

MAAPSM0008 V3

Features

- U-NII and Hiperlan Applications
- Saturated Output Power: 31.5 dBm at +7 V
- Saturated Output Power: 29.0 dBm at +5 V
- 20.5 dB Gain
- No External RF Matching
- 4 mm 16-Lead PQFN Package
- Meets 802.11a Linearity Requirements

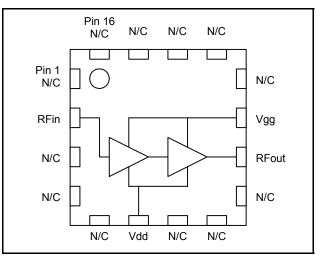
Description

The MAAPSM0008 is a two-stage power amplifier mounted in a standard outline, 4 mm 16-lead PQFN plastic package, designed specifically for the U-NII, MMAC, and Hiperlan bands (4.9 GHz - 6.0 GHz). The MAAPSM0008 has fully matched 50 ohms input and output, eliminating the need for external RF tuning components.

M/A-COM fabricates the MAAPSM0008 using a selfaligned gate MESFET process to realize high power efficiency and small size. The process features full passivation for performance and reliability.

Operating The MAAPSM0008

The MAAPSM0008 is static sensitive. Please handle with care. To operate the device, follow these steps.


- 1. Apply $V_{GG} = -1.8 \text{ V}$, $V_{DD} = 0 \text{ V}$.
- 2. Ramp V_{DD} to desired voltage, typically 5 to 7 V.
- 3. Adjust V_{GG} to set $I_{DQ},$ (approximately -1.8 V).
- 4. Set RF input.
- 5. Power down sequence in reverse. Turn gate voltage off last.

Ordering Information

Part Number	Package
MAAPSM0008TR	1000-piece reel
MAAPSM0008TR-3000	3000-piece reel
MAAPSM0008SMB	Sample Test Board

Note: Reference Application Note M513 for reel size information.

Functional Schematic

Pin Configuration

Pin No.	Function	Description
1	NC	No connection
2	RF _{IN}	RF input to the amplifier. DC block on-chip. 50 ohm input.
3	NC	No connection
4	NC	No connection
5	NC	No connection
6	V _{dd}	Positive voltage supply to both stages
7	NC	No connection
8	NC	No connection
9	NC	No connection
10	RF _{OUT}	RF output of the amplifier. DC block on-chip. 50 Ohm output.
11	V _{gg}	Negative voltage supply to the gates of both stages
12	NC	No connection
13	NC	No connection
14	NC	No connection
15	NC	No connection
16	NC	
17	Paddle *	RF and DC Ground

* The exposed pad centered on the package bottom must be connected to RF and DC ground.

• North America Tel: 800.366.2266 / Fax: 978.366.2266

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Asia/Facilite Tel: 01.44.044.023071 ax. 01.44.044.0230

Visit www.macom.com for additional data sheets and product information.

1

information.

imauon.

M/A-COM Inc. and its affiliates reserve the right to make changes to the

no warranty, representation or guarantee regarding the suitability of its

product(s) or information contained herein without notice. M/A-COM makes

products for any particular purpose, nor does MA-COM assume any liability whatsoever arising out of the use or application of any product(s) or

Electrical Specifications: $T_c = 40$ °C, $V_{DD} = 7.0$ V, $V_G = -1.8$ V (unless otherwise specified)

Parameter	Test Conditions	Units	Min.	Тур.	Max.	Typ. @ V _{DD} + 5 V
Frequency	—	GHz	4.9	—	6.0	—
Input VSWR	F = 5.825 GHz, Pin = +14 dBm	_	—	1.5:1	2.0:1	1.5:1
Gain	F = 5.825 GHz, Pin = 0 dBm	dB	18.0	20.5	—	20.5
P1dB	F = 5.825 GHz	dBm	—	29.5	—	28.0
Saturated Power	F = 5.825 GHz, Pin = +14 dBm	dBm	29.2	31.5	—	30.0
Drain Current at Psat	F = 5.825 GHz, Pin = +14 dBm	mA	—	500	600	500
2nd Harmonics	Output Power = 29.5 dBm	dBc		-40	_	-40
3rd Harmonics	•	dBc		-70	_	-70
Thermal resistance ¹	2 nd Stage Only	°C/W	—	31	—	31
Third-Order Intercept Point		dBm	—	40	—	38
Stability	+3.0 V < V_{DD} < +10.0 V, P_{IN} < +14 dBm, VSWR < 6:1, -25 °C < T_C < 85 °C, RBW = 3 MHz max. hold	_	All spurs < -70 dBc		—	
Noise Figure	F = 5.825 GHz	dB		_		—

1. When using the thermal resistance, you must use the power dissipated by the second stage only. Not the total power dissipated. The second stage dissipates 80% of the total power due to its periphery.

Recommended Operating Conditions^{2,3}

Characteristic	Symbol	Unit	Min	Тур	Max
Drain Voltage	V _{DD}	V	4.5	7.0	8.0
Gate Voltage ²	V_{GG}	V	-2.5	-1.8	-1.0
Input Power	P _{IN}	dBm			15
Gate Current	I _{GG}	mA	-4	1	+4
Case Temperature	T _C	°C	-40	25	85

2. Operation outside of these ranges may reduce product reliability.

3. A 100 E-Series resistor should be used in the gate voltage line.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

2

Absolute Maximum Ratings⁴

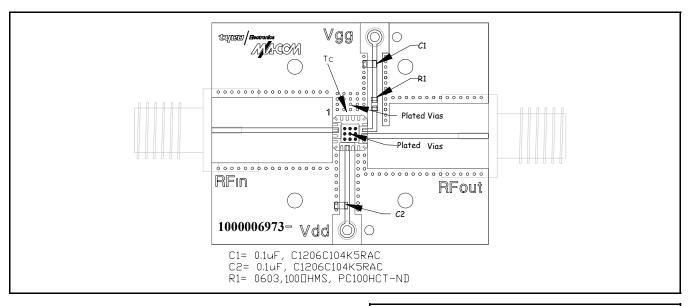
Parameter	Absolute Maximum		
Max Input Power (4.9 - 6 GHz)	+ 15 dBm		
Operating Voltages	+10 volts		
Operating Temperature	-40 °C to +70 °C		
Channel Temperature	+150 °C		
Storage Temperature	-40 °C to +150 °C		

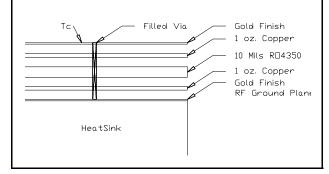
4. Exceeding any one or combination of these limits may cause permanent damage.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. M/A-COM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability whatsoever arising out of the use or application of any product(s) or information.


North America Tel: 800.366.2266 / Fax: 978.366.2266


Application Information

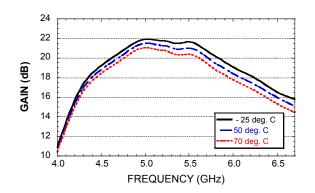
Sample Board

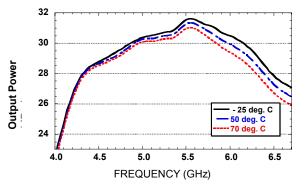
Notes on board design

- Sample board uses RO4350 e_r = 3.48 as dielectric for circuit board. Dielectric thickness is not critical but RFin and RFout transmission lines should be 50 ohms (w = 22 mil for thickness = 10 mil).
- Solder the exposed paddle on the back of the package to the board. Proper attachment of the exposed paddle is essential for RF and DC ground in addition to providing a low thermal resistance.
- Case temperature (Tc) is measured as shown on the application board drawing on the top circuit board metal as close to the body of the package as possible.
- 4. The board must provide adequate heat sinking to accommodate the 2.5 W typically dissipated under small signal conditions. Sample board uses vias in the vicinity of the ground pad to provide a suitable heat sink connected to the ground plane of the board as shown above.
- 5. Placement of C1, C2 and R1 are not critical but use of 1206 for the bypass caps (C1 and C2) is critical.

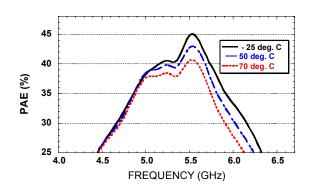
- M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. M/A-COM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability whatsoever arising out of the use or application of any product(s) or information.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

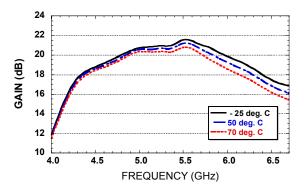
Visit www.macom.com for additional data sheets and product information.

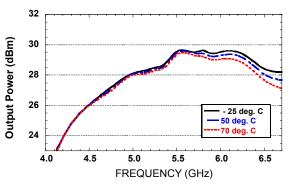

3

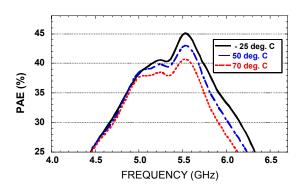


Typical Performance Curves


Gain Vs. Frequency, P_{IN} = + 6 dBm, V_{DD} = 7 V


Output Power Vs. Frequency, P_{IN} = + 12 dBm, V_{DD} = 7 V


PAE Vs. Frequency, P_{IN} = + 12 dBm, V_{DD} = 7 V


Gain Vs. Frequency, P_{IN} = + 6 dBm, V_{DD} = 5 V

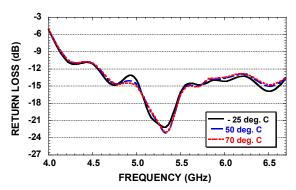
Output Power Vs. Frequency, $P_{IN} = +12 \, dBm$, $V_{DD} = 5 \, V$

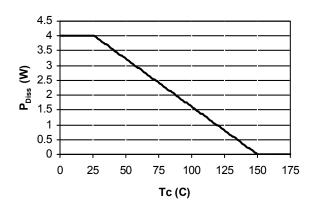
PAE Vs. Frequency, P_{IN} = + 12 dBm, V_{DD} = 5 V

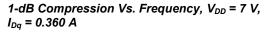
M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. M/A-COM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability whatsoever arising out of the use or application of any product(s) or information.

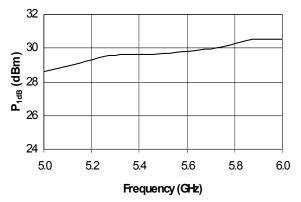
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

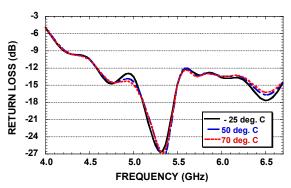

4

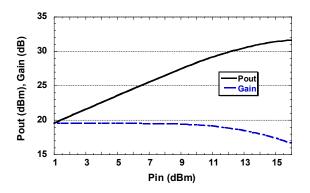



Typical Performance Curves

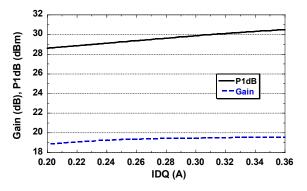

Input Return Loss Vs. Frequency, P_{IN} = + 12 dBm, V_{DD} = 7 V

Stage 2 Dissipated Power vs. Case Temperature Freq = 5.25 GHz, V_{DD} = 7 V





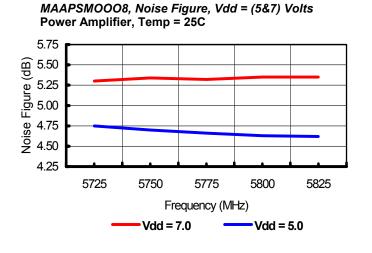
5


M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. M/A-COM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability whatsoever arising out of the use or application of any product(s) or information. Input Return Loss Vs. Frequency, P_{IN} = + 12 dBm, V_{DD} = 5 V

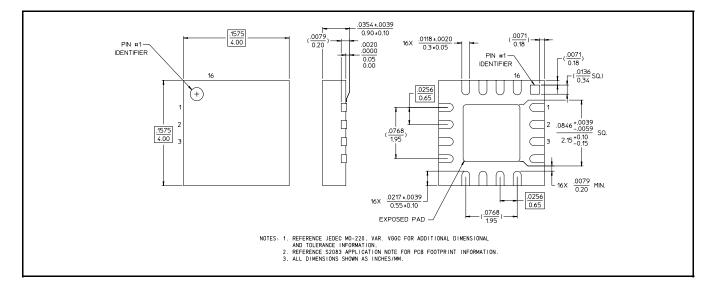
Output Power & Gain Vs. Input Power, Freq = 5.80 GHz, V_{DD} = 7 V

P1dB, Gain Vs. Quiescent Bias, V_{DD} = 7 V,

• North America Tel: 800.366.2266 / Fax: 978.366.2266


• Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

• Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298


Visit www.macom.com for additional data sheets and product information.

Noise Figures

4-mm 16-Lead PQFN, Saw Singulated

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

6

