

M/A-COM

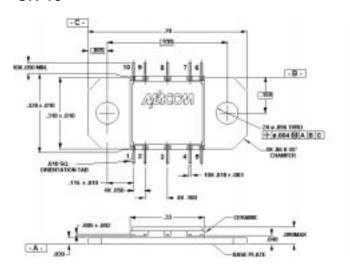
GaAs MMIC VSAT Power Amplifier, 0.5W 14.0 - 14.5 GHz

Features

• High Linear Gain: 28 dB Typ.

High Saturated Output Power: +28 dBm Typ.
High Power Added Efficiency: 22% Typ.

- 50Ω Input/Output Broadband Matched
- High Performance Ceramic Bolt Down Package


Description

M/A-COM's AM42-0041 is a four-stage MMIC linear power amplifier in a ceramic bolt down style hermetic package. The AM42-0041 employs a fully matched chip with internally decoupled Gate and Drain bias networks. The AM42-0041 is designed to be operated from a constant current Drain supply. By varying the Gate bias voltage, the saturated output power performance of this device can be tailored for various applications.

The AM42-0041 is ideally suited for use as an output stage or a driver, in applications for VSAT systems. This design is fully monolithic and requires a minimum of external components.

M/A-COM's AM42-0041 is fabricated using a mature 0.5 micron MBE based GaAs MESFET process. The process features full passivation for increased performance and reliability. This product is 100% RF tested to ensure compliance to performance specifications.

CR-15

Notes: (unless otherwise specified)

1. Dimensions are in inches.

2. Tolerance: $.XXX = \pm 0.005$ $.XX = \pm 0.010$

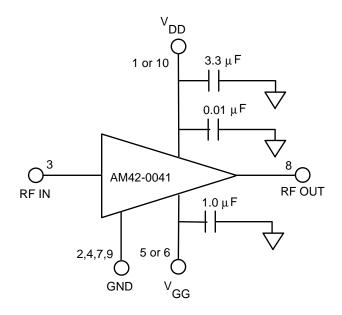
Ordering Information

Part Number	Package			
AM42-0041	Ceramic Bolt Down Package			

Electrical Specifications: $T_A = +25^{\circ}C$, $V_{DD} = +8V$, V_{GG} adjusted for Ids = 500 mA, $Z_0 = 50\Omega$, F = 14.0 - 14.5 GHz

Parameter	Abbv.	Test Conditions	Units	Min.	Тур.	Max.
Linear Gain	G _L	P _{IN} ≤ -10 dBm	dB	27	28	_
Input VSWR	VSWR _{IN}	P _{IN} ≤ -10 dBm	_	_	2.5:1	2.7:1
Output VSWR	VSWR _{OUT}	P _{IN} ≤ -10 dBm	_	_	2.5:1	_
Saturated Output Power	P _{SAT}	P_{IN} = +3 dBm, I_{DD} =500 mA Typ.	dBm	27.0	28.0	29.0
Output Power Flatness vs. Frequency	P _{SAT}	P_{IN} = +3 dBm, I_{DD} =500 mA Typ.	dB	_	1.0	1.5
Output Power vs. Temperature (with respect to T _A =+25°C)	P _{SAT}	P_{IN} = +3 dBm, I_{DD} =500 mA Typ. T_A = -40°C to +70°C	dB	_	±0.4	_
Noise Figure	NF	$P_{IN} \le -10 \text{ dBm}, I_{DD} = 500 \text{ mA Typ}.$	dB	_	7	_
Drain Bias Current	I _{DD}	$P_{IN} = +3 \text{ dBm}$	mA	400	500	600
Gate Bias Voltage	V_{GG}	P_{IN} = +3 dBm, I_{ds} =500 mA Typ.	V	-2.4	-1.0	-0.4
Gate Bias Current	I_{GG}	P_{IN} = +3 dBm, I_{ds} =500 mA Typ.	mA	_	5	15
Thermal Resistance	θ_{JC}	25°C Heat Sink	°C/W	_	9.5	_
Power Added Efficiency	PAE	P_{IN} = +3 dBm, I_{ds} =500 mA Typ.	%	_	22	_

M/A-COM Division of AMP Incorporated ■ North America: Tel. (800) 366-2266, Fax (800) 618-8883 ■ Asia/Pacific: Tel.+85 2 2111 8088, Fax +85 2 2111 8087 ■ Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020

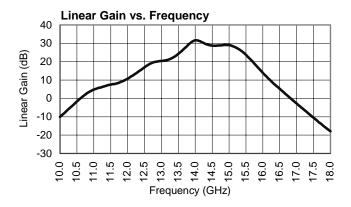


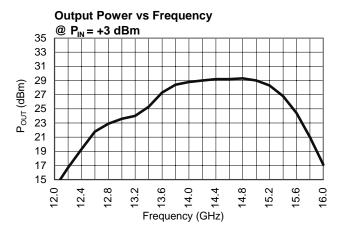
Absolute Maximum Ratings^{1,2,3,4}

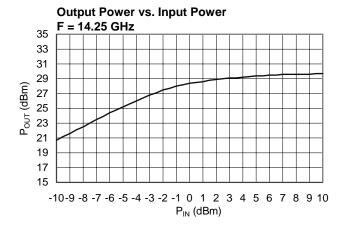
Parameter	Absolute Maximum
Input Power	+23 dBm
V _{DD}	+12 Volts
V _{GG} V _{DD} - V _{GG}	-3 Volts
V_{DD} - V_{GG}	12 Volts
I _{ds}	1000 mA
Channel Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C

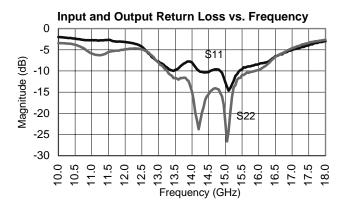
- 1. Operation of this device outside any of these limits may cause permanent damage.
- 2. Case Temperature $(T_C) = +85$ °C.
- Nominal bias is obtained by first connecting -2.4 volts to pin 5 or pin 6 (V_{GG}), followed by connecting +8 volts to pin 1 or pin 10 (V_{DD}). Note sequence. Adjust V_{GG} for a drain current of 500 mA typical.
- RF ground and thermal interface is the flange (case bottom).
 Adequate heat sinking is required.
- 5. No dc bias voltage appears at the RF ports.
- 6. The dc resistance at the input and output ports is a short circuit. No voltage is allowed on these ports.
- 7. For optimum IP $_3$ performance, the V $_{\rm DD}$ bypass capacitors should be placed within 0.5 inches of the V $_{\rm DD}$ leads.

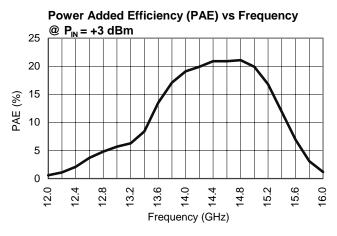
Typical Bias Configuration^{3,4,7}

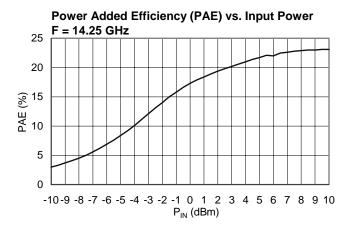



Pin Configuration


Pin No.	Pin Name	Description
1	V_{DD}	Drain Supply
2	GND	DC and RF Ground
3	RF In	RF Input
4	GND	DC and RF Ground
5	V_{GG}	Gate Supply
6	V_{GG}	Gate Supply
7	GND	DC and RF Ground
8	RF Out	RF Output
9	GND	DC and RF Ground
10	V_{DD}	Drain Supply




Typical Performance @ +25°C



www.macom.com

