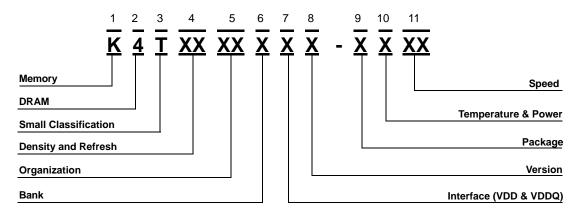
Revision History

Version 0.9 (Aug. 2003)

- Initial Release

Version 0.91 (Sep. 2003)

- Corrected from M to B in Part No Information(K4T51##3Q"M"-### -> K4T51##3Q"B"-###)
- Removed D4 speed bin(400 4-4-4)
- Added operation temperature condition
 Changed setup/hold time values(tlS/tDS, tlH/tDH)
- Added notes for setup/hold time(tIS/tDS, tIH/tDH)
- Changed in/output capacitance values
- Added tREFI values by $\rm T_{CASE}~(85^{\circ}C/95^{\circ}C)$



Part Number Information

Organization	DDR2-667 5-5-5	DDR2-533 4-4-4	DDR2-400 3-3-3
128Mx4	K4T51043QB-GCE6	K4T51043QB-GCD5	K4T51043QB-GCCC
12010134	K4T51043QB-GLE6	K4T51043QB-GLD5	K4T51043QB-GLCC
64Mx8	K4T51083QB-GCE6	K4T51083QB-GCD5	K4T51083QB-GCCC
04101X0	K4T51083QB-GLE6	K4T51083QB-GLD5	K4T51083QB-GLCC
32Mx16	K4T51163QB-GCE6	K4T51163QB-GCD5	K4T51163QB-GCCC
32IVIX 16	K4T51163QB-GLE6	K4T51163QB-GLD5	K4T51163QB-GLCC

Note:

^{1.} Speed bin is in order of CL-tRCD-tRP

- 1. SAMSUNG Memory: K
- 2. DRAM: 4
- 3. Small Classification

T: DDR2 SDRAM

4. Density & Refresh

51:512M 8K/64ms

5. Organization

04 : x4 08 : x8 16 : x16

6. Bank

3:4 Bank

7. Interface (VDD & VDDQ)

Q: SSTL-18(1.8V, 1.8V)

8. Version

M: 1st Generation
A: 2nd Generation
B: 3rd Generation
C: 4th Generation
D: 5th Generation
E: 6th Generation

9. Package

G:BGA

10. Temperature & Power

C: (Commercial, Normal)
L: (Commercial, Low)

11. Speed

CC: DDR2-400 3-3-3 D5: DDR2-533 4-4-4 E6: DDR2-667 5-5-5

1.Key Features

Speed	DDR2-667 5 - 5- 5	DDR2-533 4 - 4 - 4	DDR2-400 3- 3- 3	Units
CAS Latency	5	4	3	tCK
tRCD(min)	15	15	15	ns
tRP(min)	15	15	15	ns
tRC(min)	55	55	55	ns

- JEDEC standard 1.8V ± 0.1V Power Supply
- $VDDQ = 1.8V \pm 0.1V$
- 200 MHz f_{CK} for 400Mb/sec/pin, 267MHz f_{CK} for 533Mb/sec/pin, 333MHz f_{CK} for 667Mb/sec/pin
- 4 Bank
- Posted CAS
- Programmable CAS Latency: 3, 4, 5
- Programmable Additive Latency: 0, 1, 2, 3 and 4
- Write Latency(WL) = Read Latency(RL) -1
- Burst Length: 4, 8(Interleave/nibble sequential)
- Programmable Sequential / Interleave Burst Mode
- Bi-directional Differential Data-Strobe (Single-ended data-strobe is an optional feature)
- Off-Chip Driver(OCD) Impedance Adjustment
- · On Die Termination
- Average Refesh Period 7.8us at lower then T_{CASE} 85°C, 3.9us at 85°C < $T_{CASE} \le 95$ °C
- Package: 60ball FBGA 128Mx4/64Mx8 , 84ball FBGA 32Mx16

Description

The 512Mb DDR2 SDRAM chip is organized as either 32Mbit x 4 I/O x 4 banks or 16Mbit x 8 I/O x 4banks or 8Mbit x 16I/O x 4 banks device. This synchronous device achieve high speed double-data-rate transfer rates of up to 667Mb/sec/pin (DDR2-667) for general applications.

The chip is designed to comply with the following key DDR2 SDRAM features: (1) posted CAS with additive latency, (2) write latency = read latency -1, (3) Off-Chip Driver(OCD) impedance adjustment, (4) On Die Termination.

All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the cross point of differential clocks (CK rising and \overline{CK} falling). All I/Os are synchronized with a pair of bidirectional strobes (DQS and \overline{DQS}) in a source synchronous fashion. A fourteen bit address bus is used to convey row, column, and bank address information in a $\overline{RAS/CAS}$ multiplexing style. For example, 512Mb(x4) device receive 14/11/2 addressing.

The 512Mb DDR2 devices operate with a single 1.8V \pm 0.1V power supply and 1.8V \pm 0.1V VDDQ.

The 512Mb DDR2 devices are available in 60ball FBGAs(x4/8) and in 84ball FBGAs(x16).

Note: The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation.

2. Package Pinout/Mechnical Dimension & Addressing

2.1 Package Pinout

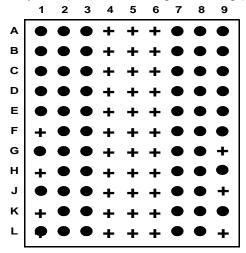
x4 package pinout (Top View): 60ball FBGA Package

1	2	3		7 8	9	
VDD	NC	VSS	Α	VSSQ	DQS	VDDQ
NC	VSSQ	DM	В	DQS	VSSQ	NC
VDDQ	DQ1	VDDQ	С	VDDQ	DQ0	VDDQ
NC	VSSQ	DQ3	D	DQ2	VSSQ	NC
VDDL	VREF	VSS	E	VSSDL	CK	VDD
	CKE	WE	F	RAS	CK	ODT
NC	BA0	BA1	G	CAS	CS	
	A10	A1	н	A2	A0	VDD
VSS	А3	A5	J	A6	A4	
	A7	A9	ĸ	A11	A8	VSS
VDD	A12	NC	L	NC	A13	

Notes:

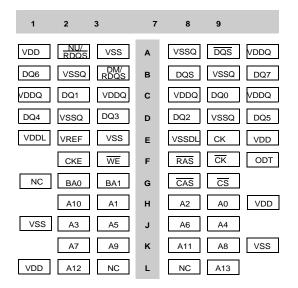
B1, B9, D1, D9 = NC for x4 organization.

Pins B3 has identical capacitance as pins B7.


VDDL and VSSDL are power and ground for the DLL. It is recommended that they are isolated on the device from VDD, VDDQ, VSS, and VSSQ.

Ball Locations (x4)

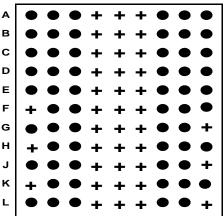
• : Populated Ball


+ : Depopulated Ball

Top View (See the balls through the Package)

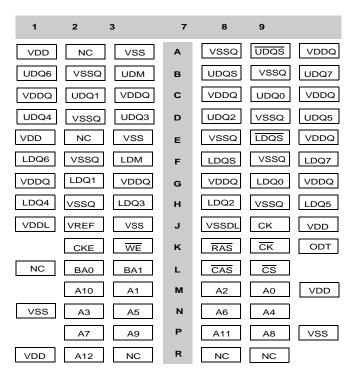
x8 package pinout (Top View): 60ball FBGA Package

Notes:


- 1. Pins B3 and A2 have identical capacitance as pins B7 and A8.
- For a read, when enabled, strobe pair RDQS & RDQS are identical in function and timing to strobe pair DQS & DQS and input masking function is disabled.
- 3. The function of DM or RDQS/RDQS are enabled by EMRS command.
- VDDL and VSSDL are power and ground for the DLL. It is recommended that they are isolated on the device from VDD, VDDQ, VSS, and VSSQ.

Ball Locations (x8)

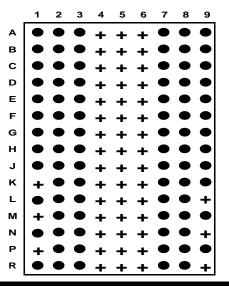
: Populated Ball


+ : Depopulated Ball

Top View (See the balls through the Package)
1 2 3 4 5 6 7 8 9

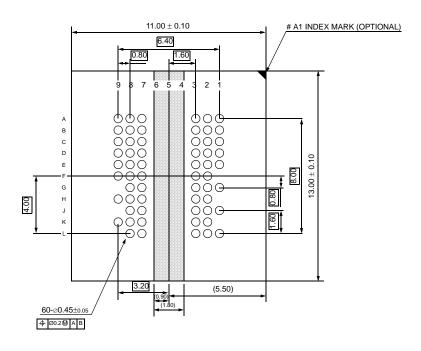
x16 package pinout (Top View): 84ball FBGA Package

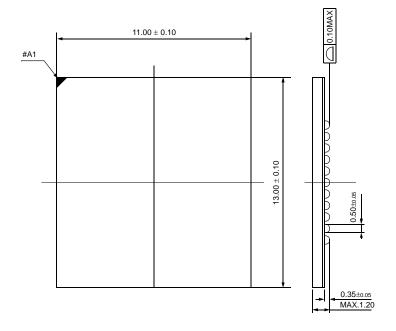
Notes:

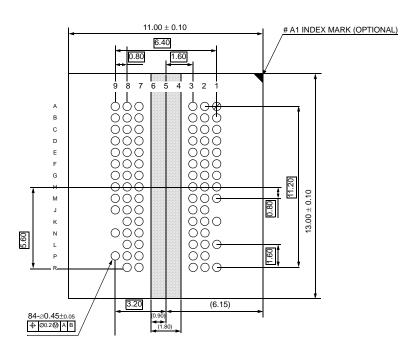

VDDL and VSSDL are power and ground for the DLL. It is recommended that they are isolated on the device from VDD, VDDQ, VSS, and VSSQ.

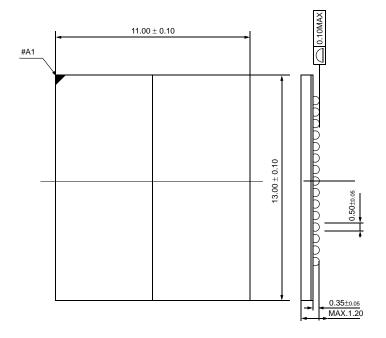
Ball Locations (x16)

: Populated Ball+ : Depopulated Ball


Top View


(See the balls through the Package)


FBGA Package Dimension(x4/x8)



FBGA Package Dimension(x16)

2.2 Input/Output Functional Description

Symbol	Туре	Function
CK, CK	Input	Clock: CK and CK are differential clock inputs. All address and control input signals are sampled on the crossing of the positive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK (both directions of crossing).
CKE	Input	Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation (all banks idle), or Active Power-Down (row Active in any bank). CKE is synchronous for power down entry and exit, and for self refresh entry. CKE is asynchronous for self refresh exit. CKE must be maintained high throughout read and write accesses. Input buffers, excluding CK, CK, ODT and CKE are disabled during power-down. Input buffers, excluding CKE, are disabled during self refresh.
<u>cs</u>	Input	Chip Select: All commands are masked when $\overline{\mathbb{CS}}$ is registered HIGH. $\overline{\mathbb{CS}}$ provides for external Rank selection on systems with multiple Ranks. $\overline{\mathbb{CS}}$ is considered part of the command code.
ODT	Input	On Die Termination: ODT (registered HIGH) enables termination resistance internal to the DDR2 SDRAM. When enabled, ODT is only applied to each DQ, DQS, DQS, RDQS, RDQS, and DM signal for x4x8 configurations. For x16 configuration ODT is applied to each DQ, UDQS/UDQS, LDQS/LDQS, UDM, and LDM signal. The ODT pin will be ignored if the Extended Mode Register (EMRS) is programmed to disable ODT.
RAS, CAS, WE	Input	Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.
DM	Input	Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS. Although DM pins are input only, the DM loading matches the DQ and DQS loading. For x8 device, the function of DM or RDQS/RDQS is enabled by EMRS command.
BA0 - BA1	Input	Bank Address Inputs: BA0 and BA1 for 256 and 512Mb, BA0 - BA2 define to which bank an Active, Read, Write or Precharge command is being applied. Bank address also determines if the mode register or extended mode register is to be accessed during a MRS or EMRS cycle.
A0 - A13	Input	Address Inputs: Provided the row address for Active commands and the column address and Auto Precharge bit for Read/Write commands to select one location out of the memory array in the respective bank. A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by BA0, BA1. The address inputs also provide the op-code during Mode Register Set commands.
DQ	Input/Output	Data Input/ Output: Bi-directional data bus.
DQS, (DQS) (LDQS), (LDQS) (UDQS), (UDQS) (RDQS), (RDQS)	Input/Output	Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write data. For the x16, LDQS corresponds to the data on DQ0-DQ7; UDQS corresponds to the data on DQ8-DQ15. For the x8, an RDQS option using DM pin can be enabled via the EMRS(1) to simplify read timing. The data strobes DQS, LDQS, UDQS, and RDQS may be used in single ended mode or paired with optional complementary signals DQS, LDQS, UDQS, and RDQS to provide differential pair signaling to the system during both reads and writes. An EMRS(1) control bit enables or disables all complementary data strobe signals.
NC		No Connect: No internal electrical connection is present.
V_{DDQ}	Supply	DQ Power Supply: 1.8V +/- 0.1V
V _{SSQ}	Supply	DQ Ground
V _{DDL}	Supply	DLL Power Supply: 1.8V +/- 0.1V
V _{SSDL}	Supply	DLL Ground
V _{DD}	Supply	Power Supply: 1.8V +/- 0.1V
V _{SS}	Supply	Ground
V _{REF}	Supply	Reference voltage

In this data sheet, "differential DQS signals" refers to any of the following with A10 = 0 of EMRS(1)

x4 DQS/DQS
x8 DQS/DQS
x8 DQS/DQS, if EMRS(1)[A11] = 0
x8 DQS/DQS, BDQS/RDQS, if EMRS(1)[A11] = 1
x16 LDQS/LDQS and UDQS/UDQS

"single-ended DQS signals" refers to any of the following with A10 = 1 of EMRS(1)
x4 DQS
x8 DQS if EMRS(1) [A11] = 0
x8 DQS, RDQS, if EMRS(1) [A11] = 1
x16 LDQS and UDQS

2.3 512Mb Addressing

Configuration	128Mb x4	64Mb x 8	32Mb x16
# of Bank	4	4	4
Bank Address	BA0,BA1	BA0,BA1	BA0,BA1
Auto precharge	A ₁₀ /AP	A ₁₀ /AP	A ₁₀ /AP
Row Address	A0 ~ A13	A0 ~ A13	A0 ~ A12
Column Address	A0 ~ A9,A11	Ao ~ A9	Ao ~ A9

^{*} Reference information: The following tables are address mapping information for other densities.

256Mb

Configuration	64Mb x4	32Mb x 8	16Mb x16
# of Bank	4	4	4
Bank Address	BA0,BA1	BA0,BA1	BA0,BA1
Auto precharge	A ₁₀ /AP	A ₁₀ /AP	A ₁₀ /AP
Row Address	A0 ~ A12	A0 ~ A12	A0 ~ A12
Column Address	A0 ~ A9,A11	Ao ~ A9	Ao ~ As

1Gb

Configuration	256Mb x4	128Mb x 8	64Mb x16
# of Bank	8	8	8
Bank Address	BA0 ~ BA2	BA0 ~ BA2	BA0 ~ BA2
Auto precharge	A ₁₀ /AP	A ₁₀ /AP	A ₁₀ /AP
Row Address	A0 ~ A13	A0 ~ A13	A0 ~ A12
Column Address	A0 ~ A9,A11	A0 ~ A9	A0 ~ A9

2Gb

Configuration	512Mb x4	256Mb x 8	128Mb x16
# of Bank	8	8	8
Bank Address	BA0 ~ BA2	BA0 ~ BA2	BA0 ~ BA2
Auto precharge	A ₁₀ /AP	A ₁₀ /AP	A ₁₀ /AP
Row Address	A0 ~ A14	A0 ~ A14	A0 ~ A13
Column Address	A0 ~ A9,A11	Ao ~ A9	Ao ~ A9

4Gb

Configuration	1 Gb x4	512Mb x 8	256Mb x16
# of Bank	8	8	8
Bank Address	BA0 ~ BA2	BA0 ~ BA2	BA0 ~ BA2
Auto precharge	A ₁₀ /AP	A ₁₀ /AP	A ₁₀ /AP
Row Address	tbd	tbd	tbd
Column Address/page size	tbd	tbd	tbd

3. Command Truth Table.

3.1 Command truth table.

	Cł	KE			CAS				BA0				
Function	Previous Cycle	Current Cycle	CS	RAS		WE	BA1 BA2	A15-A11	A10	A9 - A0	Notes		
(Extended) Mode Register Set	Н	Н	L	L	L	L	ВА	C	P Cod	de	1,2		
Refresh (REF)	Н	H	L	L	L	Н	Х	Х	Х	Х	1		
Self Refresh Entry	Н	L	L	L	L	Н	Х	Х	Х	Х	1		
Oalf Dafaaala Erit			Н	Х	Х	Х	×	V	V	v	4.7		
Self Refresh Exit	L	Н	L	Н	Н	Н	X	Х	Х	Х	1,7		
Single Bank Precharge	Н	Н	L	L	Н	L	ВА	Х	L	Х	1,2		
Precharge all Banks	Н	Н	L	L	Н	L	Х	Х	Н	Х	1		
Bank Activate	Н	Н	L	L	Н	Н	ВА	Row Address 1		1,2			
Write	Н	Н	L	Н	L	L	ВА	Column	L	Column	1,2,3,		
Write with Auto Precharge	Н	H	L	Н	L	L	ВА	Column	Н	Column	1,2,3,		
Read	Н	Н	L	Н	L	Н	ВА	Column	L	Column	1,2,3		
Read with Auto-Precharge	Н	Н	L	Н	L	Н	ВА	Column	Н	Column	1,2,3		
No Operation	Н	Х	L	Н	Н	Н	Х	Х	Х	Х	1		
Device Deselect	Н	Х	Н	Х	Х	Х	Х	Х	Х	Х	1		
Dawar Dawa Entry			Н	Х	Х	Х	V V	Х	V	V	4.4		
Power Down Entry	Н	L	L	Н	Н	Н	Х	X	Х	Х	1,4		
2 5 5 %			Н	Х	Х	Х		V		.,			
Power Down Exit	L	Н	L	Н	Н	Н	Х	Х	Х	Х	1,4		

- 1. All DDR2 SDRAM commands are defined by states of $\overline{\text{CS}}$, $\overline{\text{RAS}}$, $\overline{\text{CAS}}$, $\overline{\text{WE}}$ and CKE at the rising edge of the clock.
- 2. Bank addresses BA0, BA1, BA2 (BA) determine which bank is to be operated upon. For (E)MRS BA selects an (Extended) Mode Register.
- 3. Burst reads or writes at BL=4 cannot be terminated or interrupted. See sections "Reads interrupted by a Read" and "Writes interrupted by a Write" in section 2.2.4 for details.
- 4. The Power Down Mode does not perform any refresh operations. The duration of Power Down is therefore limited by the refresh requirements outlined in section 2.2.7.
- 5. The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. See section 2.2.2.4.
- 6. "X" means "H or L (but a defined logic level)".
- 7. Self refresh exit is asynchronous.

3.2 Clock Enable (CKE) Truth Table for Synchronous Transitions

	Cł	(E	Command (N) ³		
Current State ²	Previous Cycle ¹ (N-1)	Current Cycle ¹ (N)	RAS, CAS, WE, CS	Action (N) ³	Notes
Power Down	L	L	х	Maintain Power-Down	11, 13, 15
1 ower bown	L	Н	DESELECT or NOP	Power Down Exit	4, 8, 11,13
Self Refresh	L	L	Х	Maintain Self Refresh	11, 15
Sell Kellesii	L	Н	DESELECT or NOP	Self Refresh Exit	4, 5,9
Bank(s) Active	Н	L	DESELECT or NOP	Active Power Down Entry	4,8,10,11,13
All Banks Idle	Н	L	DESELECT or NOP	Precharge Power Down Entry	4, 8, 10,11,13
All Dallks lule	Н	L	REFRESH	Self Refresh Entry	6, 9, 11,13
	Н	Н	Refer to the Co	7	

Notes

- 1. CKE (N) is the logic state of CKE at clock edge N; CKE (N-1) was the state of CKE at the previous clock edge.
- 2. Current state is the state of the DDR SDRAM immediately prior to clock edge N.
- 3. COMMAND (N) is the command registered at clock edge N, and ACTION (N) is a result of COMMAND (N).
- 4. All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.
- On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the t_{XSNR} period.
 Read commands may be issued only after t_{XSRD} (200 clocks) is satisfied.
- 6. Self Refresh mode can only be entered from the All Banks Idle state.
- 7. Must be a legal command as defined in the Command Truth Table.
- 8. Valid commands for Power Down Entry and Exit are NOP and DESELECT only.
- 9. Valid commands for Self Refresh Exit are NOP and DESELECT only.
- 10. Power Down and Self Refresh can not be entered while Read or Write operations, (Extended) Mode Register Set operations or Precharge operations are in progress. See section 2.2.9 "Power Down" and 3.2.8 "Self Refresh Command" for a detailed list of restrictions.
- 11. Minimum CKE high time is three clocks.; minimum CKE low time is three clocks.
- 12. The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh. See section 2.2.2.4.
- 13. The Power Down does not perform any refresh operations. The duration of Power Down Mode is therefore limited by the refresh requirements outlined in section 2.2.7.
- 14. $\stackrel{\cdot}{\mathsf{CKE}}$ must be maintained high while the SDRAM is in OCD calibration mode .
- 15. "X" means "don't care (including floating around VREF)" in Self Refresh and Power Down. However ODT must be driven high or low in Power Down if the ODT function is enabled (Bit A2 or A6 set to "1" in EMRS(1)).

3.3 DM Truth Table

Name (Functional)	DM	DQs	Note			
Write enable	-	Valid	1			
Write inhibit H X 1						
Used to mask write data, provided coincident with the corresponding data						

4. Absolute Maximum DC Ratings

Symbol	Parameter	Rating	Units	Notes
VDD	Voltage on VDD pin relative to Vss	- 1.0 V ~ 2.3 V	V	1
VDDQ	Voltage on VDDQ pin relative to Vss	- 0.5 V ~ 2.3 V	V	1
VDDL	Voltage on VDDL pin relative to Vss	- 0.5 V ~ 2.3 V	V	1
V _{IN,} V _{OUT}	Voltage on any pin relative to Vss	- 0.5 V ~ 2.3 V	V	1
$T_{\mathtt{STG}}$	Storage Temperature	-55 to +100	°C	1

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

5. AC & DC Operating Conditions Recommended DC Operating Conditions (SSTL - 1.8)

Symbol	Danasatas	Rating			11.5	
	Parameter	Min.	Тур.	Max.	Units	Notes
VDD	Supply Voltage	1.7	1.8	1.9	V	
VDDL	Supply Voltage for DLL	1.7	1.8	1.9	V	4
VDDQ	Supply Voltage for Output	1.7	1.8	1.9	V	4
VREF	Input Reference Voltage	0.49*VDDQ	0.50*VDDQ	0.51*VDDQ	mV	1.2
VTT	Termination Voltage	VREF-0.04	VREF	VREF+0.04	V	3

There is no specific device VDD supply voltage requirement for SSTL-1.8 compliance. However under all conditions VDDQ must be less than or equal to VDD.

^{2.} Storage Temperature is the case surface temperature on the center/top side of the DRAM.

^{1.} The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to be about 0.5 x VDDQ of the transmitting device and VREF is expected to track variations in VDDQ.

^{2.} Peak to peak ac noise on VREF may not exceed +/-2% VREF (dc).

^{3.} VTT of transmitting device must track VREF of receiving device.

^{4.} VDDQ tracks with VDD, VDDL tracks with VDD. AC parameters are measured with VDD, VDDQ and VDDDL tied together.

Operating Temperature Condition

SYMBOL	PARAMETER	RATING	UNITS	NOTES
TOPER	Operating Temperature	0 to 95	°C	1, 2

Note:

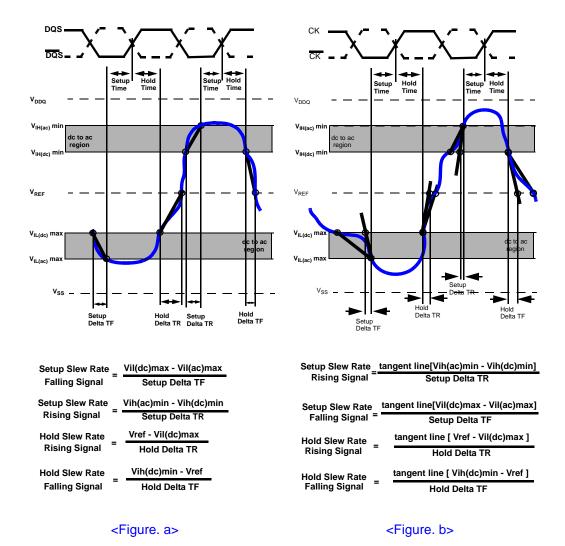
- 1. Operating Temperature is the case surface temperature on the center/top side of the DRAM.
- 2. The operation temperature range are the temperature where all DRAM specification will be supported.

Input DC Logic Level

Symbol	Parameter	Min.	Max.	Units	Notes
V _{IH} (dc)	dc input logic high	VREF + 0.125	VDDQ + 0.3	٧	
V _{IL} (dc)	dc input logic low	- 0.3	VREF - 0.125	V	

Input AC Logic Level

Symbol	Parameter	Min.	Max.	Units	Notes
V _{IH} (ac)	ac input logic high	VREF + 0.250	-	V	
V _⊩ (ac)	ac input logic low	=	VREF - 0.250	V	


AC Input Test Conditions

Symbol	Condition	Value	Units	Notes
V_{REF}	Input reference voltage	0.5 * V _{DDQ}	V	1
V _{SWING(MAX)}	Input signal maximum peak to peak swing	1.0	V	1
SLEW	Input signal minimum slew rate	1.0	V/ns	2, 3

Note

- 1. Setup (tIS & tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of Vih(dc)min. Setup (tIS & tDS) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of Vil(dc)max and the first crossing of Vil(ac)max. If the actual signal is always earlier than the nominal slew rate line between shaded 'dc to ac region', use nominal slew rate for derating value (see Fig a.) If the actual signal is later than the nominal slew rate line anywhere between shaded 'dc to ac region', the slew rate of a tangent line to the actual signal from the ac level to dc level is used for derating value (see Fig b.)
- 2. Hold (tIH & tDH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of Vil(dc)max and the first crossing of Vref. Hold (tIH & tDH) nominal slew rate for a falling signal is defined as the slew rate between the last crossing of Vih(dc)min and the first crossing of Vref. If the actual signal is always later than the nominal slew rate line between shaded 'dc to Vref region', use nominal slew rate for derating value (see Fig a.) If the actual signal is earlier than the nominal slew rate line anywhere between shaded 'dc to Vref region', the slew rate of a tangent line to the actual signal from the dc level to Vref level is used for derating value (see Fig b.)Input waveform timing is referenced to the input signal crossing through the V_{REF} level applied to the device under test.

Differential input AC logic Level

Symbol	Parameter	Min.	Max.	Units	Notes
V _{ID} (ac)	ac differential input voltage	0.5	VDDQ + 0.6	V	1
V _{IX} (ac)	ac differential cross point voltage	0.5 * VDDQ - 0.175	0.5 * VDDQ + 0.175	V	2

- 1. VIN(DC) specifies the allowable DC execution of each input of differential pair such as CK, \overline{CK} , DQS, \overline{DQS} , LDQS, \overline{LDQS} , UDQS and \overline{UDQS} .
- 2. VID(DC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input (such as CK, DQS, LDQS or UDQS) level and VCP is the complementary input (such as CK, DQS, LDQS or UDQS) level. The minimum value is equal to VIH(DC) VIL(DC).

< Differential signal levels >

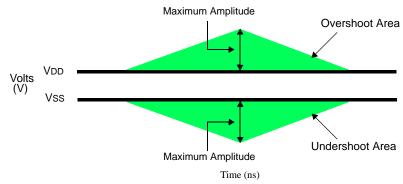
Notes:

- 1. VID(AC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input signal (such as CK, DQS, LDQS or UDQS) and VCP is the complementary input signal (such as \overline{CK} , \overline{DQS} , \overline{LDQS} or \overline{UDQS}). The minimum value is equal to V IH(AC) V IL(AC).
- 2. The typical value of Vix(AC) is expected to be about 0.5 * VDDQ of the transmitting device and Vix(AC) is expected to track variations in VDDQ . Vix(AC) indicates the voltage at which differential input signals must cross.

Differential AC output parameters

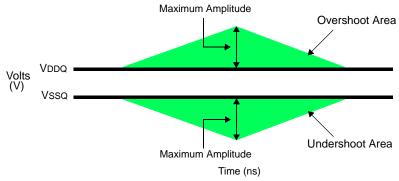
	Symbol	Parameter	Min.	Max.	Units	Notes
ĺ	V _{OX} (ac)	ac differential cross point voltage	0.5 * VDDQ - 0.125	0.5 * VDDQ + 0.125	V	1

Notes


1. The typical value of Vox(AC) is expected to be about 0.5 * V DDQ of the transmitting device and Vox(AC) is expected to track variations in VDDQ . Vox(AC) indicates the voltage at whitch differential output signals must cross.

Input Signal Overshoot/Undershoot Specification

$\underline{\text{AC Overs}}$ hoot/Undershoot Specification for Address and Control Pins A0-A15, BA0-BA2, $\overline{\text{CS}}$, $\overline{\text{RAS}}$, CAS, WE, CKE, ODT


Parameter	Specification		
	DDR2-400	DDR2-533	DDR2-667
Maximum peak amplitude allowed for overshoot area (See Figure 1):	0.9V	0.9V	0.9V
Maximum peak amplitude allowed for undershoot area (See Figure 1):	0.9V	0.9V	0.9V
Maximum overshoot area above VDD (See Figure1).	0.75 V-ns	0.56 V-ns	0.45 V-ns
Maximum undershoot area below VSS (See Figure 1).	0.75 V-ns	0.56 V-ns	0.45 V-ns

AC Overshoot and Undershoot Definition for Address and Control Pins

AC Overshoot/Undershoot Specification for Clock, Data, Strobe, and Mask Pins DQ, DQS, DM, CK, CK

Parameter	Specification			
	DDR2-400	DDR2-533	DDR2-667	
Maximum peak amplitude allowed for overshoot area (See Figure 2):	0.9V	0.9V	0.9V	
Maximum peak amplitude allowed for undershoot area (See Figure 2):	0.9V	0.9V	0.9V	
Maximum overshoot area above VDDQ (See Figure 2).	0.38 V-ns	0.28 V-ns	0.23 V-ns	
Maximum undershoot area below VSSQ (See Figure 2).	0.38 V-ns	0.28 V-ns	0.23 V-ns	

AC Overshoot and Undershoot Definition for Clock, Data, Strobe, and Mask Pins

Power and ground clamps are implemented on the following input only pins:

- 1. BA0-BA2
- 2. A0-A15
- 3. RAS
- 4. <u>CAS</u> 5. <u>WE</u>
- 6. CS
- 7. ODT
- 8. CKE

V-I Characteristics for input only pins with clamps

Voltage across	Minimum Power	Minimum Ground				
clamp(V)	Clamp Current (mA)	Clamp Current (mA)				
0.0	0	0				
0.1	0	0				
0.2	0	0				
0.3	0	0				
0.4	0	0				
0.5	0	0				
0.6	0	0				
0.7	0	0				
0.8	0.1	0.1				
0.9	1.0	1.0				
1.0	2.5	2.5				
1.1	4.7	4.7				
1.2	6.8	6.8				
1.3	9.1	9.1				
1.4	11.0	11.0				
1.5	13.5	13.5				
1.6	16.0	16.0				
1.7	18.2	18.2				
1.8	21.0	21.0				

Output Buffer Levels

Output AC Test Conditions

Symbol	Parameter	SSTL_18 Class II	Units	Notes	
V _{OH}	Minimum Required Output Pull-up under AC Test Load	V _{TT} + 0.603	V		
V _{OL}	Maximum Required Output Pull-down under AC Test Load	V _{TT} - 0.603	V		
V _{OTR} Output Timing Measurement Reference Level 0.5 * V _{DDQ}				1	
The VDDQ of the device under test is referenced.					

Output DC Current Drive

Symbol	Parameter	SSTI_18 Class II	Units	Notes
I _{OH(dc)}	Output Minimum Source DC Current	- 13.4	mA	1, 3, 4
I _{OL(dc)}	Output Minimum Sink DC Current	13.4	mA	2, 3, 4

- V_{DDQ} = 1.7 V; V_{OUT} = 1420 mV. (V_{OUT} V_{DDQ})/I_{OH} must be less than 21 ohm for values of V_{OUT} between V_{DDQ} and V_{DDQ} 280 mV.
- 2. $V_{DDQ} = 1.7 \text{ V}$; $V_{OUT} = 280 \text{ mV}$. V_{OUT}/I_{OL} must be less than 21 ohm for values of V_{OUT} between 0 V and 280 mV.
- 3. The dc value of V_{REF} applied to the receiving device is set to V_{TT}
- 4. The values of I_{OH(dc)} and I_{OL(dc)} are based on the conditions given in Notes 1 and 2. They are used to test device drive current capability to ensure V_{IH} min plus a noise margin and V_{IL} max minus a noise margin are delivered to an SSTL_18 receiver. The actual current values are derived by shifting the desired driver operating point (see Section 3.3) along a 21 ohm load line to define a convenient driver current for measurement.

OCD default characteristics

Description	Parameter	Min	Nom	Max	Unit	Notes
Output impedance		12.6	18	23.4	ohms	1,2
Output impedance step size for OCD calibration		0		1.5	ohms	6
Pull-up and pull-down mismatch		0		4	ohms	1,2,3
Output slew rate		tbd		tbd	V/ns	1,4,5

- Note 1: Absolute Specifications (0°C ≤ T_{CASE} ≤ +tbd°C; VDD = +1.8V ±0.1V, VDDQ = +1.8V ±0.1V)
- Note 2: Impedance measurement condition for output source dc current: VDDQ = 1.7V; VOUT = 1420mV; (VOUT-VDDQ)/loh must be less than 23.4 ohms for values of VOUT between VDDQ and VDDQ-280mV. Impedance measurement condition for output sink dc current: VDDQ = 1.7V; VOUT = 280mV; VOUT/lol must be less than 23.4 ohms for values of VOUT between 0V and 280mV.
- Note 3: Mismatch is absolute value between pull-up and pull-dn, both are measured at same temperature and voltage.
- Note 4: Slew rate measured from vil(ac) to vih(ac).
- Note 5: The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as measured from AC to AC. This is guaranteed by design and characterization.

Note 6: This represents the step size when the OCD is near 18 ohms at nominal conditions across all process and represents only the DRAM uncertainty. A 0 ohm value (no calibration) can only be achieved if the OCD impedance is 18 ohms +/- 0.75 ohms under nominal conditions.

Output slew rate load:

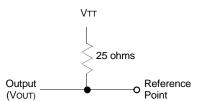


Table 1. Full Strength Default Pulldown Driver Characteristics

	Pullo	Pulldown Current (mA)							
Voltage (V)	Minimum (23.4 Ohms	Nominal Default Low (18 ohms)	Nominal Default High (18 ohms)	Maximum (12.6 Ohms)					
0.2	8.5	11.3	11.8	15.9					
0.3	12.1	16.5	16.8	23.8					
0.4	14.7	21.2	22.1	31.8					
0.5	16.4	25.0	27.6	39.7					
0.6	17.8	28.3	32.4	47.7					
0.7	18.6	30.9	36.9	55.0					
0.8	19.0	33.0	40.9	62.3					
0.9	19.3	34.5	44.6	69.4					
1.0	19.7	35.5	47.7	75.3					
1.1	19.9	36.1	50.4	80.5					
1.2	20.0	36.6	52.6	84.6					
1.3	20.1	36.9	54.2	87.7					
1.4	20.2	37.1	55.9	90.8					
1.5	20.3	37.4	57.1	92.9					
1.6	20.4	37.6	58.4	94.9					
1.7	20.6	37.7	59.6	97.0					
1.8		37.9	60.9	99.1					
1.9				101.1					

Figure 1. DDR2 Default Pulldown Characteristics for Full Strength Driver

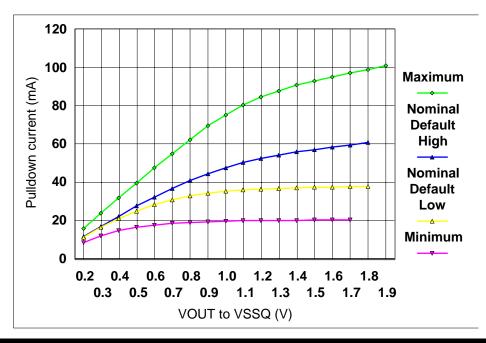
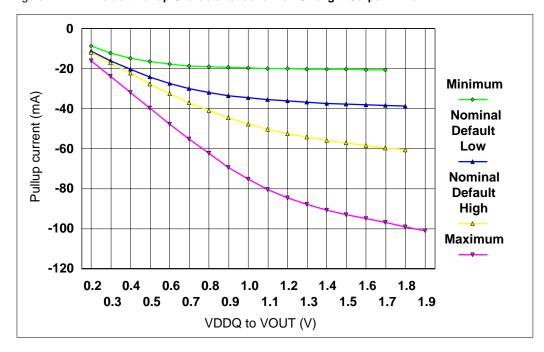



Table 2. Full Strength Default Pullup Driver Characteristics

		Pullup Current (mA)								
Voltage (V)	Minimum (23.4 Ohms	Nominal Default Low (18 ohms)	Nominal Default High (18 ohms)	Maximum (12.6 Ohms)						
0.2	-8.5	-11.1	-11.8	-15.9						
0.3	-12.1	-16.0	-17.0	-23.8						
0.4	-14.7	-20.3	-22.2	-31.8						
0.5	-16.4	-24.0	-27.5	-39.7						
0.6	-17.8	-27.2	-32.4	-47.7						
0.7	-18.6	-29.8	-36.9	-55.0						
0.8	-19.0	-31.9	-40.8	-62.3						
0.9	-19.3	-33.4	-44.5	-69.4						
1.0	-19.7	-34.6	-47.7	-75.3						
1.1	-19.9	-35.5	-50.4	-80.5						
1.2	-20.0	-36.2	-52.5	-84.6						
1.3	-20.1	-36.8	-54.2	-87.7						
1.4	-20.2	-37.2	-55.9	-90.8						
1.5	-20.3	-37.7	-57.1	-92.9						
1.6	-20.4	-38.0	-58.4	-94.9						
1.7	-20.6	-38.4	-59.6	-97.0						
1.8		-38.6	-60.8	-99.1						
1.9				-101.1						

Figure 2. DDR2 Default Pullup Characteristics for Full Strength Output Driver

DDR2 SDRAM Default Output Driver V-I Characteristics

DDR2 SDRAM output driver characteristics are defined for full strength default operation as selected by the EMRS1 bits A7-A9 = '111'. Figures 1 and 2 show the driver characteristics graphically, and tables 1 and 2 show the same data in tabular format suitable for input into simulation tools. The driver characteristics evaluation conditions are:

Nominal Default 25 °C (T case), VDDQ = 1.8 V, typical process Minimum TBD °C (T case), VDDQ = 1.7 V, slow–slow process Maximum 0 °C (T case), VDDQ = 1.9 V, fast–fast process

Default Output Driver Characteristic Curves Notes:

- 1) The full variation in driver current from minimum to maximum process, temperature, and voltage will lie within the outer bounding lines of the V–I curve of figures 1 and 2.
- 2) It is recommended that the "typical" IBIS V-I curve lie within the inner bounding lines of the V-I curves of figures 1 and 2.

	Calibrated Pulldow n Current (mA)									
Voltage (V)	Nominal Minimum (21 ohms)	Nominal Low (18.75 ohms)	Nominal (18 ohms)	Nominal High (17.25 t ohms)	lominal Maximum (15 ohms)					
0.2	9.5	10.7	11.5	11.8	13.3					
0.3	14.3	16.0	16.6	17.4	20.0					
0.4	18.7	21.0	21.6	23.0	27.0					

Table 3. Full Strength Calibrated Pulldown Driver Characteristics

Table 4. Full Strength Calibrated Pullup Driver Characteristics

		Calibrated Pullup Current (mA)									
	Voltage (V)	Nominal Minimum (21 ohms)	Nominal Low (18.75 ohms)	Nominal (18 ohms)	Nominal High (17.25 ohms)	lominal Maximum (15 ohms)					
Ì	0.2	-9.5	-10.7	-11.4	-11.8	-13.3					
Ī	0.3	-14.3	-16.0	-16.5	-17.4	-20.0					
Į	0.4	-18.7	-21.0	-21.2	-23.0	-27.0					

DDR2 SDRAM Calibrated Output Driver V-I Characteristics

DDR2 SDRAM output driver characteristics are defined for full strength calibrated operation as selected by the procedure outlined in section 2.2.2.3, Off-Chip Driver (OCD) Impedance Adjustment. Tables 3 and 4 show the data in tabular format suitable for input into simulation tools. The nominal points represent a device at exactly 18 ohms. The nominal low and nominal high values represent the range that can be achieved with a maximum 1.5 ohm step size with no calibration error at the exact nominal conditions only (i.e. perfect calibration procedure, 1.5 ohm maximum step size guaranteed by specification). Real system calibration error needs to be added to these values. It must be understood that these V-I curves as represented here or in supplier IBIS models need to be adjusted to a wider range as a result of any system calibration error. Since this is a system specific phenomena, it cannot be quantified here. The values in the calibrated tables represent just the DRAM portion of uncertainty while looking at one DQ only. If the cali

512Mb B-die DDR2 SDRAM

bration procedure is used, it is possible to cause the device to operate outside the bounds of the default device characteristics tables and figures. In such a situation, the timing parameters in the specification cannot be guaranteed. It is solely up to the system application to ensure that the device is calibrated between the minimum and maximum default values at all times. If this can't be guaranteed by the system calibration procedure, re-calibration policy, and uncertainty with DQ to DQ variation, then it is recommended that only the default values be used. The nominal maximum and minimum values represent the change in impedance from nominal low and high as a result of voltage and temperature change from the nominal condition to the maximum and minimum conditions. If calibrated at an extreme condition, the amount of variation could be as much as from the nominal minimum to the nominal maximum or vice versa. The driver characteristics evaluation conditions are:

Nominal 25 °C (T case), VDDQ = 1.8 V, typical process Nominal Low and Nominal High 25 °C (T case), VDDQ = 1.8 V, any process Nominal Minimum TBD °C (T case), VDDQ = 1.7 V, any process Nominal Maximum 0 °C (T case), VDDQ = 1.9 V, any process

IDD Specification Parameters and Test Conditions

(IDD values are for full operating range of Voltage and Temperature, Notes 1 - 5)

Sym- bol	Proposed Conditions		DDR2- 667 (CL=5)	DDR2- 533 (CL=4)	DDR2- 400 (CL=3)	Units	Notes
IDD0	Operating one bank active-precharge c tCK = tCK(IDD), tRC = tRC(IDD), tRAS = CKE is HIGH, CS\ is HIGH between valid Address bus inputs are SWITCHING; Data bus inputs are SWITCHING	tRASmin(IDD);	TBD	TBD	TBD	mA	
IDD1	Operating one bank active-read-precharge current; IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRC = tRC (IDD), tRAS = tRASmin(IDD), tRCD = tRCD(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W			TBD	TBD	mA	
IDD2P	Precharge power-down current; All banks idle; tCK = tCK(IDD); CKE is LOW; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING			TBD	TBD	mA	
IDD2Q	Precharge quiet standby current; All banks idle; tCK = tCK(IDD); CKE is HIGH, CS\ is HIGH; Other control and address bus inputs are STABLE; Data bus inputs are FLOATING			TBD	TBD	mA	
IDD2N	Precharge standby current; All banks idle; tCK = tCK(IDD); CKE is HIGH, CS\ is HIGH; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING			TBD	TBD	mA	
IDD3P	Active power-down current; All banks open; tCK = tCK(IDD); CKE is LOW; Other control and address bus inputs are	Fast PDN Exit MRS(12) = 0mA	TBD	TBD	TBD	mA	
	Other control and address bus inputs are STABLE; Data bus inputs are FLOATING	Slow PDN Exit MRS(12) = 1mA	TBD	TBD	TBD	mA	
IDD3N	Active standby current; All banks open; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING		TBD	TBD	TBD	mA	

512Mb B-die DDR2 SDRAM

IDD4W	Operating burst write current; All banks open, Continuous burst writes; BL = 4, CL = CL(IDD), AL = 0; tCK = tCK(IDD), tRAS = tRASmax(IDD), tRP = tRP(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address bus inputs are SWITCHING; Data bus inputs are SWITCHING			TBD	TBD	mA	
IDD4R	Operating burst read current; All banks open, Continuous burst reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = 0; ¹CK = ¹CK(IDD), ¹RAS = ¹RASmax(IDD), ¹RP = ¹RP(IDD); CKE is HIGH, CS\ is HIGH between valid commands; Address bus inputs are SWITCHING; Data pattern is same as IDD4W			TBD	TBD	mA	
IDD5B	Burst auto refresh current; tCK = tCK(IDD); Refresh command at every tRFC(IDD) interval; CKE is HIGH, CS\ is HIGH between valid commands; Other control and address bus inputs are SWITCHING; Data bus inputs are SWITCHING		TBD	TBD	TBD	mA	
IDD6	Self refresh current; CK and CK\ at 0V; CKE ≤ 0.2V;	Normal	TBD	TBD	TBD	mA	
	Other control and address bus inputs are FLOATING; Data bus inputs are FLOATING Low Power		TBD	TBD	TBD	mA	
IDD7	Operating bank interleave read current; All bank interleaving reads, IOUT = 0mA; BL = 4, CL = CL(IDD), AL = \(^1RCD(IDD) - 1 + ^1CK(IDD);\) \(^1CK = ^1CK(IDD), \(^1RC = ^1RC(IDD), \(^1RRD = ^1RRD(IDD), \) \(^1RCD = 1 + ^1CK(IDD);\) \(^1CKE is HIGH, CS\) is HIGH between valid commands; \(^1Address bus inputs are STABLE during DESELECTs;\) \(^1Data pattern is same as IDD4R;\) \(^1RCD - Refer to the following page for detailed timing conditions)		TBD	TBD	TBD	mA	

- **Note:**1. IDD specifications are tested after the device is properly initialized
- 2. Input slew rate is specified by AC Parametric Test Condition
- 3. IDD parameters are specified with ODT disabled.
- 4. Data bus consists of DQ, DM, DQS, DQS\, RDQS\, RDQS\, LDQS\, LDQS\, UDQS, and UDQS\. IDD values must be met with all combinations of EMRS bits 10 and 11.
- 5. Definitions for IDD

LOW is defined as Vin ≤ VILAC(max)

HIGH is defined as Vin ≥ VIHAC(min)

STABLE is defined as inputs stable at a HIGH or LOW level FLOATING is defined as inputs at VREF = VDDQ/2

SWITCHING is defined as:

inputs changing between HIGH and LOW every other clock cycle (once per two clocks) for address and control

inputs changing between HIGH and LOW every other data transfer (once per clock) for DQ signals not including masks or strobes.

For purposes of IDD testing, the following parameters are to be utilized

	DDR2-667	DDR2-533	DDR2-400	
Parameter	5-5-5	4-4-4	3-3-3	Units
CL(IDD)	5	4	3	tCK
tRCD(IDD)	15	15	15	ns
tRC(IDD)	55	55	55	ns
tRRD(IDD)-x4/x8	7.5	7.5	7.5	ns
^t RRD(IDD)-x16	10	10	10	ns
tCK(IDD)	3	3.75	5	ns
^t RASmin(IDD)	40	40	40	ns
^t RP(IDD)	15	15	15	ns
^t RFC(IDD)-512Mb	105	105	105	ns

Detailed IDD7

The detailed timings are shown below for IDD7. Changes will be required if timing parameter changes are made to the specification. Legend: A = Active; RA = Read with Autoprecharge; D = Deselect

IDD7: Operating Current: All Bank Interleave Read operation

All banks are being interleaved at minimum ${}^{t}RC(IDD)$ without violating ${}^{t}RRD(IDD)$ using a burst length of 4. Control and address bus inputs are STABLE during DESELECTs. IOUT = 0mA

Timing Patterns for 4 bank devices x4/ x8/ x16

-DDR2-400 3/3/3 A0 RA0 A1 RA1 A2 RA2 A3 RA3 D D D D D

-DDR2-533 4/4/4 A0 RA0 D A1 RA1 D A2 RA2 D A3 RA3 D D D D D

-DDR2-667 5/5/5 A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D D

Input/Output capacitance

Parameter	Symbol	DDR2-400 DDR2-533		DDR2-667		
		Min	Max	Min	Max	Units
Input capacitance, CK and $\overline{\text{CK}}$	сск	1.0	2.0	1.0	2.0	pF
Input capacitance delta, CK and $\overline{\text{CK}}$	CDCK	х	0.25	х	0.25	pF
Input capacitance, all other input-only pins	CI	1.0	2.0	1.0	2.0	pF
Input capacitance delta, all other input-only pins	CDI	х	0.25	х	0.25	pF
Input/output capacitance, DQ, DM, DQS, DQS	CIO	2.5	4.0	2.5	3.5	pF
Input/output capacitance delta, DQ, DM, DQS, DQS	CDIO	х	0.5	х	0.5	pF

Electrical Characteristics & AC Timing for DDR2-667/533/400

 $(0~^{\circ}\text{C} \leq \text{T}_{\text{CASE}} \leq 95~^{\circ}\text{C};~\text{V}_{\text{DDQ}} = 1.8\text{V} \pm 0.1\text{V};~\text{V}_{\text{DD}} = 1.8\text{V} \pm 0.1\text{V})$

Refresh Parameters by Device Density

Parameter	Symbol		256Mb	512Mb	1Gb	2Gb	4Gb	Units
Refresh to active/Refresh command time	tRFC		75	105	127.5	195	tbd	ns
Average periodic refresh interval	tREFI	$0 ^{\circ}\text{C} \le \text{T}_{\text{CASE}} \le 85 ^{\circ}\text{C}$	7.8	7.8	7.8	7.8	7.8	μS
		85 °C < T _{CASE} ≤ 95°C	3.9	3.9	3.9	3.9	3.9	μs

Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin

Speed	DDR2-667(E6)		DDR2-533(D5)		DDR2-400(CC)		Units
Bin (CL - tRCD - tRP)	5 - 5- 5		4 - 4	4 - 4 - 4		3 - 3 - 3	
Parameter	min	max	min	max	min	max	
tCK, CL=3	5	8	5	8	5	8	ns
tCK, CL=4	3.75	8	3.75	8	5	8	ns
tCK, CL=5	3	8	-	-	-	-	ns
tRCD	15		15		15		ns
tRP	15		15		15		ns
tRC	55		55		55		ns
tRAS	40	70000	40	70000	40	70000	ns

Timing Parameters by Speed Grade

(Refer to notes for informations related to this table at the bottom)

Parameter	Symbol	DDR2-667		DDR2-533		DDR2-400		Units	Notes
		min	max	min	max	min	max		

512Mb B-die DDR2 SDRAM

	1	1		1	ı	ı	1	1	
DQ <u>out</u> put access time from CK/CK	tAC	-450	+450	-500	+500	-600	+600	ps	
DQS output access time from CK/CK	tDQSCK	-400	+400	-450	+450	-500	+500	ps	
CK high-level width	tCH	0.45	0.55	0.45	0.55	0.45	0.55	tCK	
CK low-level width	tCL	0.45	0.55	0.45	0.55	0.45	0.55	tCK	
CK half period	tHP	min(tCL, tCH)	х	min(tCL, tCH)	х	min(tCL, tCH)	х	ps	19,20
Clock cycle time, CL=x	tCK	3000	8000	3750	8000	5000	8000	ps	23
DQ and DM input hold time	tDH	tbd	x	225	х	275	x	ps	14,15, 16
DQ and DM input setup time	tDS	tbd	х	100	х	150	х	ps	14,15, 16
Control & Address input pulse width for each input	tIPW	0.6	х	0.6	х	0.6	х	tCK	
DQ and DM input pulse width for each input	tDIPW	0.35	х	0.35	х	0.35	х	tCK	
Data-out high-impedance time from CK/CK	tHZ	х	tAC max	х	tAC max	х	tAC max	ps	
Data-out low-impedance time from CK/CK	tLZ	tAC min	tAC max	tAC min	tAC max	tAC min	tAC max	ps	
DQS-DQ skew for DQS and associated DQ signals	tDQSQ	х	tbd	х	300	х	350	ps	21
DQ hold skew factor	tQHS	х	tbd	х	400	х	450	ps	20
DQ/DQS output hold time from DQS	tQH	tHP - tQHS	х	tHP - tQHS	х	tHP - tQHS	х	ps	
Write command to first DQS latching transition	tDQSS	WL - 0.25	WL + 0.25	WL - 0.25	WL + 0.25	WL - 0.25	WL + 0.25	tCK	
DQS input high pulse width	tDQSH	0.35	x	0.35	x	0.35	х	tCK	
DQS input low pulse width	tDQSL	0.35	x	0.35	x	0.35	х	tCK	
DQS falling edge to CK setup time	tDSS	0.2	х	0.2	х	0.2	х	tCK	
DQS falling edge hold time from CK	tDSH	0.2	х	0.2	х	0.2	х	tCK	
Mode register set command cycle time	tMRD	2	х	2	х	2	х	tCK	
Write preamble setup time	tWPRES	0	x	0	x	0	х	ps	
Write postamble	tWPST	0.4	0.6	0.4	0.6	0.4	0.6	tCK	18
Write preamble	tWPRE	tbd	х	0.4	x	0.4	х	tCK	_
Address and control input hold time	tlH	tbd	х	375	х	475	х	ps	13,15, 17
Address and control input setup time	tIS	tbd	х	250	х	350	х	ps	13,15, 17
Read preamble	tRPRE	0.9	1.1	0.9	1.1	0.9	1.1	tCK	

Preliminary DDR2 SDRAM

512Mb B-die DDR2 SDRAM

Dood nestamble	tRPST	0.4	0.0	0.4	0.0	0.1	0.0	4017	
Read postamble		0.4	0.6	0.4	0.6	0.4	0.6	tCK	
Active to active command period for 1KB page size products	tRRD	7.5	х	7.5	х	7.5	х	ns	12
Active to active command period for 2KB page size products	tRRD	10	х	10	х	10	х	ns	12
CAS to CAS command delay	tCCD	2		2		2		tCK	
Write recovery time	tWR	15	x	15	x	15	x	ns	
Auto precharge write recovery + precharge time	tDAL	tWR+tRP*	х	tWR+tRP*	х	tWR+tRP	х	tCK	22
Internal write to read command delay	tWTR	7.5	х	7.5	х	10	х	ns	
Internal read to precharge command delay	tRTP	7.5		7.5		7.5		ns	11
Exit self refresh to a non- read command	tXSNR	tRFC + 10		tRFC + 10		tRFC + 10		ns	
Exit self refresh to a read command	tXSRD	200		200		200		tCK	
Exit precharge power down to any non-read command	tXP	2	х	2	х	2	х	tCK	
Exit active power down to read command	tXARD	2	х	2	х	2	х	tCK	9
Exit active power down to read command (Slow exit, Lower power)	tXARDS	6 - AL		6 - AL		6 - AL		tCK	9, 10
CKE minimum pulse width (high and low pulse width)	^t CKE	3		3		3		tCK	
ODT turn-on delay	^t AOND	2	2	2	2	2	2	tCK	
ODT turn-on	^t AON	tAC(min)	tAC(max) +0.7	tAC(min)	tAC(max) +1	tAC(min)	tAC(max) +1	ns	13, 24
ODT turn-on(Power-Down mode)	^t AONPD	tAC(min)+	2tCK+tAC (max)+1	tAC(min)+	2tCK+tAC (max)+1	tAC(min) +2	2tCK+tA C(max)+1	ns	
ODT turn-off delay	^t AOFD	2.5	2.5	2.5	2.5	2.5	2.5	tCK	
ODT turn-off	^t AOF	tAC(min)	tAC(max) + 0.6	tAC(min)	tAC(max)+ 0.6	tAC(min)	tAC(max)+ 0.6	ns	25
ODT turn-off (Power-Down mode)	^t AOFPD	tAC(min)+ 2	2.5tCK+tA C(max)+1	tAC(min)+ 2	2.5tCK+ tAC(max) +1	tAC(min) +2	2.5tCK+ tAC(max) +1	ns	
ODT to power down entry latency	tANPD	3		3		3		tCK	
ODT power down exit latency	tAXPD	8		8		8		tCK	
OCD drive mode output delay	tOIT	0	12	0	12	0	12	ns	
Minimum time clocks remains ON after CKE asynchronously drops LOW	tDelay	tlS+tCK+tl H		tlS+tCK+tl H		tIS+tCK+t IH		ns	23

General notes, which may apply for all AC parameters

1. Slew Rate Measurement Levels

- a. Output slew rate for falling and rising edges is measured <u>between VTT 250 mV</u> and VTT + 250 mV for single <u>ended</u> signals. For differential <u>signals</u> (e.g. DQS DQS) output slew rate is measured between DQS DQS = -500 mV and DQS DQS = +500 mV. Output slew rate is guaranteed by design, but is not necessarily tested on each device.
- b. Input slew rate for single ended signals is measured from dc-level to ac-level: from VREF 125 mV to VREF + 250 mV for rising edges and from VREF + 125 mV and VREF 250 mV for falling edges. For differential signals (e.g. CK CK) slew rate for rising edges is measured from CK CK = -250 mV to CK CK = +500 mV (250mV to -500 mV for falling egdes).
- c. VID is the magnitude of the difference between the input voltage on CK and the input voltage on CK, or between DQS and DQS for differential strobe.

2. DDR2 SDRAM AC timing reference load

Figure AA represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to be either a precise representation of the typical system environment nor a depiction of the actual load presented by a production tester. System designers will use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers will correlate to their production test conditions (generally a coaxial transmission line terminated at the tester electronics).

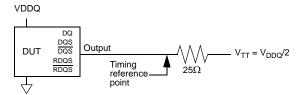
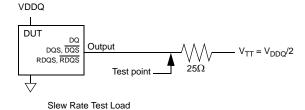



Figure AA: AC Timing Reference Load

The output timing reference voltage level for single ended signals is the crosspoint with VTT. The output timing reference voltage level for differential signals is the crosspoint of the true (e.g. DQS) and the complement (e.g. DQS) signal.

3. DDR2 SDRAM output slew rate test load

Output slew rate is characterized under the test conditions as shown in Figure.

4. Differential data strobe

DDR2 SDRAM pin timings are specified for either single ended mode or differential mode depending on the setting of the EMRS "Enable DQS" mode bit; timing advantages of differential mode are realized in system design. The method by which the DDR2 SDRAM pin timings are measured is mode dependent. In single ended mode, timing relationships are measured relative to the rising or falling edges of DQS crossing at VREF. In differential mode, these timing relationships are measured relative to the crosspoint of DQS and its complement, \overline{DQS} . This distinction in timing methods is guaranteed by design and characterization. Note that when differential data strobe mode is disabled via the EMRS, the complementary pin, \overline{DQS} , must be tied externally to VSS through a 20 ohm to 10 K ohm

resisor to insure proper operation.

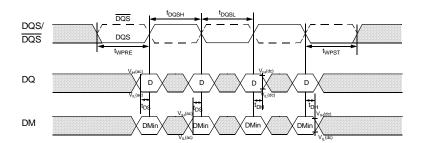


Figure -- Data input (write) timing

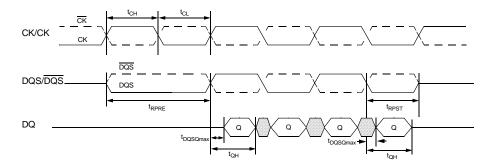
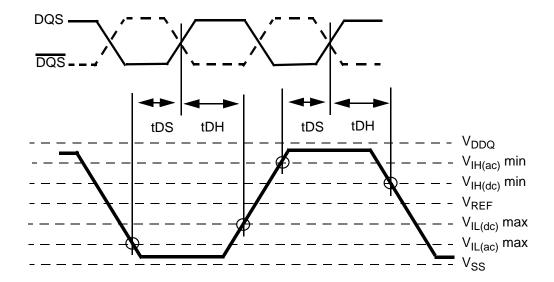
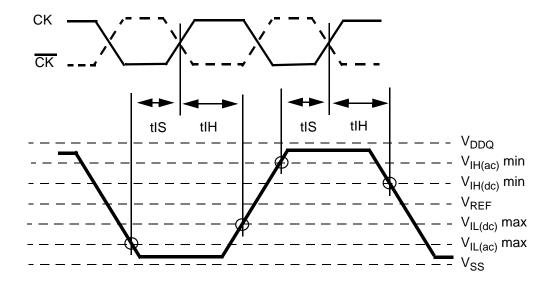


Figure YY-- Data output (read) timing


- 5. AC timings are for linear signal transitions. See System Derating for other signal transitions.
- 6. These parameters guarantee device behavior, but they are not necessarily tested on each device. They may be guaranteed by device design or tester correlation.
- 7. All voltages referenced to VSS.
- 8. Tests for AC timing, IDD, and electrical (AC and DC) characteristics, may be conducted at nominal reference/supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage range specified.

Specific Notes for dedicated AC parameters

- 9. User can choose which active power down exit timing to use via MRS(bit 12). tXARD is expected to be used for fast active power down exit timing. tXARDS is expected to be used for slow active power down exit timing where a lower power value is defined by each vendor data sheet.
- 10. AL = Additive Latency
- 11. This is a minimum requirement. Minimum read to precharge timing is AL + BL/2 providing the tRTP and tRAS(min) have been satisfied.



- 12. A minimum of two clocks (2 * tCK) is required irrespective of operating frequency
- 13. Timings are guaranteed with command/address input slew rate of 1.0 V/ns. See System Derating for other slew rate values.
- 14. Timings are guaranteed with data, mask, and (DQS/RDQS in singled ended mode) input slew rate of 1.0 V/ns. See System Derating for other slew rate values.
- 15. Timings are guaranteed with CK/\overline{CK} differential slew rate of 2.0 V/ns. Timings are guaranteed for DQS signals with a differential slew rate of 2.0 V/ns in differential strobe mode and a slew rate of 1V/ns in single ended mode. See System Derating for other slew rate values.
- 16. tDS and tDH (data setup and hold) derating
 - Input waveform timing is referenced from the input signal crossing at the V_{IH(ac)} level for a rising signal and V_{IL(ac)} for a falling signal applied to the device under test.
 - 2) Input waveform timing is referenced from the input signal crossing at the $V_{IH(dc)}$ level for a rising signal and $V_{IL(dc)}$ for a falling signal applied to the device under test.

- 17. tIS and tIH (input setup and hold) derating
 - Input waveform timing is referenced from the input signal crossing at the V_{IH(ac)} level for a rising signal and V_{IL(ac)} for a falling signal applied to the device under test.
 - 2) Input waveform timing is referenced from the input signal crossing at the $V_{IH(dc)}$ level for a rising signal and $V_{IL(dc)}$ for a falling signal applied to the device under test

- 18. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but system performance (bus turnaround) will degrade accordingly.
- 19. MIN (t CL, t CH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater than the minimum specification limits for t CL and t CH). For example, t CL and t CH are = 50% of the period, less the half period jitter (t JIT(HP)) of the clock source, and less the half period jitter due to crosstalk (t JIT(crosstalk)) into the clock traces.
- 20. t QH = t HP t QHS, where:

tHP = minimum half clock period for any given cycle and is defined by clock high or clock low (tCH, tCL). tQHS accounts for:

- 1) The pulse duration distortion of on-chip clock circuits; and
- 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are, separately, due to data pin skew and output pattern effects, and pchannel to n-channel variation of the output drivers.
- 21. tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers for any given cycle.

22. t DAL = (nWR) + (tRP/tCK):

For each of the terms above, if not already an integer, round to the next highest integer. tCK refers to the application clock period. nWR refers to the t WR parameter stored in the MRS.

Example: For DDR533 at t CK = 3.75 ns with t WR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks =4 + (4) clocks=8 clocks.

23. The clock frequency is allowed to change during self–refresh mode or precharge power-down mode. In case of clock frequency change during precharge power-down, a specific procedure is required as described in section 3.2.9.

512Mb B-die DDR2 SDRAM

- 24. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND.
- 25. ODT turn off time min is when the device starts to turn off ODT resistance.
 ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD

