

January 2001

ARINC 429 LINE DRIVER AND LINE RECEIVER

DESCRIPTION

The HI-8590 is a CMOS integrated circuit with independent ARINC 429 line driver and line receiver in a single 16 pin package. Both ARINC 429 functions are implemented in analog/digital CMOS.

The line driver function in the HI-8590 connects directly to the ARINC bus and translates CMOS/TTL input levels to ARINC 429 specified amplitudes using built-in zeners. The slope of the differential output signal is controlled by a single logic input without the use of any external capacitors. A internal 37.5 ohm resistor is provided in series with each line driver output. The line driver function is the same as Holt's 8 pin stand-alone HI-8585 line driver.

The line receiver interfaces directly to the ARINC 429 bus and translates incoming ARINC levels to levels compatible with CMOS logic. Internal comparator levels are set just below the standard 6.5 volt minimum data threshold and just above the standard 2.5 volt maximum null threshold

The TESTA and TESTB inputs of the line receiver allow bypassing the analog input circuitry for testing purposes. Also, if both test inputs are taken high, the receiver's digital outputs are tri-stated allowing wire-or possibilities. The line driver function is the same as Holt's 8 pin stand-alone HI-8588 line receiver.

FEATURES

- Direct ARINC 429 interface to line driver and line receiver
- Both functions in a single 16 pin package
- Line Driver
 - Internal zener sets output levels
 - Digital output slope control
 - CMOS/TTL logic pins
- Line Receiver
 - Input hystersis at least 2 volts
 - Test inputs bypass analog inputs
 - Output tri-state mode
- Plastic thermally enhanced surface mount (ESOIC) package
- Mil-temperature range available

PIN CONFIGURATION

V+ 1	•	16	VCC
TESTB 2		15	SLP1.5
ROUTB 3		14	TESTA
ROUTA 4		13	RINB
TXBOUT 5		12	RINA
TXAOUT 6		11	TX0IN
N/C 7		10	TX1IN
V- 8		9	GND

SUPPLY VOLTAGES

 $Vcc = +5V \pm 5\%$ V+ = 12V to 15VV- = -12V to -15V

PIN DESCRIPTION TABLE

PIN	SYMBOL	FUNCTION	DESCRIPTION
1	V+	POWER	+12 TO + 15 VOLTS
2	TESTB	LOGIC INPUT	CMOS
3	ROUTB	LOGIC OUTPUT	RECEIVER CMOS OUTPUT B
4	ROUTA	LOGIC OUTPUT	RECEIVER CMOS OUTPUT A
5	TXBOUT	ARINC OUTPUT	LINE DRIVER TERMINAL B
6	TXAOUT	ARINC OUTPUT	LINE DRIVER TERMINAL A
7	N/C	NO CONNECT	
8	V-	POWER	-12 TO -15 VOLTS
9	GND	POWER	GROUND
10	TX1IN	LOGIC INPUT	CMOS OR TTL
11	TX0IN	LOGIC INPUT	CMOS OR TTL
12	RINA	ARINC INPUT	RECEIVER A INPUT
13	RINB	ARINC INPUT	RECEIVER B INPUT
14	TESTA	LOGIC INPUT	CMOS
15	SLP1.5	LOGIC INPUT	CMOS OR TTL, V+ IS OK
16	VCC	POWER	+5 VOLT SUPPLY

FUNCTION TABLES

LINE DRIVER

TX1IN	TX0IN	SLP1.5	TXAOUT	TXBOUT	SLOPE
0	0	Х	0V	0V	N/A
0	1	0	-5V	5V	10µs
0	1	1	-5V	5V	1.5µs
1	0	0	5V	-5V	10µs
1	0	1	5V	-5V	1.5µs
1	1	Х	0V	0V	N/A

LINE RECEIVER

RINA	RINB	TESTA	TESTB	ROUTA	ROUTB
-1.25V to 1.25V	-1.25V to 1.25V	0	0	0	0
-3.25V to -6.5V	3.25V to 6.5V	0	0	0	1
3.25V to 6.5V	-3.25V to -6.5V	0	0	1	0
Х	Х	0	1	0	1
Х	Х	1	0	1	0
X	Х	1	1	HI-Z	HI-Z

FUNCTIONAL DESCRIPTION

LINE DRIVER

Figure 1 is a block diagram of the line driver. The +5V and -5V levels are generated internally using on-chip zeners. Currents for slope control are set by zener voltages across on-chip resistors.

The TX0IN and TX1IN inputs receive logic signals from a control transmitter chip such as the HI-6010 or HI-8282. TXAOUT and TXBOUT hold each side of the ARINC bus at Ground until one of the inputs becomes a One. If for example TX1IN goes high, a charging path is enabled to 5V on an "A" side internal capacitor while the "B" side is enabled to -5V. The charging current is selected by the SLP1.5 pin. If SLP1.5 is high, the capacitor is nominally charged from 10% to 90% in 1.5µs. If low, the rise and fall times are 10µs.

A unity gain buffer receives the internally generated slopes and differentially drives the ARINC line. Current is limited by the series output resistors at each pin. There are no fuses in series with the ARINC outputs of the HI-8590 as exists on the HI-8382.

The HI-8590 has 37.5 ohms in series with each ARINC output just like the HI-8585. The HI-8586 has 10 ohms in series. The HI-8586 is used with the HI-8588 for applications where more series resistance is added externally, typically for lightning protection devices.

The line driver inputs TX1IN, TX0IN, & SLP1.5 must be tied to either a logic high or low if not used.

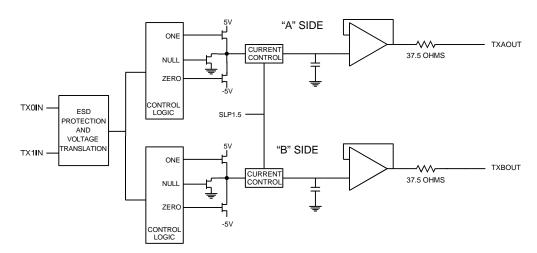


FIGURE 1 - LINE DRIVER BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION (cont.)

RECEIVER

Figure 2 shows the general architecture of the ARINC 429 receiver. The receiver operates off the VCC supply only. The inputs RINA and RINB each have series resistors, typically 35K ohms. They connect to level translators whose resistance to Ground is typically 10K ohms. Therefore, any series resistance added to the inputs will affect the voltage translation.

After level translation, the inputs are buffered and become inputs to a differential amplifier. The amplitude of the differential signal is compared to levels derived from a divider between VCC and Ground. The nominal settings correspond to a One/Zero amplitude of 6.0V and a Null amplitude of 3.3V.

The status of the ARINC receiver input is latched. A Null input resets the latches and a One or Zero input sets the latches.

The logic at the output is controlled by the test signal which is generated by the logical OR of the TESTA and TESTB pins. The receiver output pins float if both TESTA and TESTB are a logic One.

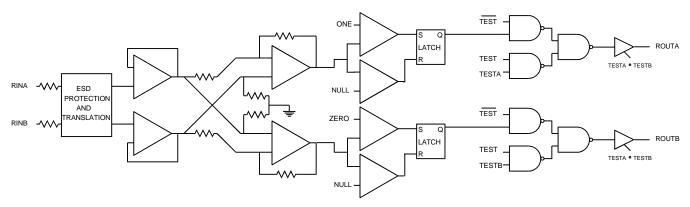


FIGURE 2 - RECEIVER BLOCK DIAGRAM

APPLICATION INFORMATION

Figure 3 shows a possible application of the HI-8590 interfacing both the ARINC transmit and receive channels of a HI-6010 which in turn interfaces to an 8-bit microprocessor bus.

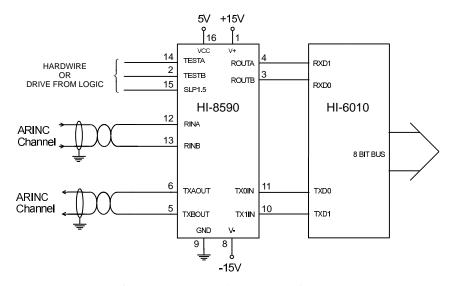


FIGURE 3 - APPLICATION DIAGRAM

ABSOLUTE MAXIMUM RATINGS

All voltages referenced to GND

Supply voltages Vcc +7.0V V+ +20V V- -20V
Voltage on inputs ARINC pin+29V to - 29V TX1IN, TX0IN or SLP1.50.3 to V+ +0.3 All other input pins0.3 to Vcc +0.3
DC current per input pin+10mA
Power dissipation at 25°C Plastic SO1.0W
Thermal Resistance - Φja 98°C/W
Solder Temperature Leads+280°C for 10 sec Package body+220°C
Storage Temperature65°C to +150°C

RECOMMENDED OPERATING CONDITIONS

Supply Voltages Vcc+5V ± 5% V++12V ± 5% or +15V ±10% V12V ± 5% or -15V ±10%	
Temperature Range Industrial Screening40°C to +85°C Hi-Temp Screening55°C to +125°C	
Junction Temperature, Tj≤+175°C	

NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

DC ELECTRICAL CHARACTERISTICS

Vcc = 5V ±5%, V+ = 12V to 15V, V- = -12V to -15V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETERS	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Line Driver						
Input voltage (TX1IN, TX0IN, SLP1.5) high low	Vih Vil		2.1 -		V+ 0.5	volts volts
Input current (TX1IN, TX0IN, SLP1.5) source sink	lıн lı∟	VIN = 0V VIN = 5V	-	-	0.1 0.1	μΑ μΑ
ARINC output voltage (TXAOUT, TXBOUT) one or zero null	Vdout Vnout	magnitude at pin & no load	4.50 -0.25	5.00	5.50 0.25	volts volts
ARINC output impedance (TXAOUT, TXBOUT)	Zоuт	Note1	-	37.5	ı	ohm

Notes:

1. The output resistance is checked by measuring the momentary short circuit current at each ARINC output pin.

DC ELECTRICAL CHARACTERISTICS (cont.)

 $Vcc = 5V \pm 5\%$, V+ = 12V to 15V, V- = -12V to -15V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETERS	SYMBOL	MBOL TEST CONDITIONS			MAX	UNITS
Line Receiver			•			
ARINC input voltage (RINA, RINB) one or zero null common mode	Vdin Vnin Vcom	differential voltage " with respect to GND	6.5 - -	10.0 - -	13.0 2.5 5.0	volts volts volts
Logic input voltage (TESTA, TESTB) high low	VIH VIL		3.5		- 1.5	volts volts
ARINC input resistance RINA to RINB RINA or RINB to GND or Vcc	RDIFF RSUP	supplies floating	30 19	75 40	- -	Kohm Kohm
Logic input current (TESTA, TESTB) source sink	lıн lı∟	VIN = 0V VIN = 5V		-	0.1 0.1	μ Α μ Α
Logic output current (ROUTA, ROUTB) one zero	loн loг	Voh = 4.6V Vol = 0.4V	3.6	-1.6 5.6	-0.8 -	mA mA
Operating Supply Current						
Vcc - operating (TESTA & TESTB = 0V)	Icc	RINA, RINB open V+ = +15V	-	5.3	8.5	mA
V+	IDD	no load	-	6.0	12.0	mA
V-	lee	SLP1.5 = V+ TX1IN, TX0IN = 0V	-12.0	-6.0		mA

AC ELECTRICAL CHARACTERISTICS

 $Vcc = 5V \pm 5\%$, V+ = 12V to 15V, V- = -12V to -15V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified)

PARAMETERS	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Line Driver						
Propagation delay Output high to low Output low to high	t _{phlx} t _{plhx}	defined in Figure 4, no load		500 500	-	ns ns
Transition times Output high to low & low to high Output high to low & low to high	t _{fx} & t _{rx} t _{fx} & t _{rx}	SLP1.5 = logic 1 SLP1.5 = logic 0	1.0 5	1.5 10	2.0 15	μs μs
Line driver input capacitance Logic	Cin	Guaranteed but not tested	-	-	10	pF

AC ELECTRICAL CHARACTERISTICS (cont.)

Vcc = 5V ±5%, V+ = 12V to 15V, V- = -12V to -15V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETERS	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Line Receiver						
Propagation delay Output high to low Output low to high	t _{phir} t _{plhr}	defined in Figure 5, CL = 50pF		600 600		ns ns
Transition times Output high to low Output low to high	t fr t rr		-	50 50	80 80	ns ns
Line receiver input capacitance (1) ARINC differential ARINC single ended to GND Logic	Cad Cas Cin		- - -	5 - -	10 10 10	pF pF pF

Notes:

1. Guaranteed but not tested

HI-8590 PACKAGE THERMAL CHARACTERISTICS

MAXIMUM ARINC LOAD

PACKAGE STYLE 1	ARINC 429	SUPPLY CURRENT (mA) 2			ARINC 429 SUPPLY CURRENT (mA) 2 JUNCTION TEMP,				Tj (°C)
PACKAGE STILE	DATA RATE	Ta = 25°C	Ta = 85°C	Ta=125°C	Ta = 25°C	Ta = 85°C	Ta=125°C		
16 Lead Plastic SOIC ⁵	Low Speed ³	16.7	16.8	16.9	52	112	150		
	High Speed ⁴	27.1	26.3	26.1	68	121	162		

TXAOUT and TXBOUT Shorted to Ground 6,7

PACKAGE STYLE 1	SUPPLY CURRENT (mA) 2			JUNCTION TEMP, Tj (°C)			
FACKAGE STILE	DATA RATE	Ta = 25°C	Ta = 85°C	Ta=125°C	Ta = 25°C	Ta = 85°C	Ta=125°C
16 Lead Plastic SOIC ⁵	Low Speed ³	51.3	46.4	45.7	117	168	194
	High Speed 4	46.0	39.7	39.5	122	171	206

Notes:

- 1. All data taken on devices soldered to single layer copper PCB (3" X 4.5" X .062").
- 2. At 100% duty cycle, 15V power supplies. For 12V power supplies multiply all tabulated values by 0.8.
- 3. Low Speed: Data Rate = 12.5 Kbps, Load: R = 400 Ohms, C = 30 nF.
- 4. High Speed: Data Rate = 100 Kbps, Load: R = 400 Ohms, C = 10 nF. Data not presented for C = 30 nF as this is considered unrealistic for high speed operation.
- 5. 16 Lead Plastic SOIC (Thermally enhanced with built-in heat sink).
- 6. Similar results would be obtained with TXAOUT shorted to TXBOUT.
- 7. For applications requiring survival with continuous short circuit, operation above Tj = 175°C is not recommended.

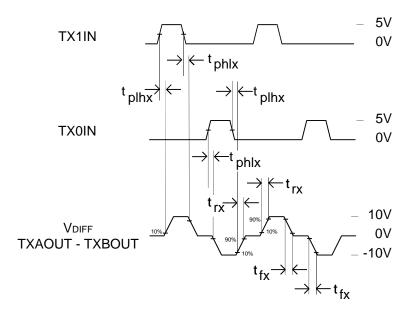


FIGURE 4 - LINE DRIVER TIMING

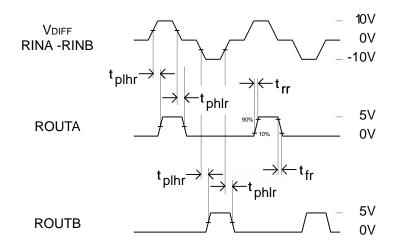
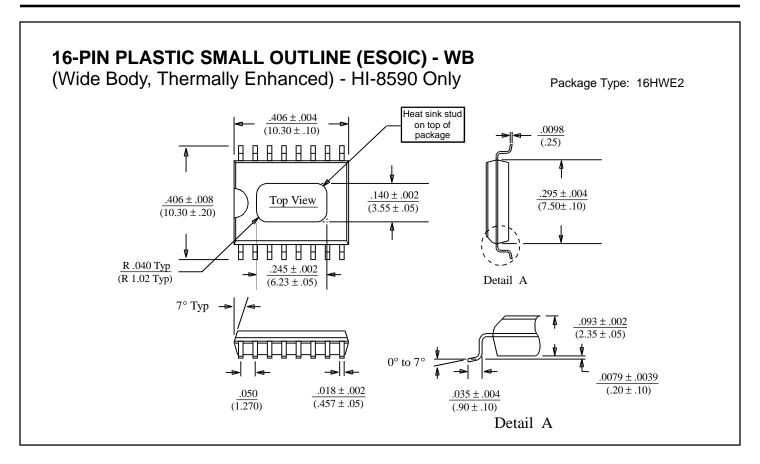


FIGURE 5 - RECEIVER TIMING

ORDERING INFORMATION


PART NUMBER	PACKAGE DESCRIPTION	TEMPERATURE RANGE	FLOW	BURN IN	LEAD FINISH
HI-8590PSI	16 PIN PLASTIC ESOIC - WB	-40°C TO +85°C	I	NO	SOLDER
HI-8590PST	16 PIN PLASTIC ESOIC - WB	-55°C TO +125°C	Т	NO	SOLDER

Legend: ESOIC - Thermally Enhanced Small Outline Package (SOIC w/built-in heat sink) WB - Wide Body

HI-8590 PACKAGE DIMENSIONS

inches (millimeters)

