Smart High-Side Power Switch for Industrial Applications
 Two Channels: $2 \times 90 \mathrm{~m} \Omega$
 Status Feedback

Product Summary

Operating Voltage	V_{bb}					$5.5 \ldots 40 \mathrm{~V}$	
	Active channels					one	two parallel
On-state Resistance	R_{ON}	$90 \mathrm{~m} \Omega$	$45 \mathrm{~m} \Omega$				
Nominal load current	$\mathrm{I}_{\mathrm{L}(\mathrm{NOM})}$	3.7 A	7.4 A				
Current limitation	$\mathrm{I}_{\mathrm{L}(\mathrm{SCr})}$	12 A	12 A				
Operating Temperature	T_{a}	$-30 \ldots+85^{\circ} \mathrm{C}$					

Package

General Description

- $\quad \mathrm{N}$ channel vertical power MOSFET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS ${ }^{\circledR}$ technology.
- Providing embedded protective functions

Applications

- $\mu \mathrm{C}$ compatible high-side power switch with diagnostic feedback for 12 V and 24 V grounded loads in industrial applications
- All types of resistive, inductive and capacitve loads
- Most suitable for loads with high inrush currents, so as lamps
- Replaces electromechanical relays, fuses and discrete circuits

Basic Functions

- Very low standby current
- CMOS compatible input
- Improved electromagnetic compatibility (EMC)
- Fast demagnetization of inductive loads
- Stable behaviour at undervoltage
- Wide operating voltage range
- Logic ground independent from load ground

Protection Functions

- Short circuit protection
- Overload protection
- Current limitation
- Thermal shutdown
- Overvoltage protection (including load dump) with external resistor
- Reverse battery protection with external resistor
- Loss of ground and loss of V_{bb} protection
- Electrostatic discharge protection (ESD)

Diagnostic Function

- Diagnostic feedback with open drain output

Block Diagram

- Open load detection in OFF-state
- Feedback of thermal shutdown in ON-state

Functional diagram

Pin Definitions and Functions

Pin	Symbol	Function
1	GND	Ground of chip
2	IN1	Input 1,2 activates channel 1,2 in case of logic high signal
4	IN2	Diagnostic feedback 1 \& 2 of channel 1,2
3	ST1	
open drain, low on failure		

Pin configuration
(top view)

* heat slug

Maximum Ratings at $T_{j}=25^{\circ} \mathrm{C}$ unless otherwise specified

Parameter	Symbol	Values	Unit
Supply voltage (overvoltage protection see page 5)	$V_{\text {bb }}$	43	V
Supply voltage for full short circuit protection $T_{\text {,start }}=-40 \ldots+150^{\circ} \mathrm{C}$	$V_{\text {bb }}$	36	V
Load current (Short-circuit current, see page 6)	L	self-limited	A
Load dump protection ${ }^{1)} V_{\text {LoadDump }}=V_{\mathrm{A}}+V_{\mathrm{s}}, V_{\mathrm{A}}=13.5 \mathrm{~V}$ $R_{1}{ }^{2}=2 \Omega, t_{\mathrm{d}}=400 \mathrm{~ms} ; \mathbb{N}=$ low or high, each channel loaded with $R_{\mathrm{L}}=13.5 \Omega$,	$V_{\text {Loaddump }}{ }^{3}$	60	V
Junction temperature	T_{j}	+150	${ }^{\circ} \mathrm{C}$
Operating temperature range	$T_{\text {a }}$	-30 ... +85	
Storage temperature range	$T_{\text {stg }}$	$-40 \ldots+105$	
Power dissipation $\left.(\mathrm{DC})^{4}\right)$ $T_{\mathrm{a}}=25^{\circ} \mathrm{C}:$ (all channels active) $T_{\mathrm{a}}=85^{\circ} \mathrm{C}:$	$P_{\text {tot }}$	$\begin{aligned} & \hline 3.1 \\ & 1.6 \end{aligned}$	W
Maximal switchable inductance, single pulse $\mathrm{V}_{\mathrm{bb}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}, \text { start }}=150^{\circ} \mathrm{C}^{4}$), see diagrams on page 9 $\mathrm{L}_{\mathrm{L}}=3.5 \mathrm{~A}, E_{\mathrm{AS}}=178 \mathrm{~mJ}, 0 \Omega$ one channel: $I_{\mathrm{L}}=7.0 \mathrm{~A}, E_{\mathrm{AS}}=337 \mathrm{~mJ}, 0 \Omega$ two parallel channels	Z_{L}	$\begin{array}{r} 21.3 \\ 10 \end{array}$	mH
	$V_{\text {ESD }}$	1.0 4.0 8.0	kV
Input voltage (DC) see internal circuit diagram page 8	$V_{\text {IN }}$	-10 ... +16	V
Current through input pin (DC)	I_{1}	± 0.3	mA
Pulsed current through input pin ${ }^{5}$)	1 INp	± 5.0	
Current through status pin (DC)	$I_{\text {ST }}$	± 5.0	

[^0]Thermal Characteristics

Parameter and Conditions		Symbol	Values			Unit	
		min	typ	max			
Thermal resistance junction - Case $^{6)}$ junction - ambient $^{6)}$ each channel: $@ 6 \mathrm{~cm}^{2}$ cooling area one channel active: all channels active:			$R_{\text {thjC }}$ $R_{\text {thja }}$	--	--	5	K/W
		--		--	--		
		-		45	--		
		--		40	--		

Electrical Characteristics

Parameter and Conditions, each of the four channels at $\mathrm{T}_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{bb}}=12 \mathrm{~V}$ unless otherwise specified

Symbol	Values			Unit
	min	typ	\max	

Load Switching Capabilities and Characteristics

$\begin{aligned} & \left.\hline \text { On-state resistance (} \mathrm{V}_{\mathrm{bb}} \text { to } \mathrm{OUT}\right) ; \mathrm{IL}=2 \mathrm{~A} \\ & \text { each channel, } \begin{array}{r} T_{\mathrm{j}}=25^{\circ} \mathrm{C}: \\ T_{\mathrm{j}}=150^{\circ} \mathrm{C}: \\ \text { two parallel channels, } \quad T_{\mathrm{j}}=25^{\circ} \mathrm{C}: \end{array} \\ & \text { see diagram, page } 10 \end{aligned}$	$\mathrm{R}_{\text {ON }}$		$\begin{array}{r} 70 \\ 140 \\ 35 \end{array}$	$\begin{array}{r} 90 \\ 180 \\ 45 \end{array}$	$\mathrm{m} \Omega$
Nominal load current one channel active: two parallel channels active: Device on PCB^{6}), $T_{\mathrm{a}}=85^{\circ} \mathrm{C}, T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$		$\begin{aligned} & 3.7 \\ & 7.4 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 9.5 \end{aligned}$	--	A
Output current while GND disconnected or pulled up ${ }^{7}$; $\mathrm{Vbb}=32 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0,$ see diagram page 8	L(GNDhigh)	--	--	2	mA
Turn-on time ${ }^{8)} \quad \mathrm{IN}$ - to $90 \% V_{\text {Out }}$:	$t_{\text {on }}$	--	100	250	$\mu \mathrm{S}$
Turn-off time \qquad to $10 \% V_{\text {OUT: }}$ $R_{\mathrm{L}}=12 \Omega$	$t_{\text {off }}$	--	100	270	
Slew rate on ${ }^{8}$) 10 to $30 \% V_{\text {OUT }}, R_{\mathrm{L}}=12 \Omega$:	$\mathrm{dV} / \mathrm{dt}_{\text {on }}$	0.2	--	1.0	V/ $/ \mathrm{s}$
Slew rate off 8) 70 to $40 \% V_{\text {Out }}, R_{\mathrm{L}}=12 \Omega$:	-dV/dt ${ }_{\text {off }}$	0.2	--	1.1	V/us

[^1]Parameter and Conditions, each of the four channels at $\mathrm{T}_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{bb}}=12 \mathrm{~V}$ unless otherwise specified

Symbol	Values			Unit
	min	typ	\max	

Operating Parameters

Operating voltage	$V_{\text {bb(on) }}$	5.5	--	40	V
Undervoltage switch off9) $\quad T_{\mathrm{j}}=-40^{\circ} \mathrm{C} . . .25^{\circ} \mathrm{C}$:	$V_{\text {bb(u so) }}$	--	--	4.5	V
$T_{\mathrm{j}}=125^{\circ} \mathrm{C}$:		--	--	4.510)	
Overvoltage protection ${ }^{11)}$ $I_{b b}=40 \mathrm{~mA}$	$V_{\text {bb(AZ) }}$	41	47	52	V
Standby current ${ }^{12)} \quad T_{j}=-40^{\circ} \mathrm{C} . . .25^{\circ} \mathrm{C}$:	$\mathrm{I}_{\mathrm{bb} \text { (off) }}$	--	4.5	10	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{IN}}=0$; see diagram page $11 \quad T_{\mathrm{j}}=150^{\circ} \mathrm{C}$:		--	--	15	
$T_{\mathrm{j}}=125^{\circ} \mathrm{C}$:		--	--	1010)	
Off-State output current (included in $I_{\mathrm{bb}(\text { (off) })}$ $V_{\text {IN }}=0$; each channel	$I_{\text {L(off) }}$	--	1	5	$\mu \mathrm{A}$
Operating current ${ }^{13)}, V_{\mathrm{IN}}=5 \mathrm{~V}$, one channel on: all channels on:	$I_{\text {GND }}$	--	$\begin{aligned} & 0.6 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.4 \end{aligned}$	mA

Protection Functions ${ }^{14)}$

Current limit, $\mathrm{V}_{\text {out }}=0 \mathrm{~V}$, (see timing diagrams, page 11)					
$\begin{array}{r} T_{\mathrm{j}}=-40^{\circ} \mathrm{C}: \\ T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ T_{\mathrm{j}}=+150^{\circ} \mathrm{C}: \end{array}$	$I_{\text {L(lim) }}$	--	15	23	A
Repetitive short circuit current limit, $T_{\mathrm{j}}=T_{\mathrm{jt}}$ each channel two channels (see timing diagrams, page 11)	IL(SCr)	--	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	-	A
$\begin{aligned} & \hline \text { Initial short circuit shutdown time } \quad T_{\mathrm{j}, \text { start }}=25^{\circ} \mathrm{C} \text { : } \\ & \mathrm{V}_{\text {out }}=0 \mathrm{~V} \quad \text { (see timing diagrams on page 11) } \end{aligned}$	$t_{\text {off(}}$	--	2	--	ms
Output clamp (inductive load switch off) ${ }^{15)}$ at $\mathrm{VON}(\mathrm{CL})=\mathrm{V}_{\mathrm{bb}}-\mathrm{VOUT} \mathrm{IL}=40 \mathrm{~mA}$	$V_{\text {ON(CL) }}$	41	47	52	V
Thermal overload trip temperature	$T_{\text {jt }}$	150	--	--	${ }^{\circ} \mathrm{C}$
Thermal hysteresis	$\Delta T_{\text {jt }}$	--	10	--	K

[^2]Parameter and Conditions, each of the four channels at $\mathrm{T}_{\mathrm{j}}=-40 \ldots+150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{bb}}=12 \mathrm{~V}$ unless otherwise specified

Symbol	Values			Unit
	\min	typ	\max	

Reverse Battery

Reverse battery voltage ${ }^{16)}$	$-V_{b b}$	--	--	32	V
Drain-source diode voltage $\left(V_{\text {out }}>\mathrm{Vbb}\right)$ $\mathrm{LL}=-2.0 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=+150^{\circ} \mathrm{C}$	$-V_{\mathrm{ON}}$	--	600	--	mV

Diagnostic Characteristics

Open load detection voltage	$V_{\text {OUT(OL) }}$	1.7	2.8	4.0	V

Input and Status Feedback ${ }^{17}$)

Input resistance (see circuit page 8)	R_{1}	2.5	4.0	6.0	$\mathrm{k} \Omega$
Input turn-on threshold voltage	$V_{\operatorname{IN}(\mathrm{T}+)}$	--	--	2.5	V
Input turn-off threshold voltage	$V_{\text {IN(T-) }}$	1.0	--	--	V
Input threshold hysteresis	$\Delta V_{\operatorname{IN}(\mathrm{T})}$	--	0.2	--	V
Status change after positive input slope ${ }^{18)}$ with open load	$t_{\text {d(STon) }}$	--	10	20	$\mu \mathrm{S}$
Status change after positive input slope ${ }^{18)}$ with overload	$t_{\text {d(STon) }}$	30	--	--	$\mu \mathrm{s}$
Status change after negative input slope with open load	$t_{\text {d(SToff) }}$	--	--	500	$\mu \mathrm{S}$
Status change after negative input slope ${ }^{18)}$ with overtemperature	$t_{\text {d(SToff) }}$	--	--	20	$\mu \mathrm{s}$
Off state input current $\quad V_{\text {IN }}=0.4 \mathrm{~V}$:	$I_{\text {IN(off }}$	5	--	20	$\mu \mathrm{A}$
On state input current $\quad V_{\text {IN }}=5 \mathrm{~V}$:	$I_{\text {IN(on) }}$	10	35	60	$\mu \mathrm{A}$
Status output (open drain)					
Zener limit voltage $\quad I_{\text {ST }}=+1.6 \mathrm{~mA}$:	$V_{\text {ST(high) }}$	5.4	--	--	V
ST low voltage $\quad I_{\text {ST }}=+1.6 \mathrm{~mA}$:		--	--	0.6	

[^3]
Truth Table

(each channel)

	IN	OUT	ST
Normal operation	L	L	H
	H	H	H
Open load	L	Z	L'9)
	H	H	H
Overtemperature	L	L	H
	H	L	L

$$
\begin{array}{lcc}
\mathrm{L}=\text { "Low" Level } & \mathrm{X}=\text { don't care } & \mathrm{Z}=\text { high impedance, potential depends on external circuit } \\
\mathrm{H}=\text { "High" Level } & \text { Status signal valid after the time delay shown in the timing diagrams }
\end{array}
$$

Parallel switching of channel 1 and 2 is easily possible by connecting the inputs and outputs in parallel (see truth table). If switching channel 1 to 2 in parallel, the status outputs ST1 and ST2 have to be configured as a 'Wired OR' function with a single pull-up resistor

Terms

Leadframe $\left(\mathrm{V}_{\mathrm{bb}}\right)$ is connected to pin 6,12
External $R_{G N D}$ optional; single resistor $R_{G N D}=150 \Omega$ for reverse battery protection up to the max. operating voltage.
19) L, if potential at the Output exceeds the OpenLoad detection voltage

Input circuit (ESD protection), IN1 or IN2

The use of ESD zener diodes as voltage clamp at DC conditions is not recommended.

Status output, ST1 or ST2

ESD-Zener diode: 6.1 V typ., max 0.3 mA ; RST(ON) $<375 \Omega$ at 1.6 mA . The use of ESD zener diodes as voltage clamp at DC conditions is not recommended.

Inductive and overvoltage output clamp, OUT1 or OUT2

Von clamped to $\operatorname{VON}(C L)=47 \mathrm{~V}$ typ.

Overvolt. and reverse batt. protection

$V_{\mathrm{Z} 1}=6.1 \mathrm{~V}$ typ., $\mathrm{V}_{\mathrm{Z} 2}=47 \mathrm{~V}$ typ., $R_{\mathrm{GND}}=150 \Omega$, $R_{\mathrm{ST}}=15 \mathrm{k} \Omega, R_{\mathrm{I}}=3.5 \mathrm{k} \Omega$ typ.
In case of reverse battery the load current has to be limited by the load. Temperature protection is not active

Open-load detection, OUT1 or OUT2
OFF-state diagnostic condition:
Open Load, if $V_{\text {OUT }}>3 \mathrm{~V}$ typ.; IN low

GND disconnect

Any kind of load. In case of $\operatorname{IN}=$ high is $V_{O U T} \approx V_{\text {IN }}-V_{I N}(T+)$. Due to $\mathrm{V}_{\mathrm{GND}}>0$, no $\mathrm{VST}=$ low signal available.

GND disconnect with GND pull up

Any kind of load. If VGND > VIN - VIN(T+) device stays off Due to VGND > 0, no VST = low signal available.

Vbb disconnect with energized inductive load

For inductive load currents up to the limits defined by Z_{L} (max. ratings and diagram on page 9) each switch is protected against loss of $V_{b b}$.
Consider at your PCB layout that in the case of Vbb disconnection with energized inductive load all the load current flows through the GND connection.

Inductive load switch-off energy dissipation

Energy stored in load inductance:

$$
E_{\mathrm{L}}=1 / 2 \cdot \mathrm{~L} \cdot \mathrm{l}_{\mathrm{L}}^{2}
$$

While demagnetizing load inductance, the energy dissipated in PROFET is

$$
E_{A S}=E_{b b}+E_{L}-E_{R}=\int V_{O N(C L)} \cdot i_{L}(t) d t
$$

with an approximate solution for $R_{L}>0 \Omega$:

$$
E_{\mathrm{AS}}=\frac{\mathrm{IL} \cdot \mathrm{~L}}{2 \cdot R_{\mathrm{L}}}\left(\mathrm{~V}_{\mathrm{bb}}+\left|\mathrm{V}_{\mathrm{OUT}(\mathrm{CL})}\right|\right) \ln \left(1+\frac{\mathrm{IL} \cdot \mathrm{R}_{\mathrm{L}}}{\left|\mathrm{~V}_{\mathrm{OUT}(\mathrm{CL})}\right|}\right)
$$

Maximum allowable load inductance for a single switch off (one channel) ${ }^{4}$
$\boldsymbol{L}=\boldsymbol{f}\left(\boldsymbol{I}_{\boldsymbol{L}}\right) ; \mathrm{T}_{\mathrm{j}, \text { start }}=150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{bb}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0 \Omega$
$\mathrm{Z}_{\mathrm{L}}[\mathrm{mH}]$

Typ. on-state resistance
$\boldsymbol{R O N}_{\boldsymbol{O}}=\boldsymbol{f}\left(V_{b b}, \boldsymbol{T}_{j}\right) ; \mathrm{I}=2 \mathrm{~A}, \mathrm{IN}=$ high

Typ. standby current
$\boldsymbol{I}_{\boldsymbol{b}(\text { off })}=\boldsymbol{f}\left(\boldsymbol{T}_{j}\right) ; \mathrm{V}_{\mathrm{bb}}=9 . . .34 \mathrm{~V}, \mathrm{IN} 1,2=$ low

Timing diagrams

Both channels are symmetric and consequently the diagrams are valid for channel 1 and channel 2

Figure 1a: V_{bb} turn on:

Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition:

Figure 2b: Switching a lamp:

Figure 3a: Turn on into short circuit: shut down by overtemperature, restart by cooling

Heating up of the chip may require several milliseconds, depending on external conditions

PROFET ${ }^{\circledR}$ ITS 5215L

Figure 3b: Turn on into short circuit:
shut down by overtemperature, restart by cooling (two parallel switched channels 1 and 2)

ST1 and ST2 have to be configured as a 'Wired OR' function ST1/2 with a single pull-up resistor.

Figure 4a: Overtemperature:
Reset if $T_{\mathrm{j}}<T_{\mathrm{jt}}$

Figure 5a: Open load: detection in OFF-state, turn on/off to open load
Open load of channel 1; other channels normal operation

Figure 6a: Status change after, turn on/off to overtemperature
Overtemperature of channel 1; other channels normal operation

Package and Ordering Code

Standard: PG-DSO-12-2

Sales Code	ITS 5215L
Ordering Code	SP000219826

Printed circuit board (FR4, 1.5mm thick, one layer $70 \mu \mathrm{~m}, 6 \mathrm{~cm}^{2}$ active heatsink area) as a reference for max. power dissipation $P_{\text {tot }}$, nominal load current $\mathrm{L}_{\mathrm{L}(\mathrm{NOM})}$ and thermal resistance $\mathrm{R}_{\text {thja }}$

Published by
Infineon Technologies AG,
St.-Martin-Strasse 53,

D-81669 München

© Infineon Technologies AG 2006
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in lifesupport devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that lifesupport device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

[^0]: 1) Supply voltages higher than $\mathrm{V}_{\mathrm{bb}(\mathrm{AZ})}$ require an external current limit for the GND and status pins (a 150Ω resistor for the GND connection is recommended.
 2) $\quad R_{I}=$ internal resistance of the load dump test pulse generator
 3) $V_{\text {Load dump }}$ is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839
 4) Device on $50 \mathrm{~mm} * 50 \mathrm{~mm} * 1.5 \mathrm{~mm}$ epoxy PCB FR4 with $6 \mathrm{~cm}^{2}$ (one layer, $70 \mu \mathrm{~m}$ thick) copper area for V_{bb} connection. PCB is vertical without blown air. See page 13
 5) only for testing
[^1]: 6) Device on $50 \mathrm{~mm} * 50 \mathrm{~mm} * 1.5 \mathrm{~mm}$ epoxy PCB FR4 with $6 \mathrm{~cm}^{2}$ (one layer, $70 \mu \mathrm{~m}$ thick) copper area for V_{bb} connection. PCB is vertical without blown air. See page 13
 7) not subject to production test, specified by design
 8) See timing diagram on page 11.
[^2]: 9) is the voltage, where the device doesn't change it's switching condition for 15 ms after the supply voltage falling below the lower limit of Vbb (on)
 10) not subject to production test, specified by design
 11) Supply voltages higher than $\mathrm{V}_{\mathrm{bb}(\mathrm{Az})}$ require an external current limit for the GND and status pins (a 150Ω resistor for the GND connection is recommended). See also $\operatorname{VON(CL)}$ in table of protection functions and circuit diagram on page 8.
 12) Measured with load; for the whole device; all channels off
 13) Add $I_{S T}$, if $I_{S T}>0$
 14) Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.
 15) If channels are connected in parallel, output clamp is usually accomplished by the channel with the lowest $\mathrm{V}_{\mathrm{ON}(\mathrm{CL})}$
[^3]: 16) Requires a 150Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 3 and circuit page 8).
 17) If ground resistors $R_{G N D}$ are used, add the voltage drop across these resistors.
 18) not subject to production test, specified by design
