SHARP

	Date	Jun. 17. 2002
PRELIMINARY D	ATASHEET	
	DATASHEE	T
	32M (x16) Flash + 16M (x16) SCR	AM
MODEL NO :	LRS1808A	
O This device datasheet is	subject to change without notice.	
	All rights reserved. No reproduction or republication without written permission. p sales office to obtain the latest datasheet.	

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - (1) The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - Instrumentation and measuring equipment
 - Machine tools
 - Audiovisual equipment
 - Home appliance
 - Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - Traffic control systems
 - Gas leak detectors and automatic cutoff devices
 - Rescue and security equipment
 - Other safety devices and safety equipment, etc.
 - (3) Do not use the products covered herein for the following equipment <u>which demands extremely</u> <u>high performance</u> in terms of functionality, reliability, or accuracy.
 - Aerospace equipment
 - Communications equipment for trunk lines
 - Control equipment for the nuclear power industry
 - Medical equipment related to life support, etc.
 - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

Contents
Contents

1. Description	2
2. Pin Configuration.	3
 3. Truth Table 3.1 Bus Operation 3.2 Simultaneous Operation Modes Allowed with Four Planes 	5
4. Block Diagram	7
 5. Command Definitions for Flash Memory 5.1 Command Definitions 5.2 Identifier Codes for Read Operation 5.3 Functions of Block Lock and Block Lock-Down. 5.4 Block Locking State Transitions upon Command Write 5.5 Block Locking State Transitions upon F-WP Transition 	8 10 11 11
6. Status Register Definition	13
7. Memory Map for Flash Memory	16
8. Absolute Maximum Ratings	17
9. Recommended DC Operating Conditions	17
10. Pin Capacitance	17
11. DC Electrical Characteristics	18
12. AC Electrical Characteristics for Flash Memory. 12.1 12.1 AC Test Conditions 12.2 12.2 Read Cycle 12.3 12.3 Write Cycle (F-WE / F-CE Controlled). 12.4 12.4 Block Erase, Full Chip Erase, (Page Buffer) Program Performance 12.5 12.5 Flash Memory AC Characteristics Timing Chart 12.6 12.6 Reset Operations 12.7	20 20 21 22 23
13. AC Electrical Characteristics for Smartcombo RAM 13.1 AC Test Conditions 13.1 AC Test Conditions 13.2 Read Cycle 13.2 Read Cycle 13.3 Write Cycle 13.3 Write Cycle 13.4 Power Up Timing 13.5 Sleep Mode Timing 13.6 Address Skew Timing 13.7 Data Retention Timing 13.8 Smartcombo RAM AC Characteristics Timing Chart	27 27 28 29 29 29 29 29
14. Notes	37
15. Flash Memory Data Protection	38
16. Design Considerations	39
17. Related Document Information	39
18. Package and Packing Specification	40

The LRS1808A is a combination memory organized as RAM in one package.	2,097,152 x16 bit f	flash memo	ory and 1,048,576 x16 bit Smartcomb
KAWI III one package.			
Features			
- Power supply	• • • •		3.3V(Flash)
	••••		3.1V(Smartcombo RAM)
- Operating temperature	••••	-30°C to	+83-C
- Not designed or rated as radiation hardened			
- 72pin CSP (LCSP072-P-0811) plastic package			
- Flash memory has P-type bulk silicon, and Smartco	ombo RAM has P-ty	pe bulk sili	con
Flash Memory			
- Access Time	• • • •	85 ns	(Max.)
- Power supply current (The current for F-V_{CC} pin a	nd F-V _{PP} pin)		
Read	• • • •	25 mA	(Max. t _{CYCLE} = 200ns, CMOS Inpu
Word write	• • • •	60 mA	(Max.)
Block erase	• • • •	30 mA	(Max.)
Reset Power-Down	••••	25 μΑ	(Max. F- \overline{RST} = GND ± 0.2V, I _{OUT} (F-RY/ \overline{BY}) = 0mA)
Standby	• • • •	25 μΑ	(Max. $F - \overline{CE} = F - \overline{RST} = F - V_{CC} \pm 0.2$)
- Optimized Array Blocking Architecture Eight 4K-word Parameter Blocks Sixty-Three 32K-word Main Blocks Bottom Parameter Location			
- Extended Cycling Capability			
100,000 Block Erase Cycles (F	$F - V_{PP} = 1.65 V$ to 3.3	V)	
1,000 Block Erase Cycles and total 80 hours (F	$V_{PP} = 11.7$ V to 12.3	3V)	
 Enhanced Automated Suspend Options Word Write Suspend to Read Block Erase Suspend to Word Write Block Erase Suspend to Read 			
Smartcombo RAM			
- Access Time	• • • •	85 ns	(Max.)
- Cycle time	• • • •	85 to 32,	,000 ns
- Power Supply current			
Operating current	• • • •	20 mA	(Max. t_{RC} , t_{WC} = Min.)
Standby current (Data retention current)	• • • •	80 µA	(Max.)
Sleep Mode (Data non-retention current)		15 µA	(Max.)

2. Pin Configuration - INDEX (TOP View) 2 3 1 4 5 6 7 8 9 10 11 12 NC (F-A20) A11 A13 A12 GND NC NC \mathbf{NC} А NC A15 A14 S-WE DQ15 DQ14 DQ7 В A16 A8 A10 A9 F-DQ13 F-WE NC С S-A17 DQ6 DQ4 DQ5 RY/BY (F-RST D GND T_1 T2 DQ12 S-CE2 (S-Vcc F-Vcc DQ2 F-WP DQ11 T3 DQ10Е (F-VPP A19 DQ3 DQ9 F S-UB $(S-\overline{OE})$ S-LB T4 DQ8 DQ0 DQ1 G S-CE1 (F-A17 A18 A7 A6 A3 A2 A_1 F-OE F-CE Η NC NC NC A5 A4 A0GND NC NC NC Note) From T1 to T4 pins are needed to be open. Two NC pins at the corner are connected. Do not float any GND pins.

Pin	Description	Туре		
$_{0}$ to A_{16} , A_{18} , A_{19}	Address Inputs (Common)	Input		
F-A ₁₇ , F-A ₂₀	Address Inputs (Flash)	Input		
S-A ₁₇	Address Input (Smartcombo RAM)	Input		
F-CE	Chip Enable Input (Flash)	Input		
$S-\overline{CE}_1$	Chip Enable Input (Smartcombo RAM)	Input		
S-CE ₂	Sleep State Input (Smartcombo RAM)	Input		
F-WE	Write Enable Input (Flash)	Input		
$S-\overline{WE}$	Write Enable Input (Smartcombo RAM)	Input		
F-OE	Output Enable Input (Flash)	Input		
$S-\overline{OE}$	Output Enable Input (Smartcombo RAM)	Input		
S-LB	Smartcombo RAM Byte Enable Input (DQ ₀ to DQ ₇)	Input		
$S-\overline{UB}$	Smartcombo RAM Byte Enable Input (DQ ₈ to DQ ₁₅)	Input		
F-RST	$F-\overline{RST} \qquad \begin{array}{c} \text{Reset Power Down Input (Flash)} \\ \text{Block erase and Write : } V_{IH} \\ \text{Read : } V_{IH} \\ \text{Reset Power Down : } V_{IL} \end{array}$			
F-WP	\overline{P} Write Protect Input (Flash) When F- \overline{WP} is V _{IL} , locked-down blocks cannot be unlocked. Erase or program operation can be executed to the blocks which are not locked and locked-down. When F- \overline{WP} is V _{IH} , lock-down is disabled.			
F-RY/BY	Ready/Busy Output (Flash) During an Erase or Write operation : V _{OL} Block Erase and Write Suspend : High-Z (High impedance)	Open Drain Output		
DQ_{0} to DQ_{15}	Data Inputs and Outputs (Common)	Input / Output		
F-V _{CC}	Power Supply (Flash)	Power		
S-V _{CC}	Power Supply (Smartcombo RAM)	Power		
$F-V_{PP} \qquad \begin{array}{c} \text{Monitoring Power Supply Voltage (Flash)} \\ \text{Block Erase and Write : } F-V_{PP} = V_{PPH1/2} \\ \text{All Blocks Locked : } F-V_{PP} < V_{PPLK} \end{array}$				
GND	GND (Common)	Power		
NC	Non Connection	-		
T_1 to T_4	Test pins (Should be all open)	-		

3. Truth Table

3.1 Bus Operation⁽¹⁾

5.1 Bus Ope				r									1
Flash	Smart combo RAM	Notes	F-CE	F-RST	F-OE	F-WE	$S-\overline{CE}_1$	S-CE ₂	S-OE	S-WE	S-LB	S-UB	DQ_0 to DQ_{15}
Read		3,5			L								(7)
Output Disable	Standby	5	L	Н	Н	Н	Н	Н	Х	Х	2	X	High - Z
Write		2,3,4,5				L							D _{IN}
Read		3,5			L								(7)
Output Disable	Sleep	5	L	Н	Н	Н	Х	L	Х	Х	2	X	High - Z
Write		2,3,4,5				L							D _{IN}
	Read	5,6		L H		Н	(8		8)				
Standby	Output Disable	5,6	Н	Н	Х	Х	L	Н	X H	H H	H X	H X	High - Z
	Write	5,6							X	L			8)
	Read	5,6							L	Н		(8)
Reset Power	Output	5.6	х	L	x	x	L	Н	Х	Н	Н	Н	High 7
Down	Disable	5,6	Λ	L	А	А	L	н	Н	Н	Х	Х	High - Z
	Write	5,6							Х	L	(8)		8)
Standby		5	Η	Н									
Reset Power Down	Standby	5,6	Х	L	Х	Х	Н	Н	Х	Х	2	X	High - Z
Standby		5	Н	Н									
Reset Power Down	Sleep	5,6	Х	L	Х	Х	Х	L	Х	Х	2	X	High - Z

Notes:

1. $L = V_{IL}$, $H = V_{IH}$, X = H or L, High-Z = High impedance. Refer to the DC Characteristics.

2. Command writes involving block erase (page buffer) program are reliably executed when $F-V_{PP} = V_{PPH1/2}$ and $F-V_{CC} = 2.7V$ to 3.3V.

Command writes involving full chip erase is reliably executed when $F-V_{PP} = V_{PPH1}$ and $F-V_{CC} = 2.7V$ to 3.3V. Block erase, full chip erase, (page buffer) program with $F-V_{PP} < V_{PPH1/2}$ (Min.) produce spurious results and should not be attempted.

- 3. Never hold $F-\overline{OE}$ low and $F-\overline{WE}$ low at the same timing.
- 4. Refer Section 5. Command Definitions for Flash Memory valid D_{IN} during a write operation.
- 5. $F-\overline{WP}$ set to V_{IL} or V_{IH} .
- 6. Electricity consumption of Flash Memory is lowest when $F-\overline{RST} = GND \pm 0.2V$.
- 7. Flash Read Mode

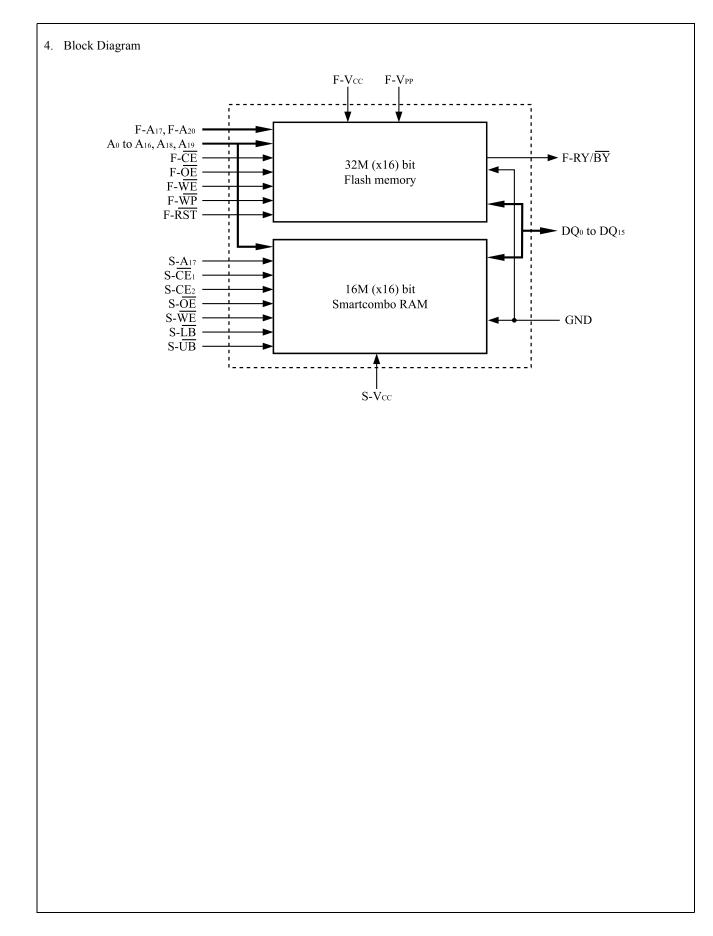
Mode	Address	DQ_0 to DQ_{15}		
Read Array	Х	D _{OUT}		
Read Identifier Codes	See 5.2	See 5.2		
Read Query	Refer to the Appendix	Refer to the Appendix		

S-LB	S-UB	DQ ₀ to DQ ₇	DO ₂ to DO ₁₅
	0.00		
L	L	D_{OUT}/D_{IN}	D_{OUT}/D_{IN}
L	Н	D _{OUT} /D _{IN}	High - Z

High - Z

 D_{OUT}/D_{IN}

8. S-UB, S-LB Control Mode


Н

L

		THEN THE MODES ALLOWED IN THE OTHER PARTITION IS:										
IF ONE PARTITION IS:	Read Array	Read ID	Read Status	Read Query	Word Program	Page Buffer Program	Block Erase	Full Chip Erase	Program Suspend	Block Erase Suspend		
Read Array	Х	Х	Х	Х	Х	Х	Х		Х	Х		
Read ID	Х	Х	Х	Х	Х	Х	Х		Х	Х		
Read Status	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
Read Query	Х	Х	Х	Х	Х	Х	Х		Х	Х		
Word Program	Х	Х	Х	Х						Х		
Page Buffer Program	Х	X	Х	Х						X		
Block Erase	Х	Х	Х	Х								
Full Chip Erase			Х									
Program Suspend	Х	X	Х	X						X		
Block Erase Suspend	Х	Х	Х	Х	Х	Х			Х			

1. "X" denotes the operation available.

 Configurative Partition Dual Work Restrictions: Status register reflects partition state, not WSM (Write State Machine) state - this allows a status register for each partition. Only one partition can be erased or programmed at a time - no command queuing. Commands must be written to an address within the block targeted by that command.

5. Command Definitions for Flash Memory⁽¹¹⁾

5.1 Command Definitions

	Bus		F	irst Bus Cycl	le	Se	cond Bus Cy	cle
Command	Cycles Req'd	Notes	Oper ⁽¹⁾	Address ⁽²⁾	Data ⁽³⁾	Oper ⁽¹⁾	Address ⁽²⁾	Data ⁽³⁾
Read Array	1	2	Write	PA	FFH			
Read Identifier Codes	≥2	2,3,4	Write	PA	90H	Read	IA	ID
Read Query	≥2	2,3,4	Write	PA	98H	Read	QA	QD
Read Status Register	2	2,3	Write	PA	70H	Read	PA	SRD
Clear Status Register	1	2	Write	PA	50H			
Block Erase	2	2,3,5	Write	BA	20H	Write	BA	D0H
Full Chip Erase	2	2,5,9	Write	Х	30H	Write	Х	D0H
Program	2	2,3,5,6	Write	WA	40H or 10H	Write	WA	WD
Page Buffer Program	≥4	2,3,5,7	Write	WA	E8H	Write	WA	N-1
Block Erase and (Page Buffer) Program Suspend	1	2,8,9	Write	PA	B0H			
Block Erase and (Page Buffer) Program Resume	1	2,8,9	Write	PA	D0H			
Set Block Lock Bit	2	2	Write	BA	60H	Write	BA	01H
Clear Block Lock Bit	2	2,10	Write	BA	60H	Write	BA	D0H
Set Block Lock-down Bit	2	2	Write	BA	60H	Write	BA	2FH
Set Partition Configuration Register	2	2,3	Write	PCRC	60H	Write	PCRC	04H

Notes:

- 1. Bus operations are defined in 3.1 Bus Operation.
- 2. The address which is written at the first bus cycle should be the same as the address which is written at the second bus cycle.

X=Any valid address within the device.

PA=Address within the selected partition.

IA=Identifier codes address (See 5.2 Identifier Codes for Read Operation).

QA=Query codes address. Refer to the LH28F320BF, LH28F640BF, LH28F128BF series Appendix for details.

BA=Address within the block being erased, set/cleared block lock bit or set block lock-down bit.

WA=Address of memory location for the Program command or the first address for the Page Buffer Program command. PCRC=Partition configuration register code presented on the address A_0 - A_{15} .

- ID=Data read from identifier codes (See 5.2 Identifier Codes for Read Operation). QD=Data read from query database. Refer to the LH28F320BF, LH28F640BF, LH28F128BF series Appendix for details. SRD=Data read from status register. See 6. Status Register Definition for a description of the status register bits. WD=Data to be programmed at location WA. Data is latched on the rising edge of F-WE or F-CE (whichever goes high first). N-1=N is the number of the words to be loaded into a page buffer.
- 4. Following the Read Identifier Codes command, read operations access manufacturer code, device code, block lock configuration code, partition configuration register code (See 5.2 Identifier Codes for Read Operation). The Read Query command is available for reading CFI (Common Flash Interface) information.
- 5. Block erase, full chip erase or (page buffer) program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when F-RST is V_{IH}.
- 6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup.
- 7. Following the third bus cycle, inputs the program sequential address and write data of "N" times. Finally, input the any valid address within the target partition to be programmed and the confirm command (D0H). Refer to the LH28F320BF, LH28F640BF, LH28F128BF series Appendix for details.

- 8. If the program operation in one partition is suspended and the erase operation in other partition is also suspended, the suspended program operation should be resumed first, and then the suspended erase operation should be resumed next.
- 9. Full chip erase operation can not be suspended.
- 10. Following the Clear Block Lock Bit command, block which is not locked-down is unlocked when $F-\overline{WP}$ is V_{IL} . When $F-\overline{WP}$ is V_{IH} , lock-down bit is disabled and the selected block is unlocked regardless of lock-down configuration.
- 11. Commands other than those shown above are reserved by SHARP for future device implementations and should not be used.

	Code	Address $[A_{15}-A_0]^{(4)}$	Data [DQ ₁₅ -DQ ₀]	Notes
Manufacturer Code	Manufacturer Code	0000H	00B0H	
Device Code	32M Bottom Parameter Device Code	0001H	00B5H	1
	Block is Unlocked		$DQ_0 = 0$	2
Disals Look Configuration Code	Block is Locked	Block Address	$DQ_0 = 1$	2
Block Lock Configuration Code	Block is not Locked-Down	+ 2	$DQ_1 = 0$	2
	Block is Locked-Down		$DQ_1 = 1$	2
Device Configuration Code	Partition Configuration Register	0006H	PCRC	3

- 1. Bottom parameter device has its parameter blocks in the plane 0 (The lowest address).
- 2. DQ_{15} - DQ_2 is reserved for future implementation.
- 3. PCRC=Partition Configuration Register Code.
- 4. The address A_{20} - A_{16} are shown in below table for reading the manufacturer, device, lock configuration, device configuration code.
 - The address to read the identifier codes is dependent on the partition which is selected when writing the Read Identifier Codes command (90H).

See Chapter 6. Partition Configuration Register Definition (P.15) for the partition configuration register.

Partit	ion Configuration Re	gister	Address (32M-bit device)
PCR.10	PCR.9	PCR.8	[A ₂₀ -A ₁₆]
0	0	0	00H
0	0	1	00H or 08H
0	1	0	00H or 10H
1	0	0	00H or 18H
0	1	1	00H or 08H or 10H
1	1	0	00H or 10H or 18H
1	0	1	00H or 08H or 18H
1	1	1	00H or 08H or 10H or 18H

Identifier Codes for Read Operation on Partition Configuration (32M-bit device)

		Cu	rrent State		(2)
State	F-WP	DQ ₁ ⁽¹⁾	DQ ₀ ⁽¹⁾	State Name	Erase/Program Allowed ⁽²⁾
[000]	0	0	0	Unlocked	Yes
[001] ⁽³⁾	0	0	1	Locked	No
[011]	0	1	1	Locked-down	No
[100]	1	0	0	Unlocked	Yes
[101] ⁽³⁾	1	0	1	Locked	No
[110] ⁽⁴⁾	1	1	0	Lock-down Disable	Yes
[111]	1	1	1	Lock-down Disable	No

1. $DQ_0 = 1$: a block is locked; $DQ_0 = 0$: a block is unlocked.

 $DQ_1 = 1$: a block is locked-down; $DQ_1 = 0$: a block is not locked-down.

2. Erase and program are general terms, respectively, to express: block erase, full chip erase and (page buffer) program operations.

- 3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is, [001] (F-WP = 0) or [101] (F-WP = 1), regardless of the states before power-off or reset operation.
- 4. When $F-\overline{WP}$ is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.

	Curren	t State		Result aft	er Lock Command Written (N	Next State)
State	F-WP	DQ ₁	DQ ₀	Set Lock ⁽¹⁾	Clear Lock ⁽¹⁾	Set Lock-down ⁽¹⁾
[000]	0	0	0	[001]	No Change	$[011]^{(2)}$
[001]	0	0	1	No Change ⁽³⁾	[000]	[011]
[011]	0	1	1	No Change	No Change	No Change
[100]	1	0	0	[101]	No Change	[111] ⁽²⁾
[101]	1	0	1	No Change	[100]	[111]
[110]	1	1	0	[111]	No Change	[111] ⁽²⁾
[111]	1	1	1	No Change	[110]	No Change

5.4 Block Locking State Transitions upon Command Write⁽⁴⁾

Notes:

- 1. "Set Lock" means Set Block Lock Bit command, "Clear Lock" means Clear Block Lock Bit command and "Set Lockdown" means Set Block Lock-Down Bit command.
- 2. When the Set Block Lock-Down Bit command is written to the unlocked block ($DQ_0 = 0$), the corresponding block is locked-down and automatically locked at the same time.
- 3. "No Change" means that the state remains unchanged after the command written.
- 4. In this state transitions table, assumes that $F-\overline{WP}$ is not changed and fixed V_{IL} or V_{IH} .

Durani ana Stata		Current	State		Result after F-WP Transition (Next State)			
Previous State	State	F-WP	DQ ₁	DQ ₀	$F - \overline{WP} = 0 \rightarrow 1^{(1)}$	$F-\overline{WP} = 1 \rightarrow 0^{(1)}$		
-	[000]	0	0	0	[100]	-		
-	[001]	0	0	1	[101]	-		
[110] ⁽²⁾	[011]	0	1	1	[110]	-		
Other than $[110]^{(2)}$	[011]	0	1	1	[111]	-		
-	[100]	1	0	0	-	[000]		
-	[101]	1	0	1	-	[001]		
-	[110]	1	1	0	-	$[011]^{(3)}$		
-	[111]	1	1	1	-	[011]		

1. "F- $\overline{WP} = 0 \rightarrow 1$ " means that F- \overline{WP} is driven to V_{IH} and "F- $\overline{WP} = 1 \rightarrow 0$ " means that F- \overline{WP} is driven to V_{IL}.

2. State transition from the current state [011] to the next state depends on the previous state.

3. When $F-\overline{WP}$ is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.

4. In this state transitions table, assumes that lock configuration commands are not written in previous, current and next state.

$\begin{array}{c c} R \\ \hline 15 \\ \hline WSMS \\ \hline 7 \\ \hline \\$	R 14 BESS 6 ESERVED FO	R 13 BEFCES 5	R 12 PBPS	R 11 VPPS	R 10	R 9	R 8		
$\frac{\text{WSMS}}{7}$ R.15 - SR.8 = R E R.7 = WRITE S 1 = Ready	BESS 6	BEFCES	PBPS		- •	9	8		
7 R.15 - SR.8 = R E R.7 = WRITE S 1 = Ready	6			VPPS	DDDCC				
R.15 - SR.8 = R E R.7 = WRITE S 1 = Ready		5			PBPSS	DPS	R		
E R.7 = WRITE S 1 = Ready	ESERVED FO		4	3	2	1	0		
	ENHANCEME	NTS (R)	WSMS)	Notes: Status Register indicates the status of the partition, not WSM (Write State Machine). Even if the SR.7 is "1", the WSM may be occupied by the other partition when the device is set to 2, 2 or 4 partitions configuration.					
1 = Block Er	ERASE SUSP ase Suspended ase in Progress		(BESS)		F-RY/ \overline{BY} to definition of the formula of the f				
1 = Error in I 0 = Successfi SR.4 = (PAGE E	S (BEFCES) Block Erase or ul Block Erase BUFFER) PRO	Full Chip Erase or Full Chip Er GRAM STATU	ase	If both SR.5 and SR.4 are "1"s after a block erase, full ch erase, page buffer program, set/clear block lock bit, set bloc lock-down bit or set partition configuration register attempt, a improper command sequence was entered.					
1 = Error in (Page Buffer) Program 0 = Successful (Page Buffer) Program SR.3 = F-V _{PP} STATUS (VPPS) 1 = F-V _{PP} LOW Detect, Operation Abort 0 = F-V _{PP} OK				SR.3 does not provide a continuous indication of $F-V_{PP}$ level. The WSM interrogates and indicates the $F-V_{PP}$ level only aft Block Erase, Full Chip Erase, (Page Buffer) Program com mand sequences. SR.3 is not guaranteed to report accurate feedback when $F-V_{PP} \neq V_{PPH1/2}$ or V_{PPLK} .					
 SR.2 = (PAGE BUFFER) PROGRAM SUSPEND STATUS (PBPSS) 1 = (Page Buffer) Program Suspended 0 = (Page Buffer) Program in Progress/Completed SR.1 = DEVICE PROTECT STATUS (DPS) 1 = Erase or Program Attempted on a Locked Block, Operation Abort 0 = Unlocked 				SR.1 does not provide a continuous indication of block loc bit. The WSM interrogates the block lock bit only after Bloc Erase, Full Chip Erase, (Page Buffer) Program comman sequences. It informs the system, depending on the attempte operation, if the block lock bit is set. Reading the block loc configuration codes after writing the Read Identifier Code command indicates block lock bit status.					
SR.0 = RESERV	ED FOR FUT	URE ENHANC	EMENTS (R)) SR.15 - SR.8 and SR.0 are reserved for future use and shoul be masked out when polling the status register.					

Г

٦

R	R	R	R	R	R	R	R
15	к 14	13	12 K	11 K	10	<u>к</u> 9	<u> </u>
SMS	R R	R	R R	R	R	9 R	R R
7	к 6	5	4 K	<u>к</u> 3	2 R	1 1	0 0
/	0	5	4	Notes:	Z	I	0
SR.7 = STATE N 1 = Page But 0 = Page But	ANCEMENT MACHINE ST ffer Program a ffer Program r	S (R) ATUS (SMS) vailable tot available		XSR.7="1" ind XSR.7 is "0", 1 Buffer Program check if page bu	Page Buffer icates that the en the command is a command (E8) uffer is available	tered command not accepted ar H) should be is or not.	l is accepted. nd a next Pa ssued again
SR.6-0 = RESER	RVED FOR FU	TURE ENHANC	CEMENTS (R)	XSR.15-8 and 2	XSR.6-0 are rese when polling the	rved for future	use and shou

			tion Configurati	on Re	-		-		D.C.
R	R	R	R		R	PC		PC1	PC0
15	14	13	12		11	1	-	9	8
R	R	R	R		R	ŀ		R	R
7	6	5	4	1	3	2		1	0
three ope 110 = Pla three 0pe 101 = Pla	PCR Note After "001 parar See t PCR	7-0 = s: pow " in neter he tab 15-11 naske	Each plan respectively between any RESERVED er-up or dev a bottom pa device. le below for and PCR.7-	e corre Dual / two part FOR FUT vice reset arameter more deta	URE ENHANG , PCR10-8 (F device and '	each partiti on is availab CEMENTS (R) PC2-0) is set "100" in a t e use and shou			
PC2 PC1PC0	PARTITION	NING FOR DU	Partition C		ration		FITIONII	NG FOR DUA	L WORK
0 0 0	PLANE3	DARTITION0	PLANE0	0	1 1	8	CINITIA DIANEZ	PARTITION	PARTITION0
0 0 1	PART	PLANE2	PARTITION0	1	1 0	E	N2 PART	ITION1 PART	00000000000000000000000000000000000000
0 1 0	PARTITIC BITANE3	PLANE2 IV	0/0/111	1	0 1	PARTITI LANE3	PA 2NO PANE2	RTITION1 P.	ARTITION0
	PARTITION1	PARTITIO	DN0			PARTITION	3 PARTIT	ION2 PARTITIO	N1 PARTITION0

Bottom Parameter BLOCK NUMBER ADDRESS RANGE 158000h - 1FFFFFh 158000h - 1FFFFFh 69 32K-WORD 1F8000h - 1F7FFFh 68 32K-WORD 158000h - 1E7FFFh 66 32K-WORD 158000h - 1E7FFFh 66 32K-WORD 108000h - 1D7FFFh 66 32K-WORD 108000h - 1D7FFFh 63 32K-WORD 108000h - 1C7FFFh 63 32K-WORD 108000h - 1C7FFFh 63 32K-WORD 108000h - 1BFFFFh 10000h - 127FFFh 108000h - 1AFFFFh 103000h - 137FFFh 148000h - 1AFFFFh 104000h - 137FFFh 188000h - 18FFFFh 105000h - 197FFFh 188000h - 187FFFh 109000h - 197FFFh 188000h - 187FFFh 109000h - 197FFFh 188000h - 187FFFh 109000h - 187FFFh 188000h - 187FFFh 109000h - 187FFFh	PLANE1 (UNIFORM PLANE)	38 37 36 35 34 33 32 31 30 29 28 27 26 25 24	32K-WORD 32K-WORD	0F8000h - 0FFFFFh 0F0000h - 0F7FFFh 0E8000h - 0E7FFFh 0E8000h - 0E7FFFh 0D8000h - 0D7FFFh 0D8000h - 0D7FFFh 0C8000h - 0C7FFFh 0C8000h - 0C7FFFh 0B8000h - 0B7FFFh 0B8000h - 0B7FFFh 0B8000h - 0A7FFFh 0A8000h - 0A7FFFh
70 32K-WORD 1F8000h - 1FFFFFh 69 32K-WORD 1F8000h - 1FFFFFh 69 32K-WORD 1F0000h - 1F7FFFh 68 32K-WORD 1E0000h - 1EFFFFh 67 32K-WORD 1E0000h - 1EFFFFh 66 32K-WORD 1D8000h - 1D7FFFh 65 32K-WORD 1D8000h - 1D7FFFh 63 32K-WORD 1C8000h - 1C7FFFh 63 32K-WORD 1B8000h - 1BFFFFh 63 32K-WORD 1B8000h - 1BFFFFh 60 32K-WORD 1B8000h - 1BFFFFh 60 32K-WORD 1A8000h - 1AFFFFh 59 32K-WORD 1A0000h - 1AFFFFh 58 32K-WORD 198000h - 197FFFh 56 32K-WORD 198000h - 197FFFh 56 32K-WORD 188000h - 187FFFh 55 32K-WORD 180000h - 187FFFh 55 32K-WORD 180000h - 187FFFh 56 32K-WORD 180000h - 187FFFh 56 32K-WORD 180000h - 187FFFh 57 32K		36 35 34 33 32 31 30 29 28 27 26 25	32K-WORD	0E8000h - 0EFFFFh 0E0000h - 0E7FFFh 0D8000h - 0DFFFFh 0D0000h - 0D7FFFh 0C8000h - 0C7FFFh 0C0000h - 0C7FFFh 0B8000h - 0BFFFFh 0B0000h - 0B7FFFh 0A8000h - 0A7FFFh 0A8000h - 0A7FFFh
70 32K-WORD 1F8000h - 1FFFFFh 69 32K-WORD 1F8000h - 1FFFFFh 69 32K-WORD 1F0000h - 1F7FFFh 68 32K-WORD 1E0000h - 1EFFFFh 67 32K-WORD 1E0000h - 1EFFFFh 66 32K-WORD 1D8000h - 1D7FFFh 65 32K-WORD 1D8000h - 1D7FFFh 63 32K-WORD 1C8000h - 1C7FFFh 63 32K-WORD 1B8000h - 1BFFFFh 63 32K-WORD 1B8000h - 1BFFFFh 60 32K-WORD 1B8000h - 1BFFFFh 60 32K-WORD 1A8000h - 1AFFFFh 59 32K-WORD 1A0000h - 1AFFFFh 58 32K-WORD 198000h - 197FFFh 56 32K-WORD 198000h - 197FFFh 56 32K-WORD 188000h - 187FFFh 55 32K-WORD 180000h - 187FFFh 55 32K-WORD 180000h - 187FFFh 56 32K-WORD 180000h - 187FFFh 56 32K-WORD 180000h - 187FFFh 57 32K		35 34 33 32 31 30 29 28 27 26 25	32K-WORD	0E0000h - 0E7FFFh 0D8000h - 0DFFFFh 0D0000h - 0D7FFFh 0C8000h - 0C7FFFh 0C0000h - 0C7FFFh 0B8000h - 0BFFFFh 0B0000h - 0B7FFFh 0A8000h - 0A7FFFh 0A0000h - 0A7FFFh
70 32K-WORD 1F8000h - 1FFFFFh 69 32K-WORD 1F8000h - 1FFFFFh 69 32K-WORD 1F0000h - 1F7FFFh 68 32K-WORD 1E0000h - 1EFFFFh 67 32K-WORD 1E0000h - 1EFFFFh 66 32K-WORD 1D8000h - 1D7FFFh 65 32K-WORD 1D8000h - 1D7FFFh 63 32K-WORD 1C8000h - 1C7FFFh 63 32K-WORD 1B8000h - 1BFFFFh 63 32K-WORD 1B8000h - 1BFFFFh 60 32K-WORD 1B8000h - 1BFFFFh 60 32K-WORD 1A8000h - 1AFFFFh 59 32K-WORD 1A0000h - 1AFFFFh 58 32K-WORD 198000h - 197FFFh 56 32K-WORD 198000h - 197FFFh 56 32K-WORD 188000h - 187FFFh 55 32K-WORD 180000h - 187FFFh 55 32K-WORD 180000h - 187FFFh 56 32K-WORD 180000h - 187FFFh 56 32K-WORD 180000h - 187FFFh 57 32K		34 33 32 31 30 29 28 27 26 25	32K-WORD	0D8000h - 0DFFFFh 0D0000h - 0D7FFFh 0C8000h - 0CFFFFh 0C0000h - 0C7FFFh 0B8000h - 0BFFFFh 0B0000h - 0B7FFFh 0A8000h - 0A7FFFh 0A0000h - 0A7FFFh
70 32K-WORD 1F8000h - 1FFFFFh 69 32K-WORD 1F8000h - 1FFFFFh 69 32K-WORD 1F0000h - 1F7FFFh 68 32K-WORD 1E0000h - 1EFFFFh 67 32K-WORD 1E0000h - 1EFFFFh 66 32K-WORD 1D0000h - 1D7FFFh 65 32K-WORD 1D0000h - 1D7FFFh 63 32K-WORD 1C8000h - 1C7FFFh 63 32K-WORD 1B8000h - 1BFFFFh 61 32K-WORD 1B8000h - 1BFFFFh 60 32K-WORD 1B8000h - 1BFFFFh 60 32K-WORD 1A8000h - 1AFFFFh 59 32K-WORD 1A0000h - 1A7FFFh 59 32K-WORD 198000h - 197FFFh 56 32K-WORD 198000h - 197FFFh 56 32K-WORD 188000h - 187FFFh 55 32K-WORD 180000h - 187FFFh 55 32K-WORD 180000h - 187FFFh 56 32K-WORD 180000h - 187FFFh 56 32K-WORD 180000h - 187FFFh 57 32K		33 32 31 30 29 28 27 26 25	32K-WORD 32K-WORD 32K-WORD 32K-WORD 32K-WORD 32K-WORD 32K-WORD	0D0000h - 0D7FFFh 0C8000h - 0CFFFh 0C0000h - 0C7FFFh 0B8000h - 0BFFFFh 0B0000h - 0B7FFFh 0A8000h - 0A7FFFh 0A0000h - 0A7FFFh
70 32K-WORD 1F8000h - 1FFFFFh 69 32K-WORD 1F8000h - 1FFFFFh 69 32K-WORD 1F0000h - 1F7FFFh 68 32K-WORD 1E0000h - 1EFFFFh 67 32K-WORD 1E0000h - 1EFFFFh 66 32K-WORD 1D8000h - 1D7FFFh 65 32K-WORD 1D8000h - 1D7FFFh 63 32K-WORD 1C8000h - 1C7FFFh 63 32K-WORD 1B8000h - 1BFFFFh 63 32K-WORD 1B8000h - 1BFFFFh 60 32K-WORD 1B8000h - 1BFFFFh 60 32K-WORD 1A8000h - 1AFFFFh 59 32K-WORD 1A0000h - 1AFFFFh 59 32K-WORD 198000h - 197FFFh 56 32K-WORD 198000h - 197FFFh 56 32K-WORD 198000h - 187FFFh 55 32K-WORD 188000h - 187FFFh 55 32K-WORD 180000h - 187FFFh 56 32K-WORD 180000h - 187FFFh 56 32K-WORD 180000h - 187FFFh 57 32K		32 31 30 29 28 27 26 25	32K-WORD 32K-WORD 32K-WORD 32K-WORD 32K-WORD 32K-WORD 32K-WORD	0C8000h - 0CFFFFh 0C0000h - 0C7FFFh 0B8000h - 0BFFFFh 0B0000h - 0B7FFFh 0A8000h - 0AFFFFh 0A0000h - 0A7FFFh
70 32K-WORD 1F8000h - 1FFFFh 69 32K-WORD 1F0000h - 1F7FFFh 68 32K-WORD 1E8000h - 1EFFFFh 67 32K-WORD 1E0000h - 1EFFFFh 66 32K-WORD 1D8000h - 1D7FFFh 66 32K-WORD 1D8000h - 1D7FFFh 65 32K-WORD 1D0000h - 1D7FFFh 64 32K-WORD 1C8000h - 1C7FFFh 63 32K-WORD 1C8000h - 1C7FFFh 63 32K-WORD 1B8000h - 1BFFFFh 60 32K-WORD 1B8000h - 1BFFFFh 60 32K-WORD 1A8000h - 1AFFFFh 59 32K-WORD 1A0000h - 1AFFFFh 59 32K-WORD 1A0000h - 197FFFh 56 32K-WORD 198000h - 197FFFh 56 32K-WORD 180000h - 187FFFh 56 32K-		31 30 29 28 27 26 25	32K-WORD 32K-WORD 32K-WORD 32K-WORD 32K-WORD	0C0000h - 0C7FFFh 0B8000h - 0BFFFFh 0B0000h - 0B7FFFh 0A8000h - 0AFFFFh 0A0000h - 0A7FFFh
69 32K-WORD 1F0000h - 1F7FFh 68 32K-WORD 1E8000h - 1EFFFh 67 32K-WORD 1E0000h - 1E7FFh 66 32K-WORD 1D8000h - 1DFFFh 66 32K-WORD 1D0000h - 1DFFFh 64 32K-WORD 1C8000h - 1CFFFh 63 32K-WORD 1C8000h - 1CFFFh 63 32K-WORD 1C0000h - 1C7FFFh 61 32K-WORD 1B8000h - 1BFFFFh 61 32K-WORD 1B8000h - 1BFFFFh 60 32K-WORD 1A8000h - 1AFFFFh 59 32K-WORD 1A0000h - 1A7FFFh 58 32K-WORD 198000h - 19FFFFh 56 32K-WORD 188000h - 18FFFFh 57 32K-WORD 188000h - 18FFFFh 56 32K-WORD 178000h - 17FFFFh 53 32K-WORD 178000h - 17FFFFh		30 29 28 27 26 25	32K-WORD 32K-WORD 32K-WORD 32K-WORD	0B8000h - 0BFFFFh 0B0000h - 0B7FFFh 0A8000h - 0AFFFFh 0A0000h - 0A7FFFh
68 32K-WORD 1E8000h - 1EFFFFh 67 32K-WORD 1E0000h - 1EFFFFh 66 32K-WORD 1D8000h - 1DFFFFh 65 32K-WORD 1D0000h - 1DFFFFh 64 32K-WORD 1C8000h - 1CFFFFh 63 32K-WORD 1C8000h - 1CFFFFh 62 32K-WORD 1B8000h - 1BFFFFh 61 32K-WORD 1B8000h - 1BFFFFh 60 32K-WORD 1A8000h - 1AFFFFh 60 32K-WORD 1A0000h - 1AFFFFh 59 32K-WORD 198000h - 19FFFFh 56 32K-WORD 198000h - 19FFFFh 56 32K-WORD 188000h - 18FFFFh 57 32K-WORD 178000h - 17FFFFh 56 32K-WORD 178000h - 17FFFFh 53 32K-WORD 178000h - 17FFFFh		29 28 27 26 25	32K-WORD 32K-WORD 32K-WORD	0B0000h - 0B7FFFh 0A8000h - 0AFFFFh 0A0000h - 0A7FFFh
67 32K-WORD 1E0000h - 1E7FFFh 66 32K-WORD 1D8000h - 1D7FFFh 65 32K-WORD 1D0000h - 1D7FFFh 64 32K-WORD 1C8000h - 1C7FFFh 63 32K-WORD 1C0000h - 1C7FFFh 63 32K-WORD 1B8000h - 1B7FFFh 61 32K-WORD 1B8000h - 1B7FFFh 60 32K-WORD 1A8000h - 1B7FFFh 60 32K-WORD 1A8000h - 1A7FFFh 59 32K-WORD 1A0000h - 1A7FFFh 58 32K-WORD 198000h - 197FFFh 56 32K-WORD 198000h - 197FFFh 56 32K-WORD 188000h - 187FFFh 56 32K-WORD 180000h - 187FFFh 56 32K-WORD 180000h - 187FFFh 50 32K-WORD 178000h - 17FFFFh 57 32K-WORD 178000h - 17FFFFh		28 27 26 25	32K-WORD 32K-WORD	0A8000h - 0AFFFFh 0A0000h - 0A7FFFh
Image: Provide with the system 10000h - 10FFFFh 66 32K-WORD 10000h - 10FFFFh 65 32K-WORD 10000h - 10FFFFh 64 32K-WORD 10000h - 10FFFFh 63 32K-WORD 10000h - 10FFFFh 62 32K-WORD 10000h - 10FFFFh 61 32K-WORD 10000h - 10FFFFh 60 32K-WORD 1A8000h - 10FFFFh 59 32K-WORD 1A0000h - 10FFFFh 59 32K-WORD 1A0000h - 10FFFFh 57 32K-WORD 198000h - 19FFFFh 56 32K-WORD 188000h - 18FFFFh 56 32K-WORD 188000h - 18FFFFh 56 32K-WORD 180000h - 18FFFFh 55 32K-WORD 180000h - 18FFFFh 53 32K-WORD 178000h - 17FFFFh	PLANE1	27 26 25	32K-WORD	0A0000h - 0A7FFFh
G0 32K-WORD 1A8000h - 1AFFFFh 59 32K-WORD 1A0000h - 1A7FFFh 58 32K-WORD 198000h - 19FFFFh 57 32K-WORD 190000h - 197FFFh 56 32K-WORD 188000h - 187FFFh 55 32K-WORD 188000h - 187FFFh 55 32K-WORD 180000h - 187FFFh 53 32K-WORD 178000h - 17FFFFh 53 32K-WORD 178000h - 177FFFh	PLAI	26 25		_
60 32K-WORD 1A8000h - 1AFFFFh 59 32K-WORD 1A0000h - 1A7FFFh 58 32K-WORD 198000h - 19FFFFh 57 32K-WORD 190000h - 197FFFh 56 32K-WORD 188000h - 187FFFh 55 32K-WORD 188000h - 187FFFh 54 32K-WORD 178000h - 17FFFFh 53 32K-WORD 178000h - 17FFFFh	d	25	32K-WORD	0000001 000000
60 32K-WORD 1A8000h - 1AFFFFh 59 32K-WORD 1A0000h - 1A7FFFh 58 32K-WORD 198000h - 19FFFFh 57 32K-WORD 190000h - 197FFFh 56 32K-WORD 188000h - 187FFFh 55 32K-WORD 188000h - 187FFFh 54 32K-WORD 178000h - 17FFFFh 53 32K-WORD 178000h - 17FFFFh				098000h - 09FFFFh
EF 60 32K-WORD 1A8000h - 1AFFFFh 59 32K-WORD 1A0000h - 1A7FFFh 58 32K-WORD 198000h - 19FFFFh 57 32K-WORD 190000h - 19FFFFh 56 32K-WORD 188000h - 18FFFFh 55 32K-WORD 188000h - 18FFFFh 53 32K-WORD 178000h - 17FFFFh 53 32K-WORD 170000h - 177FFFh		24	32K-WORD	090000h - 097FFFh
60 32K-WORD 1A8000h - 1AFFFFh 59 32K-WORD 1A0000h - 1A7FFFh 58 32K-WORD 198000h - 19FFFFh 57 32K-WORD 190000h - 197FFFh 56 32K-WORD 188000h - 187FFFh 55 32K-WORD 188000h - 187FFFh 54 32K-WORD 178000h - 17FFFFh 53 32K-WORD 178000h - 17FFFFh		24	32K-WORD	088000h - 08FFFFh
EF 60 32K-WORD 1A8000h - 1AFFFFh 59 32K-WORD 1A0000h - 1A7FFFh 58 32K-WORD 198000h - 19FFFFh 57 32K-WORD 190000h - 19FFFFh 56 32K-WORD 188000h - 18FFFFh 55 32K-WORD 188000h - 18FFFFh 53 32K-WORD 178000h - 17FFFFh 53 32K-WORD 170000h - 177FFFh		23	32K-WORD	080000h - 087FFFh
58 32K-WORD 198000h - 19FFFh 57 32K-WORD 190000h - 197FFFh 56 32K-WORD 188000h - 18FFFFh 55 32K-WORD 180000h - 187FFFh 54 32K-WORD 178000h - 17FFFFh 53 32K-WORD 170000h - 177FFFh		1		-
58 32K-WORD 198000h - 19FFFh 57 32K-WORD 190000h - 197FFFh 56 32K-WORD 188000h - 18FFFFh 55 32K-WORD 180000h - 187FFFh 54 32K-WORD 178000h - 17FFFFh 53 32K-WORD 170000h - 177FFFh		22	32K-WORD	078000h - 07FFFFh
58 32K-WORD 198000h - 19FFFh 57 32K-WORD 190000h - 197FFFh 56 32K-WORD 188000h - 18FFFFh 55 32K-WORD 180000h - 187FFFh 54 32K-WORD 178000h - 17FFFFh 53 32K-WORD 170000h - 177FFFh		21	32K-WORD	070000h - 077FFFh
56 32K-WORD 188000h - 18FFFFh 55 32K-WORD 180000h - 187FFFh 54 32K-WORD 178000h - 17FFFFh 53 32K-WORD 170000h - 177FFFh		20	32K-WORD	068000h - 06FFFFh
55 32K-WORD 180000h - 187FFFh 54 32K-WORD 178000h - 17FFFFh 53 32K-WORD 170000h - 177FFFh		19	32K-WORD	060000h - 067FFFh
54 32K-WORD 178000h - 17FFFFh 53 32K-WORD 170000h - 177FFFh		18	32K-WORD	058000h - 05FFFFh
53 32K-WORD 170000h - 177FFFh		17	32K-WORD	050000h - 057FFFh
53 32K-WORD 170000h - 177FFFh		16	32K-WORD	048000h - 04FFFFh
	PLANE	15	32K-WORD	040000h - 047FFFh
52 32K-WORD 168000h - 16FFFFh	PLA	14	32K-WORD	038000h - 03FFFFh
	ETER	13	32K-WORD	030000h - 037FFFh
51 32K-WORD 160000h - 167FFFh	ΈT	12	32K-WORD	028000h - 02FFFFh
50 32K-WORD 158000h - 15FFFFh	AM	11	32K-WORD	020000h - 027FFFh
49 32K-WORD 150000h - 157FFFh	AR	10	32K-WORD	018000h - 01FFFFh
48 32K-WORD 148000h - 14FFFFh	(H)	9	32K-WORD	010000h - 017FFFh
FIGURE 50 32K-WORD 158000h - 15FFFh 49 32K-WORD 150000h - 157FFFh 48 32K-WORD 148000h - 14FFFFh 47 32K-WORD 140000h - 147FFFh 46 32K-WORD 138000h - 13FFFFh 45 32K-WORD 130000h - 137FFFh	PLANE0 (PARAM	8	32K-WORD	008000h - 00FFFFh
46 32K-WORD 138000h - 13FFFFh	PLA	7	4K-WORD	007000h - 007FFFh
		6	4K-WORD	006000h - 006FFFh
Herein 44 32K-WORD 128000h - 12FFFFh 43 32K-WORD 120000h - 127FFFh		5	4K-WORD	005000h - 005FFFh
43 32K-WORD 120000h - 127FFFh		4	4K-WORD	004000h - 004FFFh
42 32K-WORD 118000h - 11FFFFh		3	4K-WORD	003000h - 003FFFh
41 32K-WORD 110000h - 117FFFh		2	4K-WORD	002000h - 002FFFh
40 32K-WORD 108000h - 10FFFFh		1	4K-WORD	001000h - 001FFFh

Γ

8. Absolute Maximum Ratings

Symbol	Parameter	Notes	Ratings	Unit
V _{CC}	Supply voltage	1,2	-0.2 to +3.6	V
V _{IN}	Input voltage	1,2,3,4	-0.5 to V _{CC} +0.3	V
T _A	Operating temperature		-30 to +85	°C
T _{STG}	Storage temperature		-65 to +125	°C
F-V _{PP}	F-V _{PP} voltage	1,3,5	-0.2 to +12.6	V

Notes:

- 1. The maximum applicable voltage on any pins with respect to GND.
- 2. Except F-V_{PP}.
- 3. -1.0V undershoot is allowed when the pulse width is less than 5 nsec.
- 4. V_{IN} should not be over V_{CC} +0.3V.
- Applying 12V ±0.3V to F-V_{PP} during erase/write can only be done for a maximum of 1000 cycles on each block. F-V_{PP} may be connected to 12V ±0.3V for total of 80 hours maximum. +13.0V overshoot is allowed when the pulse width is less than 20 nsec.

9. Recommended DC Operating Conditions

 $(T_A = -30^{\circ}C \text{ to } +85^{\circ}C)$

Syn	mbol	Parameter	Notes	Min.	Тур.	Max.	Unit
F-V	V _{CC}	Supply Voltage		2.7	3.0	3.3	V
S-V	V _{CC}	Supply Voltage		2.7		3.1	V
V	Inn	F-V _{PP} Voltage (Write Operation)		1.65		3.3	V
v	V_{PP} F- V_{PP} Voltage (Read Operation)			0		3.3	V
V	/ _{IH}	Input Voltage		VCC -0.3 ⁽²⁾		Vcc +0.3 ⁽¹⁾	V
V	/ _{IL}	Input Voltage		-0.3		0.3	V

Notes:

1. V_{CC} is the lower of F-V_{CC} or S-V_{CC}.

2. V_{CC} is the higher of F-V_{CC} or S-V_{CC}.

10. Pin Capacitance⁽¹⁾

 $(T_A = 25^{\circ}C, f = 1MHz)$

Symbol	Parameter	Notes	Min.	Тур.	Max.	Unit	Condition
C _{IN}	Input capacitance				15	pF	$V_{IN} = 0V$
C _{I/O}	I/O capacitance				25	pF	$V_{I/O} = 0V$

Note:

1. Sampled but not 100% tested.

		Ι	DC Electi (F-V _{CC} =	= 2.7V to 3.3V, S-V _{CC} = 2.7V to 3.1V
Symbol	Para	neter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
I _{LI}	Input Leakage Curr	rent				±1.5	μA	$V_{IN} = V_{CC}$ or GND
I _{LO}	Output Leakage Cu	urrent				±1.5	μΑ	$V_{OUT} = V_{CC}$ or GND
I _{CCS}	F-V _{CC} Standby Current		2,11		4	20	μΑ	$F-V_{CC} = F-V_{CC} Max.,$ $F-\overline{CE} = F-\overline{RST} = F-V_{CC} \pm 0.2V,$ $F-\overline{WP} = F-V_{CC} \text{ or } GND$
I _{CCAS}	F-V _{CC} Automatic Power Savings Current		2,5		4	20	μΑ	$F-V_{CC} = F-V_{CC} Max.,$ $F-\overline{CE} = GND \pm 0.2V,$ $F-\overline{WP} = F-V_{CC} \text{ or } GND$
I _{CCD}	F-V _{CC} Reset Power-Down Current		2		4	20	μΑ	$F-\overline{RST} = GND \pm 0.2V$ $I_{OUT} (F-RY/\overline{BY}) = 0mA$
I	Average F-V _{CC} Read Current Normal Mode		2,10		15	25	mA	$F-V_{CC} = F-V_{CC} Max.,$ $F-\overline{CE} = V_{IL}, F-\overline{OE} = V_{IH}, f = 5MHz$
I _{CCR}	Average F-V _{CC} Read Current Page Mode	8 Word Read	2,10		5	10	mA	$I_{OUT} = 0$ mA
I	F-V _{CC} (Page Buffer) Program Current		2,6,10		20	60	mA	$F-V_{PP} = V_{PPH1}$
I _{CCW}	r-v _{CC} (rage build		2,6,10		10	20	mA	$F-V_{PP} = V_{PPH2}$
I _{CCE}	F-V _{CC} Block Erase	e, Full Chip	2,6,10		10	30	mA	$F-V_{PP} = V_{PPH1}$
ICCE	Erase Current		2,6,10		10	30	mA	$F-V_{PP} = V_{PPH2}$
I _{CCWS} I _{CCES}	F-V _{CC} (Page Buffe Block Erase Susper		2,3,10		10	200	μΑ	$F-\overline{CE} = V_{IH}$
I _{PPS} I _{PPR}	F-V _{PP} Standby or I	Read Current	2,7,10		2	5	μΑ	$F-V_{PP} \le F-V_{CC}$
I _{PPW}	F-V _{PP} (Page Buffer	r) Program Current	2,6,7,10		2	5	μΑ	$F-V_{PP} = V_{PPH1}$
PPPW	r vpp (ruge Build	r) riogram Carrent	2,6,7,10		10	30	mA	$F-V_{PP} = V_{PPH2}$
I _{PPE}	F-V _{PP} Block Erase	, Full Chip	2,6,7,10		2	5	μΑ	$F-V_{PP} = V_{PPH1}$
FFE	Erase Current		2,6,7,10		5	15	mA	$F-V_{PP} = V_{PPH2}$
I _{PPWS}	F-V _{PP} (Page Buffer	r) Program	2,7,10		2	5	μΑ	$F-V_{PP} = V_{PPH1}$
11 100	Suspend Current		2,7,10		10	200	μΑ	$F-V_{PP} = V_{PPH2}$
I _{PPES}	F-V _{PP} Block Erase	Suspend Current	2,7,10		2	5	μΑ	$F-V_{PP} = V_{PPH1}$
1110			2,7,10		10	200	μA	$F-V_{PP} = V_{PPH2}$

	DC El	ectrical					= 2.7V to 3.3V, S-V _{CC} = 2.7V to 3.1V)
Symbol	Parameter	Notes	Min.	Тур.	Max.	Unit	Conditions
I _{SB}	S-V _{CC} Standby Current	8			80	μΑ	$S - \overline{CE}_1 \ge S - V_{CC} - 0.2V$
I _{SLP}	S-V _{CC} Sleep Mode Current	9			15	μΑ	$\text{S-CE}_2 \le 0.2\text{V}$
I _{CC1}	S-V _{CC} Operation Current				20	mA	$t_{CYCLE} = Min., I_{I/O} = 0mA$
I _{CC2}	S-V _{CC} Operation Current				3	mA	$t_{CYCLE} = 1 \mu s, I_{I/O} = 0 m A$
V _{IL}	Input Low Voltage	6	-0.3		0.3	V	
V _{IH}	Input High Voltage	6	VCC -0.3		VCC +0.3	V	
V _{OL}	Output Low Voltage	6,11			0.3	V	$I_{OL} = 0.5 \text{mA}$
V _{OH}	Output High Voltage	6	V _{CC} -0.3			V	$I_{OH} = -0.5 mA$
V _{PPLK}	F-V _{PP} Lockout during Normal Operations	4,6,7			0.4	V	
V _{PPH1}	F-V _{PP} during Block Erase, Full Chip Erase,(PageBuffer) Program	7	1.65	3	3.3	V	
V _{PPH2}	F-V _{PP} during Block Erase, (PageBuffer) Program	7	11.7	12	12.3	V	
V _{LKO}	F-V _{CC} Lockout Voltage		1.5			V	

1. V_{CC} includes both F-V_{CC} and S-V_{CC}.

- 2. All currents are in RMS unless otherwise noted. Typical values are the reference values at $V_{CC} = 3.0V$ and $T_A = +25^{\circ}C$ unless V_{CC} is specified.
- 3. I_{CCWS} and I_{CCES} are specified with the device de-selected. If read or (page buffer) program while in block erase suspend mode, the device's current draw is the sum of I_{CCWS} or I_{CCES} and I_{CCR} or I_{CCW}, respectively.
- Block erase, full chip erase, (page buffer) program are inhibited when F-V_{PP} ≤ V_{PPLK}, and not guaranteed in the range between V_{PPLK} (max.) and V_{PPH1} (min.), between V_{PPH1} (max.) and V_{PPH2} (min.) and above V_{PPH2} (max.).
- The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle completion. Standard address access timings (t_{AVOV}) provide new data when addresses are changed.

6. Sampled, not 100% tested.

7. F-V_{PP} is not used for power supply pin. With F-V_{PP} \leq V_{PPLK}, block erase, full chip erase, (page buffer) program cannot be executed and should not be attempted.

Applying $12V \pm 0.3V$ to F-V_{PP} provides fast erasing or fast programming mode. In this mode, F-V_{PP} is power supply pin and supplies the memory cell current for block erasing and (page buffer) programming. Use similar power supply trace widths and layout considerations given to the V_{CC} power bus.

Applying $12V \pm 0.3V$ to F-V_{PP} during erase/program can only be done for a maximum of 1000 cycles on each block. F-V_{PP} may be connected to $12V \pm 0.3V$ for a total of 80 hours maximum.

- 8. Memory cell data is held. (S-CE₂ = "VIH")
- 9. Memory cell data is not held. (S-CE₂ = "VIL")
- 10. The operating current in dual work is the sum of the operating current (read, erase, program) in each plane.
- 11. Includes $F-RY/\overline{BY}$.

12. AC Electrical Characteristics for Flash Memo	лгу
12.1 AC Test Conditions	
Input pulse level	0 V to 2.7 V
Input rise and fall time	5 ns
Input and Output timing Ref. level	1.35 V
Output load	$1 \text{TTL} + \text{C}_{\text{L}} (50 \text{pF})$

12.2 Read Cycle

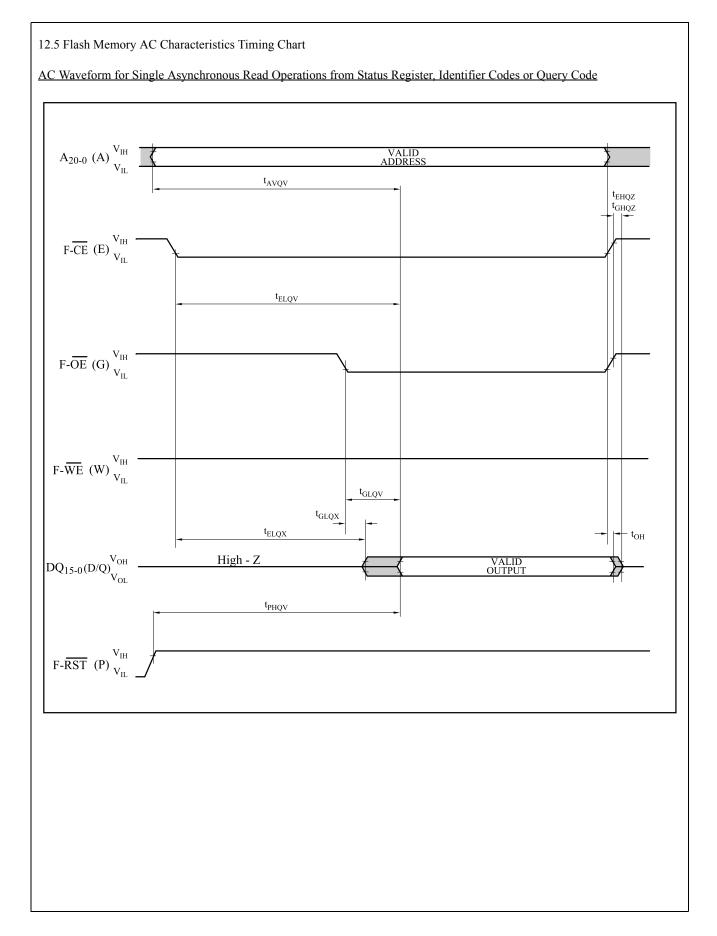
 $(T_A = -30^{\circ}C \text{ to } +85^{\circ}C, \text{ F-V}_{CC} = 2.7 \text{ V to } 3.3 \text{ V})$

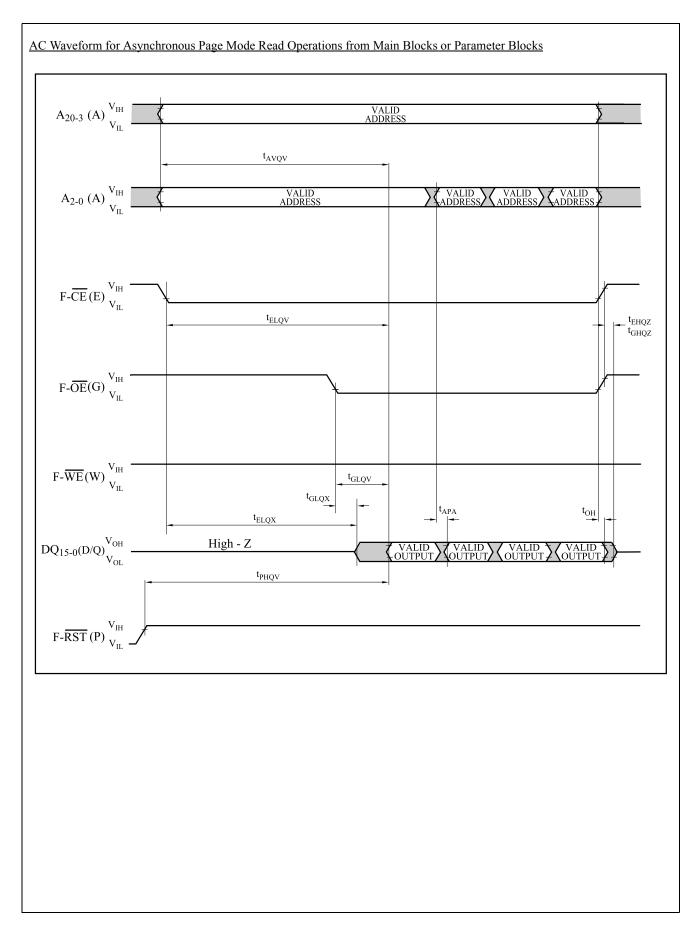
Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Read Cycle Time		85		ns
t _{AVQV}	Address to Output Delay			85	ns
t _{ELQV}	F-CE to Output Delay	2		85	ns
t _{APA}	Page Address Access Time			30	ns
t _{GLQV}	F-OE to Output Delay	2		20	ns
t _{PHQV}	F-RST High to Output Delay			150	ns
$t_{\rm EHQZ}, t_{\rm GHQZ}$	$F-\overline{CE}$ or $F-\overline{OE}$ to Output in High - Z, Whichever Occurs First	1		20	ns
t _{ELQX}	F-CE to Output in Low - Z	1	0		ns
t _{GLQX}	F-OE to Output in Low - Z	1	0		ns
t _{OH}	Output Hold from First Occurring Address, $F-\overline{CE}$ or $F-\overline{OE}$ change	1	0		ns

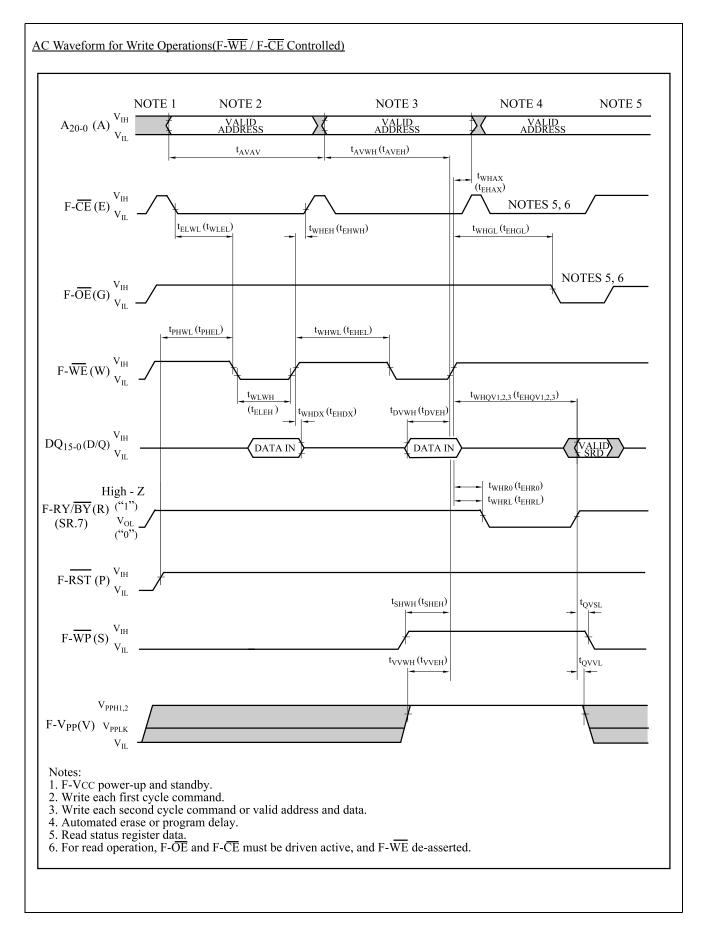
Notes:

1. Sampled, not 100% tested.

2. F- \overline{OE} may be delayed up to $t_{ELQV} - t_{GLQV}$ after the falling edge of F- \overline{CE} without impact to t_{ELQV} .


		$(T_A = -30^{\circ}C t)$	to +85°C,	$F-V_{CC} = 2.7$	V to 3.3V
Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Write Cycle Time		85		ns
$t_{PHWL} \left(t_{PHEL} ight)$	F- $\overline{\text{RST}}$ High Recovery to F- $\overline{\text{WE}}$ (F- $\overline{\text{CE}}$) Going Low	3	150		ns
$t_{\rm ELWL} \left(t_{\rm WLEL} ight)$	$F-\overline{CE}$ ($F-\overline{WE}$) Setup to $F-\overline{WE}$ ($F-\overline{CE}$) Going Low	4	0		ns
$t_{WLWH}(t_{ELEH})$	$F-\overline{WE}$ ($F-\overline{CE}$) Pulse Width	4	60		ns
$t_{\rm DVWH} (t_{\rm DVEH})$	Data Setup to $F-\overline{WE}$ ($F-\overline{CE}$) Going High	8	40		ns
$t_{AVWH}\left(t_{AVEH}\right)$	Address Setup to $F-\overline{WE}$ (F- \overline{CE}) Going High	8	50		ns
$t_{\rm WHEH}(t_{\rm EHWH})$	$F-\overline{CE}$ ($F-\overline{WE}$) Hold from $F-\overline{WE}$ ($F-\overline{CE}$) High		0		ns
$t_{\rm WHDX}(t_{\rm EHDX})$	Data Hold from $F-\overline{WE}$ (F- \overline{CE}) High		0		ns
$t_{\rm WHAX}(t_{\rm EHAX})$	Address Hold from $F-\overline{WE}$ ($F-\overline{CE}$) High		0		ns
$t_{\rm WHWL} (t_{\rm EHEL})$	$F-\overline{WE}$ ($F-\overline{CE}$) Pulse Width High	5	30		ns
$t_{\rm SHWH} (t_{\rm SHEH})$	$F-\overline{WP}$ High Setup to $F-\overline{WE}$ ($F-\overline{CE}$) Going High	3	0		ns
$t_{VVWH} (t_{VVEH})$	$F-V_{PP}$ Setup to $F-\overline{WE}$ ($F-\overline{CE}$) Going High	3	200		ns
$t_{WHGL} \left(t_{EHGL} \right)$	Write Recovery before Read		30		ns
t _{QVSL}	F-WP High Hold from Valid SRD, F-RY/BY High-Z	3, 6	0		ns
t _{QVVL}	F-V _{PP} Hold from Valid SRD, F-RY/BY High-Z	3, 6	0		ns
t _{WHR0} (t _{EHR0})	$F-\overline{WE}$ ($F-\overline{CE}$) High to SR.7 Going "0"	3, 7		t _{AVQV} +40	ns
$t_{WHRL} (t_{EHRL})$	F-WE (F-CE) High to F-RY/BY Going Low	3		100	ns

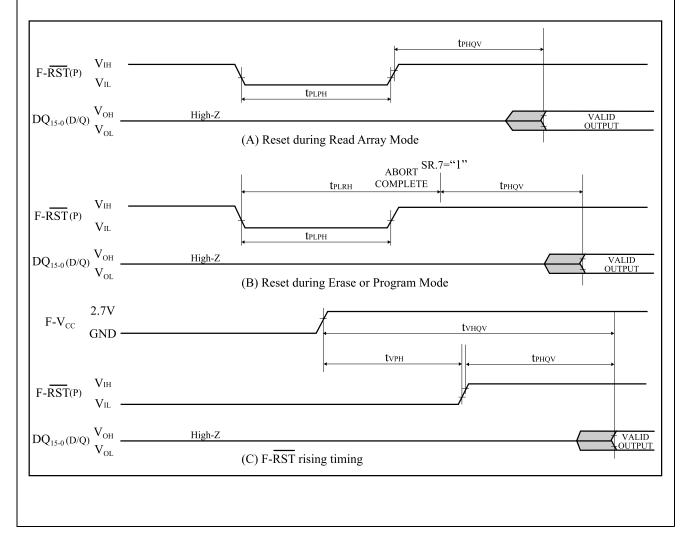

- 1. The timing characteristics for reading the status register during block erase, full chip erase, (page buffer) program operations are the same as during read-only operations. See the AC Characteristics for read cycle.
- 2. A write operation can be initiated and terminated with either $F-\overline{CE}$ or $F-\overline{WE}$.
- 3. Sampled, not 100% tested.
- Write pulse width (t_{WP}) is defined from the falling edge of F-TE or F-WE (whichever goes low last) to the rising edge of F-TE or F-WE (whichever goes high first). Hence, t_{WP}=t_{WLWH}=t_{ELEH}=t_{WLEH}=t_{ELWH}.
- 5. Write pulse width high (t_{WPH}) is defined from the rising edge of $F-\overline{CE}$ or $F-\overline{WE}$ (whichever goes high first) to the falling edge of $F-\overline{CE}$ or $F-\overline{WE}$ (whichever goes low last). Hence, $t_{WPH}=t_{WHWL}=t_{EHEL}=t_{WHEL}=t_{EHWL}$.
- 6. F-V_{PP} should be held at F-V_{PP}=V_{PPH1/2} until determination of block erase, (page buffer) program success (SR.1/3/4/5=0) and held at F-V_{PP}=V_{PPH1} until determination of full chip erase success (SR.1/3/5=0).
- 7. t_{WHR0} (t_{EHR0}) after the Read Query or Read Identifier Codes command= t_{AVQV} +100ns.
- 8. See 5.1 Command Definitions for valid address and data for block erase, full chip erase, (page buffer) program or lock bit configuration.


					(T _A	$= -30^{\circ}C$	to +85°C	$C, F-V_{CC}$	= 2.7 V to	33.3V)
Symbol	Parameter	Notes	Page Buffer Command		V _{PP} =V _{PP} In Systen			V _{PP} =V _{PP} Manufactur		Unit
-			is Used or not Used	Min.	Тур. ⁽¹⁾	Max. ⁽²⁾	Min.	Тур. ⁽¹⁾	Max. ⁽²⁾	
t _{WPB} 4K-Word Parameter Block Program Time	4K-Word Parameter Block	2	Not Used	_	0.05	0.3	_	0.04	0.12	s
	2	Used		0.03	0.12		0.02	0.06	S	
32K-Word Main Block	2	Not Used		0.38	2.4		0.31	1	S	
t _{WMB}	Program Time	2	Used		0.24	1		0.17	0.5	s
t _{WHQV1} /	'HQV1 [/] Word Program Time	2	Not Used		11	200		9	185	μs
t _{EHQV1}	word i rogram rinic	2	Used		7	100		5	90	μs
t _{WHQV2} / t _{EHQV2}	4K-Word Parameter Block Erase Time	2	-		0.3	4		0.2	4	s
t _{WHQV3} / t _{EHQV3}	32K-Word Main Block Erase Time	2	-		0.6	5		0.5	5	s
	Full Chip Erase Time	2			40	350				S
t _{WHRH1} / t _{EHRH1}	(Page Buffer) Program Suspend Latency Time to Read	4	-		5	10		5	10	μs
t _{WHRH2} / t _{EHRH2}	Block Erase Suspend Latency Time to Read	4	-		5	20		5	20	μs
t _{ERES}	Latency Time from Block Erase Resume Command to Block Erase Suspend Command	5	-	500			500			μs

1. Typical values measured at $F-V_{CC} = 3.0V$, $F-V_{PP} = 3.0V$ or 12V, and $T_A = +25^{\circ}C$. Assumes corresponding lock bits are not set. Subject to change based on device characterization.

- 2. Excludes external system-level overhead.
- 3. Sampled, but not 100% tested.
- 4. A latency time is required from writing suspend command (F-WE or F-CE going high) until SR.7 going "1" or F-RY/BY going High-Z.
- 5. If the interval time from a Block Erase Resume command to a subsequent Block Erase Suspend command is shorter than t_{ERES} and its sequence is repeated, the block erase operation may not be finished.

12.6 Reset Operations


		$(T_A = -3)$	60°C to +85°	C, $F - V_{CC} = 2$.7V to 3.3V)
Symbol	Parameter	Notes	Min.	Max.	Unit
t _{PLPH}	F-RST Low to Reset during Read (F-RST should be low during power-up.)	1, 2, 3	100		ns
t _{PLRH}	F-RST Low to Reset during Erase or Program	1, 3, 4		22	μs
t _{VPH}	$F-V_{CC} 2.7V$ to $F-\overline{RST}$ High	1, 3, 5	100		ns
t _{VHQV}	F-V _{CC} 2.7V to Output Delay	3		1	ms

Notes:

1. A reset time, t_{PHQV}, is required from the later of SR.7 (F-RY/BY) going "1" (High-Z) or F-RST going high until outputs are valid. See the AC Characteristics - read cycle for t_{PHOV}.

- 2. t_{PLPH} is <100ns the device may still reset but this is not guaranteed.
- 3. Sampled, not 100% tested.
- 4. If F-RST asserted while a block erase, full chip erase or (page buffer) program operation is not executing, the reset will complete within 100ns.
- 5. When the device power-up, holding $F-\overline{RST}$ low minimum 100ns is required after $F-V_{CC}$ has been in predefined range and also has been in stable there.

AC Waveform for Reset Operation

13. AC El	ectrical Characteristic for Smartcombo RA	AM				
13.1 AC T	Test Conditions					
Input puls	se level	0.3 V to V_{CC} - 0.3 V	r			
Input rise	and fall time	3 ns				
Input and	Output timing Ref. level	1/2 V _{CC}				
Output loa	ad	$1 \text{TTL} + C_{L} (50 \text{pF})^{(1)}$				
	uding scope and socket capacitance. Cycle ^(1,2,3)					
Symbol	Paramete		$A = -30^{\circ}C t$ Notes	o +85°C, 8 Min.	$S-V_{CC} = 2.7$ Max.	7V to 3.1V Unit
t _{RC}	Read Cycle Time		Notes	85	32,000	ns
t _{AA}	Address Access Time			00	85	ns
t _{ACE}	Chip Enable Access Time				85	ns
t _{OE}	Output Enable to Output Valid				40	ns
t _{BE}	Byte Enable Access Time				40	ns
t _{ASC}	Address Setup to $S-\overline{CE}_1$ Low			0	-	ns
t _{AHC}	Address Hold to $S-\overline{CE}_1$ High			0		ns
t _{C1H}	$S-\overline{CE}_1$ High Pulse Width			30		ns
t _{CLZ}	$S-\overline{CE}_1$ Low to Output Active			0		ns
t _{CHZ}	S- \overline{CE}_1 High to Output in High-Z				30	ns
t _{BLZ}	S- $\overline{\text{UB}}$ or S- $\overline{\text{LB}}$ Low to Output Active			0		ns
t _{BHZ}	S-UB or S-LB High to Output in High-Z	· · · · · · · · · · · · · · · · · · ·			30	ns
t _{OLZ}	S-OE Low to Output Active			0		ns
t _{OHZ}	S-OE High to Output in High-Z				30	ns
t _{OH}	Output Hold from Address Change			5		ns

It is possible to control data width by $S-\overline{LB}$ and $\overline{S-UB}$ pins.

1. Reading data from lower byte

Data can be read when the address is set while holding $S-\overline{CE}_1 = Low$, $S-\overline{CE}_2 = High$, $S-\overline{OE} = Low$, $S-\overline{WE} = High$ and $S-\overline{LB} = Low$.

2. Reading data from upper byte Data can be read when the address is set while holding $S-\overline{CE}_1 = Low$, $S-\overline{CE}_2 = High$, $S-\overline{OE} = Low$, $S-\overline{WE} = High$ and $S-\overline{UB} = Low$.

Reading data from both bytes
 Data can be read when the address is set while holding S-CE₁ = Low, S-CE₂ = High, S-OE = Low, S-WE = High, S-LB = Low and S-UB = Low.

13.3 Write Cycle ^(1,2,3,4,5,6,7,8)

		$(T_{A} = -30^{\circ}C t)$	o +85°C, S	$-V_{\rm CC} = 2.7$	7V to 3.1V
Symbol	Parameter	Notes	Min.	Max.	Unit
t _{WC}	Write Cycle Time		85	32,000	ns
t _{CW}	Chip Enable to End of Write		70		ns
t _{ASC}	Address Setup to $S-\overline{CE}_1$ Low		0		ns
t _{AHC}	Address Hold to $S - \overline{CE}_1$ High		0		ns
t _{C1H}	$S-\overline{CE}_1$ High Pulse Width		30		ns
t _{AW}	Address Valid to End of Write		70		ns
t _{AS}	Address Setup Time		0		ns
t _{WP}	Write Pulse Width		40		ns
t _{BW}	Byte Select Time		70		ns
t _{WR}	Write Recovery Time		0		ns
t _{DW}	Input Data Setup Time		35		ns
t _{DH}	Input Data Hold Time		0		ns
t _{OW}	S-WE High to Output Active		5		ns
t _{WHZ}	S-WE Low to Output in High-Z			30	ns

Notes:

- 1. Writing data into lower byte (S- \overline{WE} controlled)
 - 1) Data can be written by adding Low pulse into S- \overline{WE} when the address is set while holding S- \overline{CE}_1 = Low, S- CE_2 = High, S- \overline{LB} = Low and S- \overline{UB} = High.
 - 2) The data on lower byte are latched up into the memory cell during $S-\overline{WE} = Low$ and $S-\overline{LB} = Low$.
- 2. Witing data into lower byte (S- \overline{LB} controlled)
 - Data can be written by adding Low pulse into S-LB when the address is set while holding S-CE₁ = Low, S-CE₂ = High, S-UB = High and S-WE = Low.
 - 2) The data on lower byte are latched up into memory cell during S- \overline{WE} = Low and S- \overline{LB} = Low.
- 3. Writing data into upper byte (S- \overline{WE} controlled)
 - Data can be written by adding Low pulse into S-WE when the address is set while holding S-CE₁ = Low, S-CE₂ = High, S-LB = High and S-UB = Low.
 - 2) The data on upper byte are latched up into the memory cell during $S-\overline{WE} = Low$ and $S-\overline{UB} = Low$.
- 4. Writing data into upper byte (S-UB controlled)
 - 1) Data can be written by adding Low pulse S- \overline{UB} when the address is set while holding S- \overline{CE}_1 = Low, S- CE_2 = High, S- \overline{LB} = High and S- \overline{WE} = Low.
 - 2) The data on upper byte are latched up into the memory cell during $S-\overline{WE} = Low$ and $S-\overline{UB} = Low$.
- 5. Writing data into both byte (S- \overline{WE} controlled)
 - 1) Data can be written by adding Low pulse into S- \overline{WE} when the address is set while holding S- \overline{CE}_1 = Low, S- CE_2 = High, S- \overline{LB} = Low and S- \overline{UB} = Low.
 - 2) The data are latched up into the memory cell during $S-\overline{WE} = Low$, $S-\overline{LB} = Low$ and $S-\overline{UB} = Low$.
- 6. Writing data into both byte (S- \overline{LB} , S- \overline{UB} controlled)
 - 1) Data can be written by adding Low pulse into S- \overline{LB} and S- \overline{UB} when the address is set while holding S- \overline{CE}_1 = Low, S- CE_2 = High and S- \overline{WE} = Low.
 - 2) The data are latched up into the memory cell during $S-\overline{WE} = Low$, $S-\overline{LB} = Low$ and $S-\overline{UB} = Low$
- 7. Read or write with using both S- $\overline{\text{LB}}$ and S- $\overline{\text{UB}}$, the timing edge of S- $\overline{\text{LB}}$ and S- $\overline{\text{UB}}$ must be same.
- 8. While DQ pins are in the output state, the data that is opposite to the output data should not be given.

13.4 Power Up Timing

	(T_A)	$= -30^{\circ}C t$	o +85°C, S	$-V_{CC} = 2.7$	7V to 3.1V)
Symbol	Parameter	Notes	Min.	Max.	Unit
t _{SHU}	$S-\overline{CE}_1$, $S-CE_2$ Setup Time after Power Up		0		ns
t _{HPU}	Standby Hold Time after Power Up		300		μs

13.5 Sleep Mode Timing⁽¹⁾

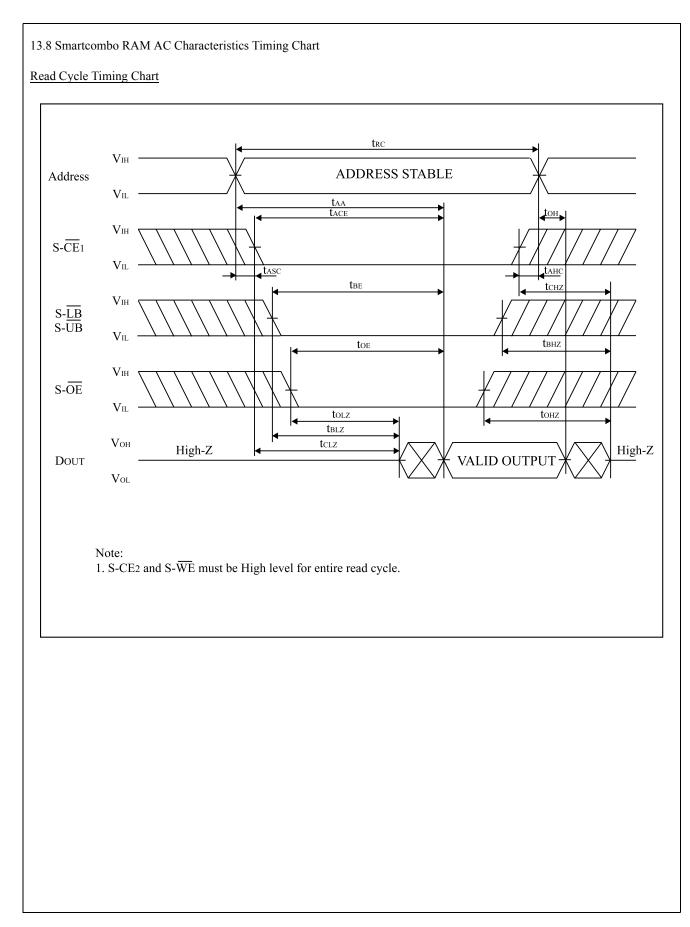
 $(T_A = -30^{\circ}C \text{ to } +85^{\circ}C, \text{ S-V}_{CC} = 2.7 \text{ V to } 3.1 \text{ V})$

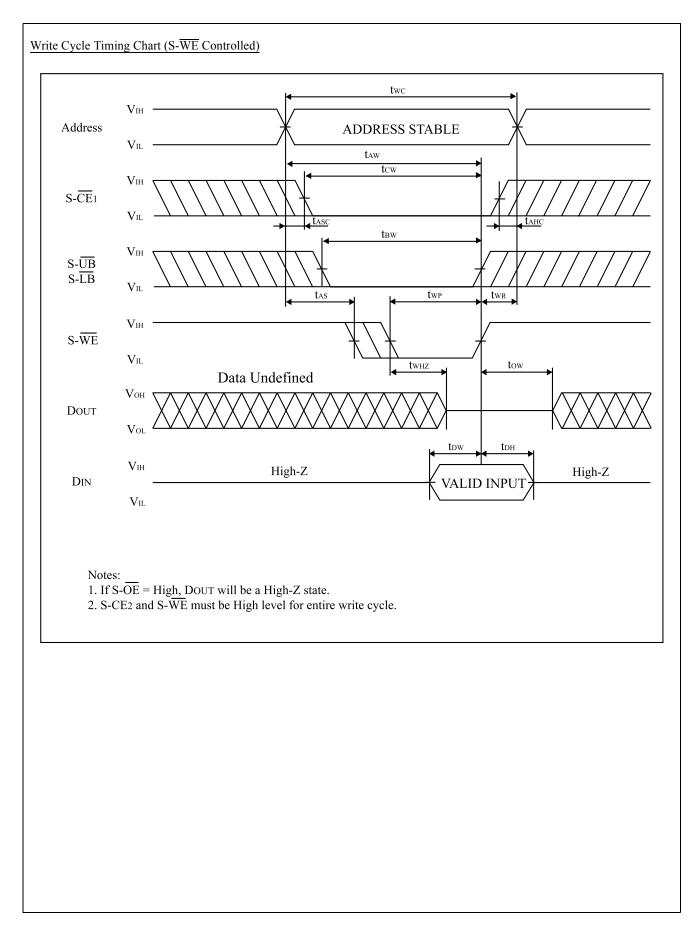
Symbol	Parameter	Notes	Min.	Max.	Unit
t _{SSP}	$S-\overline{CE}_1$ High Setup Time for Sleep Mode Entry		0		ns
t _{SHP}	S- \overline{CE}_1 High Hold Time before Sleep Mode Exit		0		ns
t _{C2LP}	S-CE ₂ Low Pulse Width		30		ns
t _{HPD}	$S-\overline{CE}_1$ High Hold Time after Sleep Mode Exit		300		μs

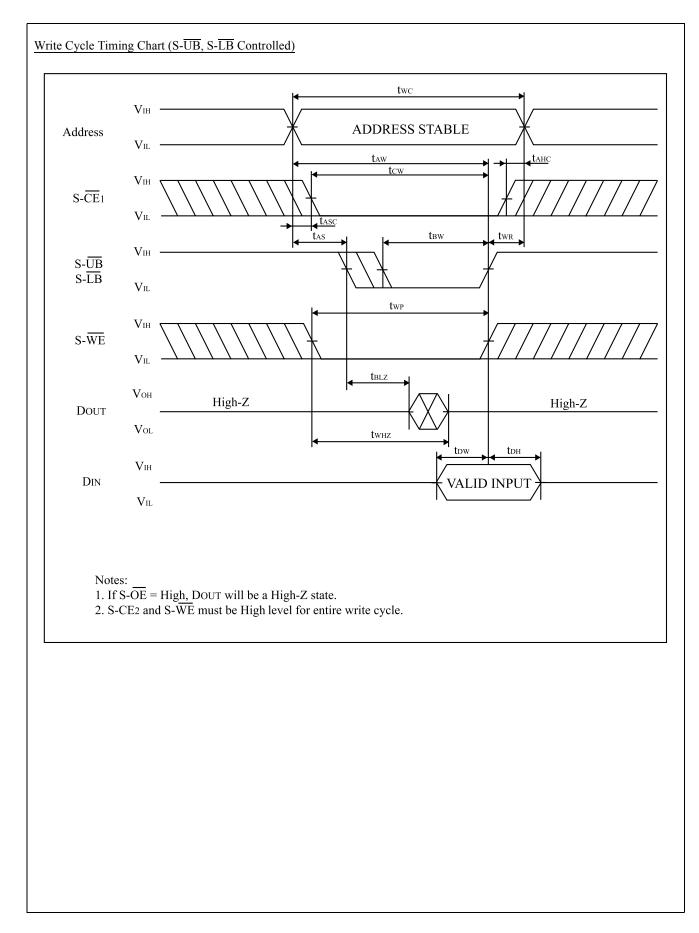
Note:

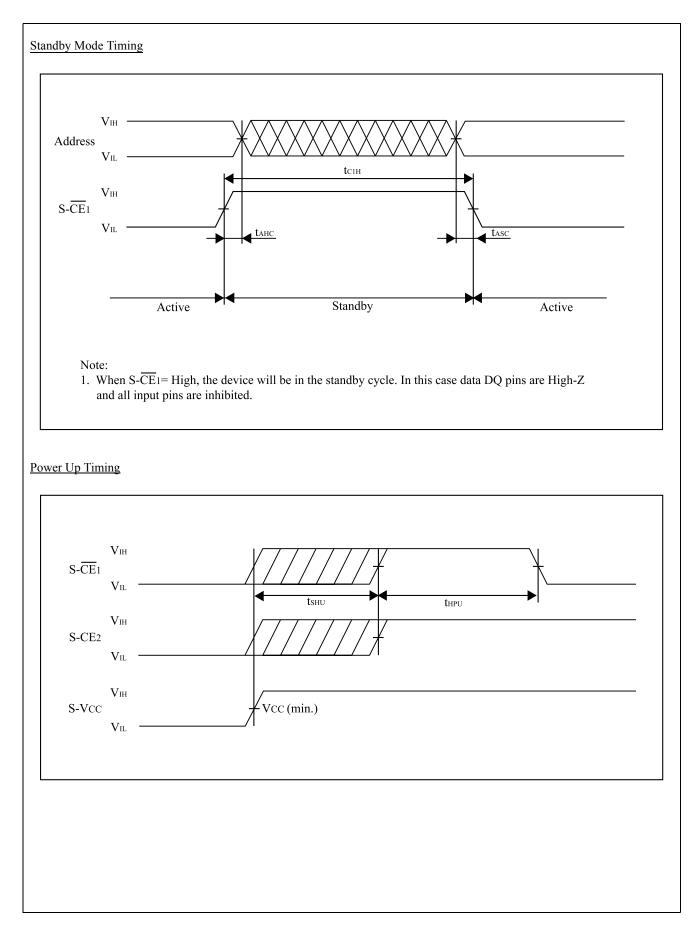
1. When $S-CE_2$ is low, the device will be in the Sleep Mode. In this case, an internal refresh stops and the data might be lost.

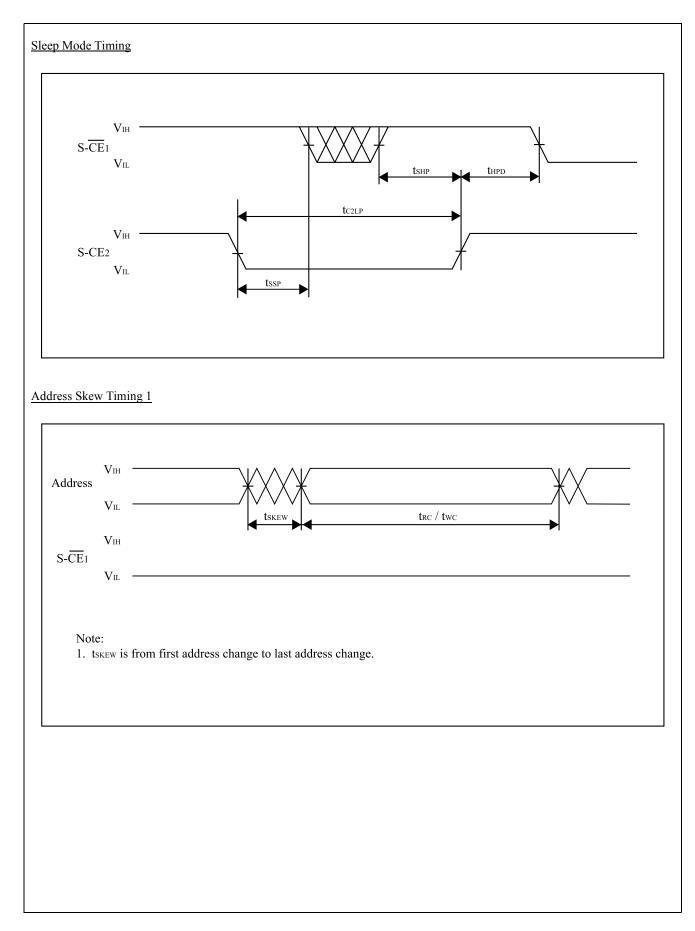
13.6 Address Skew Timing

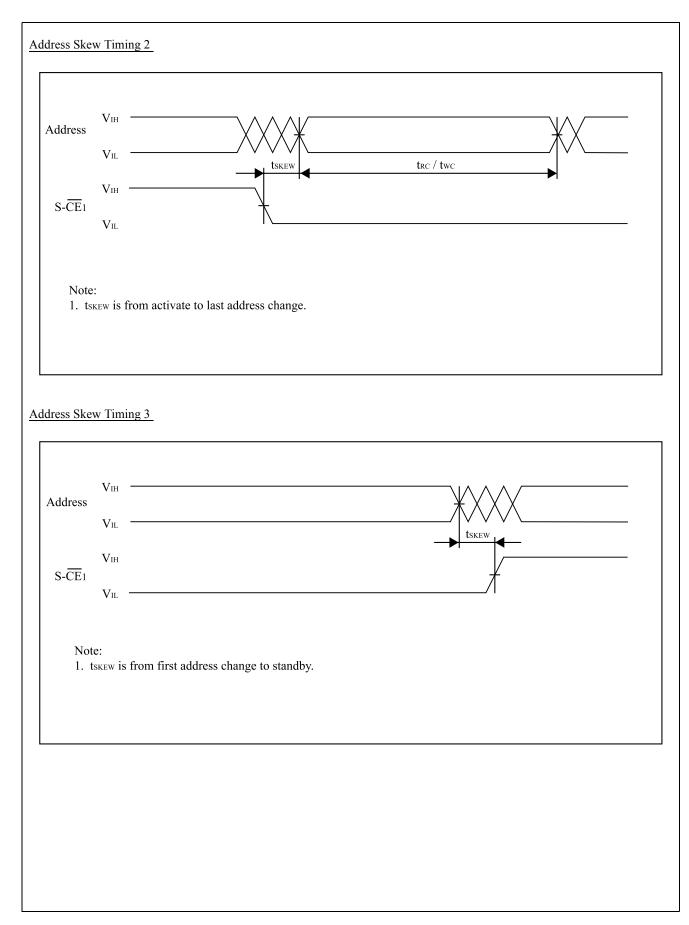

_	(T_A)	$= -30^{\circ}C t$	o +85°C, S	$-V_{\rm CC} = 2.7$	7V to 3.1V)
Symbol	Parameter	Notes	Min.	Max.	Unit
t _{SKEW}	Maximum Address Skew			10	ns

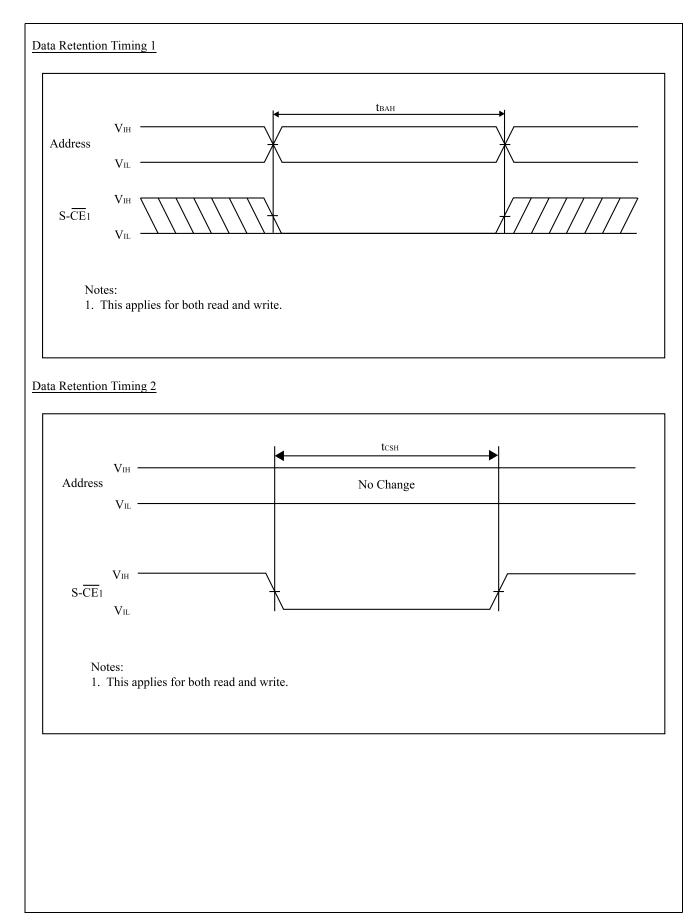

13.7 Data Retention Timing⁽¹⁾


	(T_A)	$x = -30^{\circ}C t$	o +85°C, S	$-V_{\rm CC} = 2.7$	7V to $3.1V$)
Symbol	Parameter	Notes	Min.	Max.	Unit
t _{BAH}	Address Hold Time during Active		85	32,000	ns
t _{CSH}	S- $\overline{\text{CE}}_1$ Low Hold Time for Address Fix		85	32,000	ns


Note:


1. Either t_{BAH} or t_{CSH} required for data retention.





14. Notes

This product is a stacked CSP package that a 32M(x16) bit Flash Memory and a 16M(x16) bit Smartcombo RAM are assembled into.

- Supply Power

Maximum difference (between $F-V_{CC}$ and $S-V_{CC}$) of the voltage is less than 0.3V.

- Power Supply and Chip Enable of Flash Memory and Smartcombo RAM (F- \overline{CE} , S- \overline{CE}_1 , S- CE_2)

S- \overline{CE}_1 should not be low and S- CE_2 should not be high when F- \overline{CE} is low simultaneously.

If the two memories are active together, possibly they may not operate normally by interference noises or data collision on DQ bus.

Both $F-V_{CC}$ and $S-V_{CC}$ are needed to be applied by the recommended supply voltage at the same time except Smartcombo RAM data retention mode.

- Power Up Sequence

When turning on Flash memory power supply, keep $F-\overline{RST}$ low. After $F-V_{CC}$ reaches over 2.7V, keep $F-\overline{RST}$ low for more than 100 nsec.

- Device Decoupling

The power supply is needed to be designed carefully because one of the Smartcombo RAM and the Flash Memory is in standby mode when the other is active. A careful decoupling of power supplies is necessary between Smartcombo RAM and Flash Memory. Note peak current caused by transition of control signals ($F-\overline{CE}$, $S-\overline{CE}_1$, $S-CE_2$).

15. Flash Memory Data Protection

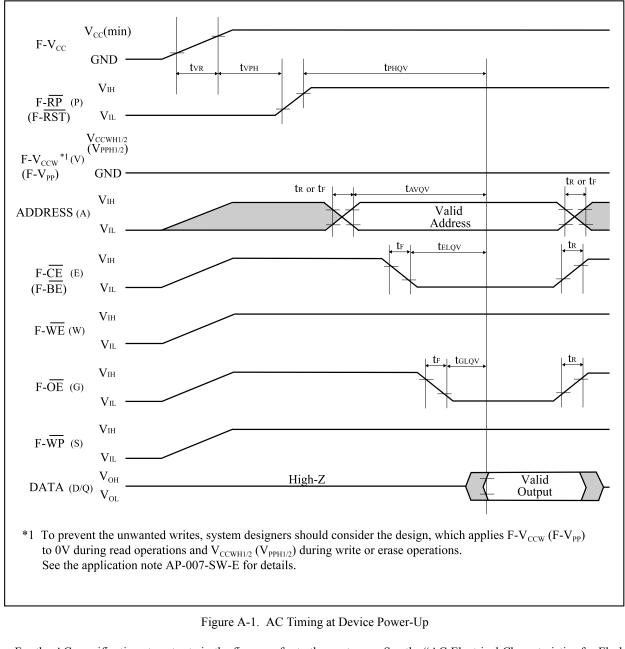
Noises having a level exceeding the limit specified in the specification may be generated under specific operating conditions on some systems. Such noises, when induced onto $F-\overline{WE}$ signal or power supply, may be interpreted as false commands and causes undesired memory updating. To protect the data stored in the flash memory against unwanted writing, systems operating with the flash memory should have the following write protect designs, as appropriate:

■ The below describes data protection method.

- 1. Protection of data in each block
 - Any locked block by setting its block lock bit is protected against the data alternation. When F-WP is low, any locked-down block by setting its block lock-down bit is protected from lock status changes. By using this function, areas can be defined, for example, program area (locked blocks), and data area (unlocked blocks).
 - For detailed block locking scheme, see Chapter 5.Command Definitions for Flash Memory.
- 2. Protection of data with $F-V_{PP}$ control
 - When the level of F-V_{PP} is lower than V_{PPLK} (F-V_{PP} lockout voltage), write functions to all blocks are disabled. All blocks are locked and the data in the blocks are completely protected.
- 3. Protection of data with $F-\overline{RST}$
 - Especially during power transitions such as power-up and power-down, the flash memory enters reset mode by bringing F-RST to low, which inhibits write operation to all blocks.
 - For detailed description on F-RST control, see Chapter 12.6 AC Electrical Characteristics for Flash Memory, Reset Operations.

■ Protection against noises on F-WE signal

To prevent the recognition of false commands as write commands, system designer should consider the method for reducing noises on $F-\overline{WE}$ signal.


1. Power Supply Decoupling	
device should have a $0.1 \mu F$ cerar between S-V _{CC} and GND.	em by flash memory and Smartcombo RAM power switching characteristics, eanic capacitor connected between $F-V_{CC}$ and GND, between $F-V_{PP}$ and GND a be placed as close as possible to package leads.
2. F-V _{PP} Trace on Printed Circuit Boa	ırds
	flash memories that reside in the target system requires that the printed circuit box Power Supply trace. Use similar trace widths and layout considerations given to the
3. The Inhibition of Overwrite Operat	ion
Please do not execute reprogramin generate unerasable bit.	ng "0" for the bit which has already been programed "0". Overwrite operation m
• Program "0" for the bit in w	e data which has been programed "1". hich you want to change data from "1" to "0". ch has already been programed "0".
For example, changing data from ' requires "1110111111111110" prog	"1011110110111101" to "1010110110111100" graming.
4. Power Supply	
spurious results and should not be	write with an invalid $F-V_{PP}$ (See Chapter 11. DC Electrical Characteristics) product attempted. _{CC} voltage (See Chapter 11. DC Electrical Characteristics) produce spurious resu
Related Document Information ⁽¹⁾	
Document No.	Document Name
FUM00701	LH28F320BF, LH28F640BF, LH28F128BF Series Appendix

1. International customers should contact their local SHARP or distribution sales offices.

A-1 RECOMMENDED OPERATING CONDITIONS

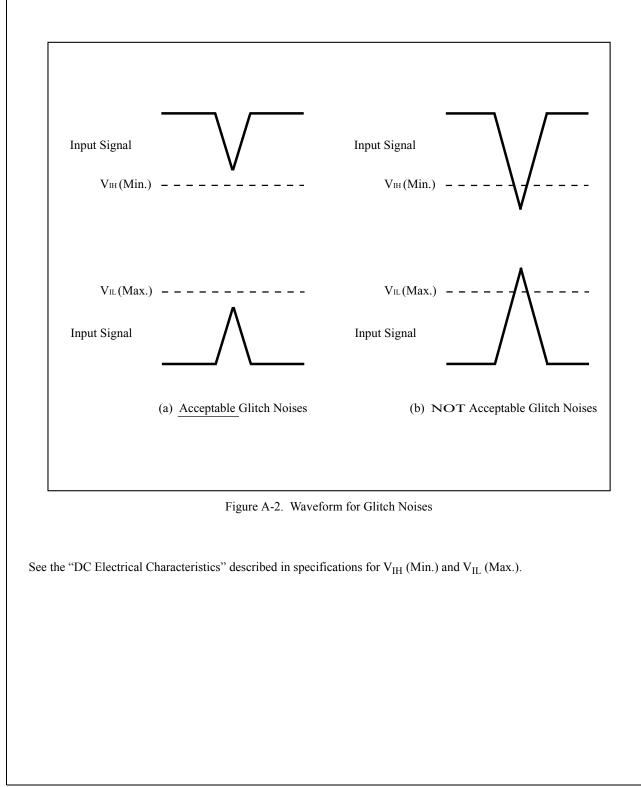
A-1.1 At Device Power-Up

AC timing illustrated in Figure A-1 is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly.

For the AC specifications t_{VR} , t_R , t_F in the figure, refer to the next page. See the "AC Electrical Characteristics for Flash Memory" described in specifications for the supply voltage range, the operating temperature and the AC specifications not shown in the next page.

A-1.1.1 Rise and Fall Time

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{VR}	F-V _{CC} Rise Time	1	0.5	30000	μs/V
t _R	Input Signal Rise Time	1, 2		1	μs/V
t _F	Input Signal Fall Time	1, 2		1	μs/V


NOTES:

1. Sampled, not 100% tested.

2. This specification is applied for not only the device power-up but also the normal operations.

A-1.2 Glitch Noises

Do not input the glitch noises which are below V_{IH} (Min.) or above V_{IL} (Max.) on address, data, reset, and control signals, as shown in Figure A-2 (b). The acceptable glitch noises are illustrated in Figure A-2 (a).

A-2 RELATED DOCUMENT INFORMATION⁽¹⁾

Document No.	Document Name
AP-001-SD-E	Flash Memory Family Software Drivers
АР-006-РТ-Е	Data Protection Method of SHARP Flash Memory
АР-007-SW-Е	RP#, V _{PP} Electric Potential Switching Circuit

NOTE:

1. International customers should contact their local SHARP or distribution sales office.