Product Features

- High dynamic range downconverter with integrated LO and IF amplifiers
- Dual channels for diversity
- +28 dBm Input IP3
- +11.5 dBm Input P1dB
- RF: 1900 - 2700 MHz
- IF: $65-300 \mathrm{MHz}$
- +5 V Single supply operation
- RoHS-compliant / Pb-free $6 x 6 \mathrm{~mm}$ 28-pin QFN package
- Low-side LO configuration

Product Description

The CV221-2A is a dual-channel high-linearity downconverter designed to meet the demanding performance, functionality, and cost goals of current and next generation mobile infrastructure basestations and repeaters. It provides high dynamic range performance in a low profile RoHS-compliant/lead-free surface-mount leadless package that measures $6 \times 6 \mathrm{~mm}$ square.

It is ideally suited for high dynamic range receiver front ends using diversity receive channels. Functionality includes frequency conversion and IF amplification, while an integrated LO driver amplifier powers the passive mixer. The MCM is implemented with reliable and mature GaAs MESFET and InGaP HBT technology.

Typical applications include frequency downconversion used in 3G W-CDMA and WiMax basestation transceiver or repeater applications.

Functional Diagram

Specifications ${ }^{(1)}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Parameters \& Units \& Min \& Typ \& Max \& Min \& Typ \& Max \& Comments \\
\hline RF Frequency Range LO Frequency Range IF Frequency Range \% Bandwidth around IF center frequency \& \begin{tabular}{l}
MHz \\
MHz \\
MHz \\
\%
\end{tabular} \& \multicolumn{3}{|c|}{\[
\begin{gathered}
1900-2400 \\
1600-2335 \\
65-300 \\
\\
\pm 7.5 \\
\hline
\end{gathered}
\]} \& \multicolumn{3}{|c|}{\[
\begin{gathered}
2500-2700 \\
2200-2565 \\
135-300 \\
\\
\pm 12 \\
\hline
\end{gathered}
\]} \& \begin{tabular}{l}
See note 2 \\
See note 3
\end{tabular} \\
\hline \begin{tabular}{l}
IF Test Frequency \\
SSB Conversion Gain \\
Gain Drift over Temp (-40 to 85 \\
\({ }^{\circ} \mathrm{C}\)) \\
Input IP3 \\
Input 1 dB Compression Point \\
Noise Figure \\
LO Input Drive Level \\
LO-RF Isolation \\
LO-IF Isolation \\
RF-IF Isolation \\
Branch-Branch Isolation \\
Return Loss: RF Port \\
Return Loss: LO Port \\
Return Loss: IF Port
\end{tabular} \& \begin{tabular}{l}
MHz \\
dB \\
dB \\
dBm \\
dBm \\
dB \\
dBm \\
dB \\
dB \\
dB \\
dB \\
dB \\
dB \\
dB
\end{tabular} \& 6.5
+24
-2.5 \& \[
\begin{gathered}
\hline 240 \\
9.2 \\
\\
\pm 0.6 \\
+28 \\
+11.5 \\
11 \\
0 \\
12 \\
26 \\
25 \\
45 \\
14 \\
14 \\
13
\end{gathered}
\] \& 10.5

+2.5 \& 5.4
+17

-2.5 \& $$
\begin{gathered}
\hline 155 \\
8.4 \\
\\
\pm 0.6 \\
+22 \\
+8.0 \\
13 \\
0 \\
9 \\
26 \\
25 \\
40 \\
12 \\
14 \\
10
\end{gathered}
$$ \& 9.9

+2.5 \& | $\text { Temp }=25^{\circ} \mathrm{C}$ |
| :--- |
| Referenced to $+25^{\circ} \mathrm{C}$ |
| See note 4 |
| See note 4 |
| See note 5 $\begin{aligned} & \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm} \\ & \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm} \end{aligned}$ |

\hline | Operating Supply Voltage |
| :--- |
| Supply Current |
| Thermal Resistance |
| Junction Temperature | \& \[

$$
\begin{gathered}
\mathrm{V} \\
\mathrm{~mA} \\
{ }^{\circ} \mathrm{C} / \mathrm{W} \\
{ }^{\circ} \mathrm{C}
\end{gathered}
$$

\] \& \& \[

$$
\begin{gathered}
+5 \\
315
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
330 \\
34 \\
160 \\
\hline
\end{gathered}
$$

\] \& \& \[

$$
\begin{gathered}
+5 \\
315
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
330 \\
34 \\
160 \\
\hline
\end{gathered}
$$

\] \& | See note 6 |
| :--- |
| See note 6 |

\hline
\end{tabular}

1. Specifications when using the application specific circuit (shown on page 3) with a low side $\mathrm{LO}=0 \mathrm{dBm}$ and $\mathrm{IF}=240 \mathrm{MHz}$ in a downconverting application at $25{ }^{\circ} \mathrm{C}$.
2. IF matching components affect the center IF frequency. Proper component values for other IF center frequencies than shown can be provided by emailing to applications.engineering@wj.com.
3. The IF bandwidth of the converter is defined as 15% around any center frequency in its operating IF frequency range. The bandwidth is determined with external components. Specifications are valid around the total $\pm 7.5 \%$ bandwidth. ie. with a center frequency of 240 MHz , the specifications are valid from $240 \pm 18 \mathrm{MHz}$.
4. Assumes the supply voltage $=+5 \mathrm{~V}$. IIP3 is measured with $\Delta \mathrm{f}=1 \mathrm{MHz}$ with RFin $=-5 \mathrm{dBm} /$ tone.
5. Assumes LO injection noise is filtered at the thermal noise floor, $-174 \mathrm{dBm} / \mathrm{Hz}$, at the RF, IF, and Image frequencies.
6. The R1 resistor can be modified for the CV221-2A to draw less current. Changing it from 13 to 18Ω is expected to have the converter draw 17 mA less current so that the converter will draw about 300 mA typically under LO drive, while degrading the IIP3 performance by 0.5 dB .

Absolute Maximum Rating

Parameter	Rating
Operating Case Temperature	-40 to $+85^{\circ} \mathrm{C}$
Storage Temperature	-55 to $+150^{\circ} \mathrm{C}$
DC Voltage	+5.5 V
Junction Temperature	$+220^{\circ} \mathrm{C}$
Operation of this device above any of these parameters may cause permanent damage.	

Ordering Information

Part No. Description

CV221-2AF
1.9-2.7GHz Dual-Branch Downconverter (lead-free/RoHS-compliant $6 \times 6 \mathrm{~mm}$ QFN package)
CV221-2APCB240 Fully Assembled Eval. Board, IF $=240 \mathrm{MHz}$

CV221-2A
TriQuint
1.9-2.7 GHz Dual-Branch Downconverter

Device Architecture I Application Circuit Information

Typical 2.1 GHz Downconverter Performance Chain Analysis (Each Branch)

Stage	Gain (dB)	Input P1dB (dBm)	$\begin{gathered} \text { Input } \\ \text { IP3 } \\ \text { (dBm) } \end{gathered}$	$\begin{gathered} \mathrm{NF} \\ \text { (dB) } \end{gathered}$	$\begin{aligned} & \text { Current } \\ & (\mathrm{mA}) \end{aligned}$	Cumulative Performance			
						Gain (dB)	Input P1dB (dBm)	$\begin{gathered} \text { Input } \\ \begin{array}{c} \text { IP3 } \\ (\mathrm{dBm}) \end{array} \end{gathered}$	$\begin{gathered} \mathbf{N F} \\ \text { (dB) } \end{gathered}$
LO Amp / MMIC Mixer	-8.4	20	33	9	115	-8.4	20	33	9
IF Amplifier	17.6	1	21	2.2	100	9.2	9	27.8	11
CV221-2A		lativ	orn		315*	9.2	9	27.8	11

* The $2^{\text {nd }}$ branch includes another mixer and IF amplifier, which increases the total current consumption of the MCM to be 315 mA .

CV221-2A: The application circuit can be broken up into three main functions as denoted in the colored dotted areas above: RF/IF diplexing (blue), IF amplifier matching (green), and dc biasing (purple). There are various placeholders for chip components in the circuit schematic so that a common PCB can be used for all WJ dual-branch converters.

External Diplexer: This is only used with the cellular-band CV products. The mixer performs the diplexing internally for the CV221-2A; therefore the components shown in the diplexer section should be not be loaded except for L3, L10, L7, and L11, which should contain a 0Ω jumper.

IF Amplifier Matching: The IF amplifier requires matching elements to optimize the performance of the amplifier to the desired IF center frequency. Since IF bandwidths are typically on the order

Printed Circuit Board Material: .014" FR-4, 4 layers, .062 " total thickness

of 5 to 10%, a simple two element matching network, in the form of either a high-pass or low-pass filter structure, is sufficient to match the MMIC IF amplifier over these narrow bandwidths. Proper component values for other IF center frequencies can be provided by emailing to applications.engineering@wj.com.

DC Biasing: DC bias must be provided for the LO and IF amplifiers in the converter. R1 sets the operating current for the last stage of the LO amplifier and is chosen to optimize the mixer LO drive level. Proper RF chokes and bypass capacitors are chosen for proper amplifier biasing at the intended frequency of operation. The " +5 V " dc bias should be supplied directly from a voltage regulator.

WiMax Operation: There is no change to the application circuit for operation in the 2.5 to 2.7 GHz band.

CV221-2A
TriQuint
SEMICONDUCTOR

Application Circuit: IF $=240 \mathrm{MHz}$ (CV221-2APCB240) RF = $1900 \mathbf{- 2 7 0 0} \mathbf{M H z}$, IF = 240 MHz

Notes:

1. The R1 resistor can be modified for the CV221-2A to draw less current. Changing it from 13 to 18Ω is expected to have the converter draw 17 mA less current so that the converter will draw about 300 mA typically under LO drive, while degrading the IIP3 performance by 0.5 dB .
2. The values shown above have the IF tuned at 240 MHz and will affect the optimal performance of the converter. For other frequencies, these components need to be modified as follows:

IF Amplifier Matching

Ref. Desig.	$\mathbf{5 0}$	$\mathbf{7 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 2 0}$	$\mathbf{1 3 0}$	$\mathbf{1 4 0}$	$\mathbf{1 5 5}$	$\mathbf{1 8 0}$	$\mathbf{2 4 0}$
C4, C11	18 pF	15 pF	15 pF	8.2 pF	8.2 pF	6.8 pF	5.6 pF	5.6 pF	3.9 pF	3.0 pF
L4, L8	390 nH	220 nH	220 nH	180 nH	150 nH	150 nH	150 nH	120 nH	110 nH	82 nH

Typical Downconversion Performance Plots

Performance using the circuitry on the CV221-2APCB240 Evaluation Board

CV221-2AF Mechanical Information

This package is lead-free/RoHS-compliant. The plating material on the pins is annealed matte tin over copper. It is compatible with both lead-free (maximum $260^{\circ} \mathrm{C}$ reflow temperature) and leaded (maximum $245^{\circ} \mathrm{C}$ reflow temperature) soldering processes.

Outline Drawing

Mounting Configuration / Land Pattern

Product Marking

The component will be lasermarked with a "CV221-2AF" product label with an alphanumeric lot code on the top surface of the package.

Tape and reel specifications for this part will be located on the website in the "Application Notes" section.

ESD / MSL Information
 4 Caution! ESD sensitive device.

ESD Rating:	Class 1 B
Value:	Passes $/ 500 \mathrm{~V}$ to $<1000 \mathrm{~V}$
Test:	Human Body Model (HBM)
Standard:	JEDEC Standard JESD22-A114
ESD Rating:	Class III
Value:	Passes /500V to <1000V
Test:	Charged Device Model (CDM)
Standard:	JEDEC Standard JESD22-C101

MSL Rating: Level 2 at $+260^{\circ} \mathrm{C}$ convection reflow Standard: JEDEC Standard J-STD-020

Functional Pin Layout

Pin	Function	Pin	Function
1	Ch. 1 Mixer RF Input	15	N/C or GND
3	LO Amp Bias	17	LO input
5	N/C or GND	19	N/C or GND
7	Ch. 2 Mixer RF Input	21	+5 V
9	Ch. 2 Mixer IF Output	23	Ch. 1 IF Amp Output / Bias
11	Ch. 2 IF Amp Input	25	Ch. 1 IF Amp Input
13	Ch. 2 IF Amp Output / Bias	27	Ch. 1 Mixer IF Output

The even numbered pins are hard grounded to the backside paddle internally. They can be grounded or not connected. The backside paddle is required to be grounded.

