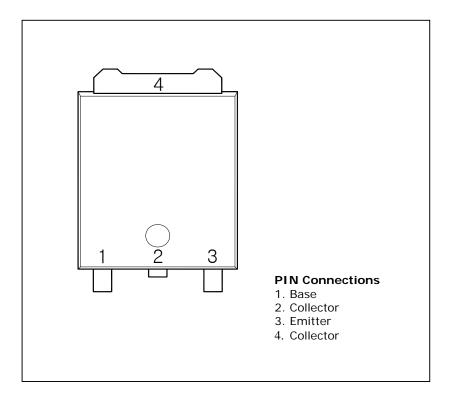


STD13003D

NPN Silicon Power Transistor


Features

- High speed switching
- $V_{CEO(sus)} = 400V$
- Suitable for Switching Regulator and Motor Control

Ordering Information

Type NO.	Marking	Package Code
STD13003D	STD13003	D-PAK

PIN Connections

STD13003D

Absolute Maximum Ratings

(Ta=25°℃)

Characteristic	Symbol	Ratings	Unit
Collector-base voltage	V_{CBO}	700	V
Collector-emitter voltage	V_{CEO}	400	V
Emitter-base voltage	V_{EBO}	9	V
Collector current (DC)	I _C	1.5	А
Collector current (Pulse)	I _{CP}	3	А
Base current (DC)	I _B	0.75	А
Collector power dissipation	P _C	1.2	W
Junction temperature	Tj	150	°C
Storage temperature	T _{stg}	-55~150	°C

Characteristic		Symbol	Тур.	Max	Unit
Thermal resistance	Junction-ambient	$R_{th(J\text{-}a)}$	-	104.1	°C/W

Electrical Characteristics

(Ta=25℃)

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Collector-emitter sustaining voltage	V _{CE(sus)}	$I_C=5mA$, $I_B=0$	400	-	-	V
Collector cut-off current	I _{CBO}	V _{CB} =700V, I _E =0	-	-	10	uA
Emitter cut-off current	I _{EBO}	$V_{EB} = 9V, I_{C} = 0$	-	-	10	uA
	l. a	I _C =0.5A, V _{CE} =2V	15	-	35	
DC current gain	h _{FE} *	I _C =1A, V _{CE} =2V	5	-	-	
	V _{CE(sat)} *	$I_{C}=0.5A, I_{B}=0.1A$	-	-	0.5	V
Collector-emitter saturation voltage		$I_C = 1A$, $I_B = 0.25A$	-	-	1	
		I _C =1.5A, I _B =0.5A	-	-	3	
Base-emitter saturation voltage	V _{BE(sat)} *	I _C =0.5A, I _B =0.1A	-	-	1	V
		I _C =1A, I _B =0.25A	-	-	1.2	
Transition frequency	f _T	V _{CB} =10V, I _C =0.1A, f=1MHz	-	4	-	MHz
Output capacitance	C _{ob}	V _{CB} =10V, I _E =0, f=0.1MHz	-	13	-	pF
Turn on Time	t _{on}	20us OUTPUT IBI	-	1.1	-	
Storage Time	t _{stg}	IBI	-	4	-	μs
Fall Time	t _f	IBI=-IB2=200mA 125V DUTY dYdLE ≤1%	-	0.7	-	

^{*} Pulse test: PW \leq 300 $\mu\mathrm{s}$, Duty cycle \leq 2% Pulse

Electrical Characteristic Curves

Fig. 1 P_C - T_a Collector Power disspation PC[mw] 1000 800 600 400 200

75

100

125

150

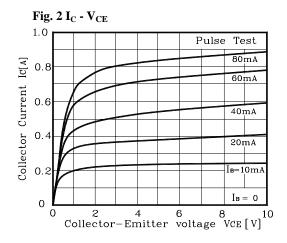


Fig. 3 $V_{\text{CE}(\text{sat})}$ - I_{C}

0

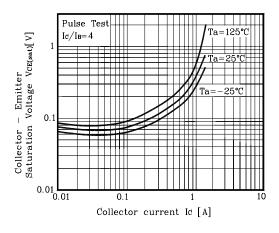


Fig. 4 $V_{BE(sat)}$ - I_{C}

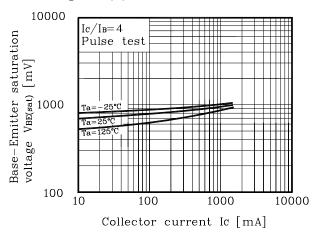


Fig. 5 h_{FE} - I_{C}

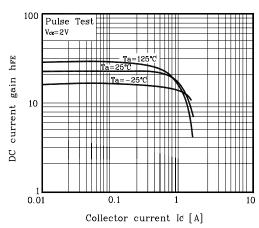
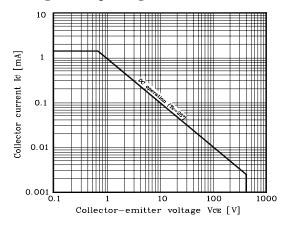



Fig. 6 Safe operating area

Electrical Characteristic Curves

Fig. 7 Turn on time

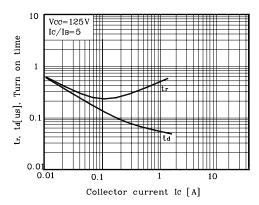
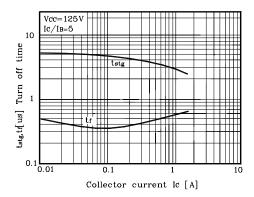
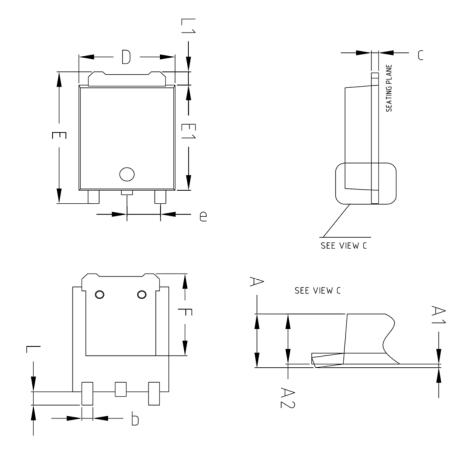




Fig. 8 Turn off time

Outline Dimension

		NOTE		
SYMBOL	MINIMUM	NOMINAL	MAXIMUM	NOTE
Α	-	-	2.40	
A1	0.00		0.10	
A2	2.20	2.30	2.40	
b	0.63	0.73	0.83	
С	0.45	-	0.55	
D	6.50	6.60	6.70	
Ε	9.70	-	10.10	
E1	7.77	7.87	7.97	
F	6.07	-	6.27	
е				
L	0.85	-	1.15	
L1	0.88	-	1.18	

The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice.