

PRELIMINARY DATA SHEET

SKY65238: Power Amplifier Module With Integrated BAW Filter for WLAN Applications

Applications

- IEEE802.11 b/g/n WLAN
 - Access points and routers
 - Set top boxes, gaming consoles, and other home entertainment devices (including video, voice, and data "triple play" devices)

Features

- . High gain of 30 dB
- EVM (64 QAM OFDM): 3% @ +25 dBm
- Supply voltage: 5 V
- Integrated output power detector with ±0.5 dB accuracy
- Output power detector with 20 dB dynamic range
- Sharp rejection near bandwidth edges meets FCC restricted band emissions
- . Internal RF match and bias circuits
- · Superior gain flatness
- Small footprint, MCM (20-pin, 6 x 6 mm) Pb-free (MSL3, 250 °C per JEDEC J-STD-020) SMT package

Skyworks offers lead (Pb)-free RoHS (Restriction of Hazardous Substances) compliant packaging.

Description

Skyworks SKY65238 is a Power Amplifier Module (PAM) with integrated Bulk Acoustic Wave (BAW) filtering technology. The device provides high output power, linearity, and gain across the entire bandwidth. These features make the SKY65238 ideal for 802.11 b/g/n Wireless Local Area Networks (WLANs) transmitting video, voice, and data.

The device is fabricated using Skyworks highly reliable Indium Gallium Phosphide (InGaP) Heterojunction Bipolar Transistor (HBT) technology. The PAM integrates three-stage power amplifiers, a BAW filter, and a power detector into a small, 20-pin, 6 x 6 mm Multi-Chip Module (MCM).

The device package and pinout for the 20-pin MCM are shown in Figure 1. A block diagram of the SKY65238 is shown in Figure 2.

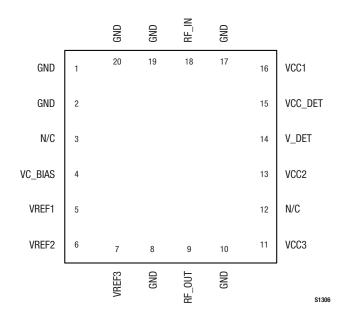


Figure 1. SKY65238 Pinout – 20-Pin MCM (Top View)

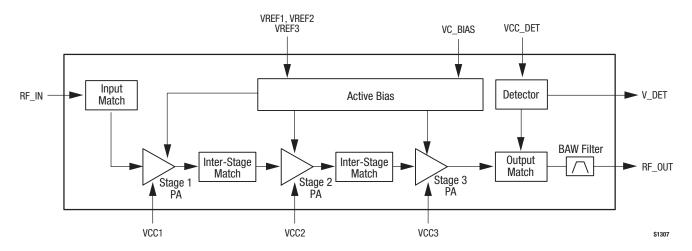


Figure 2. SKY65238 Block Diagram

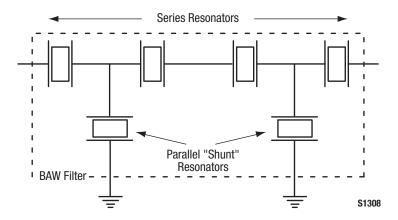


Figure 3. Typical BAW Filter "Ladder" Network

Technical Description

The SKY65238 PAM contains all of the needed RF matching, BAW filtering, and DC biasing circuits. The device also provides an output power detector voltage.

The SKY65238 is a three-stage, HBT InGaP device optimized for high linearity and power efficiency. These features make the device suitable for WLAN applications where power amplifier linearity and power consumption are of critical importance.

BAW Filter

The BAW filter uses very low loss electromechanical resonators to perform highly selective RF filtering. A BAW filter is formed by cascading both series and shunt resonators in a ladder configuration as shown in Figure 3.

The series and shunt resonators have slightly different resonant frequencies. Together, they form a bandpass with steep nearband roll off. The impedance, band shape, insertion loss, and the

out of band rejection of the filter are determined by optimizing the properties of the various resonators.

Package and Handling Information

Since the device package is sensitive to moisture absorption, it is baked and vacuum packed before shipping. Instructions on the shipping container label regarding exposure to moisture after the container seal is broken must be followed. Otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY65238 is rated to Moisture Sensitivity Level 3 (MSL3) at 250 °C. It can be used for lead or lead-free soldering. For additional information, refer to Skyworks Application Note, *PCB Design and SMT Assembly/Rework Guidelines for MCM-L Packages*, document number 101752.

Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. Production quantities of this product are shipped in a standard tape and reel format. For packaging details, refer to the Skyworks Application Note, *Tape and Reel*, document number 101568.

Figure 13 provides a typical evaluation board schematic. An assembly drawing for the Evaluation Board is shown in Figure 14 and the layer detail is provided in Figure 15. Package dimensions for the 20-pin MCM are shown in Figure 16, and tape and reel dimensions are provided in Figure 17.

Electrical and Mechanical Specifications

Signal pin assignments and functional pin descriptions are described in Table 1. The absolute maximum ratings of the SKY65238 are provided in Table 2. Electrical specifications are provided in Table 3. Typical performance characteristics are illustrated in Figures 4 through 12.

Electrostatic Discharge (ESD) Sensitivity

The SKY65238 is a static-sensitive electronic device. Do not operate or store near strong electrostatic fields. Take proper ESD precautions.

Table 1. SKY65238 Signal Descriptions

Pin #	Name	Description	Pin#	Name	Description
1	GND	Ground	11	VCC3	Stage 3 collector voltage
2	GND	Ground	12	N/C	No connection
3	N/C	No connection	13	VCC2	Stage 2 collector voltage
4	VC_BIAS	Bias voltage	14	V_DET	Detector output signal
5	VREF1	Bias reference voltage 1	15	VCC_DET	Detector supply voltage
6	VREF2	Bias reference voltage 2	16	VCC1	Stage 1 collector voltage
7	VREF3	Bias reference voltage 3	17	GND	Ground
8	GND	Ground	18	RF_IN	RF input
9	RF_OUT	RF output	19	GND	Ground
10	GND	Ground	20	GND	Ground

Table 2. SKY65238 Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Minimum	Maximum	Units
RF output power	Роит		27	dBm
Supply voltage, measured at pin of package (Note 2)	VREF1, VREF2, VREF3, and VCC_DET		4	V
Collector and bias voltage	VCC1, VCC2, VCC3, and VC_BIAS		6	V
Total supply current (Icc + IBIAS + IREF)	ICC_TOTAL		800	mA
Power dissipation			3.0	W
Case operating temperature	Tc	-40	+85	°C
Storage temperature	Тѕт	-55	+125	°C
Junction temperature (Note 3)	TJ		+150	°C

Note 1: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value.

Note 2: Evaluation Board supply voltage levels can be different. Refer to the Evaluation Board schematic diagram in Figure 12.

Note 3: Thermal resistance (junction to center ground pad) is 20 $^{\circ}$ C/W minimum and 23 $^{\circ}$ C/W maximum.

PRELIMINARY DATA SHEET • SKY65238 WLAN PAM WITH BAW FILTER

Table 3. SKY65238 Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Units	
RF input power	Pin			-6	dBm	
Supply voltage, measured at pin of package	VREF1, VREF2, and VREF3	2.3	2.5	2.7	V	
	VCC_DET	3.3	3.6	3.9	V	
	VCC1, VCC2, VCC3, and VC_BIAS	4.5	5.0	5.5	V	
Case operating temperature	Tc	-40		+85	°C	
Storage temperature	Тѕт	- 55		+125	°C	

Table 4. SKY65238 Electrical Specifications (1 of 2) (VCC1, VCC2, VCC3, VREF1, VREF2, VREF3, VCC_DET, and VC_BIAS = 5 V at the Evaluation Board Terminals, $T_c = +25$ °C, Test Frequency = 2.442 GHz Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Typical	Max	Units
Using IEEE802.11b Complimentary Code	Keying Input Signal,	Data Rate = 11 Mbps				
Total supply current	ICC_TOTAL			1150		mA
Output power (Note 1)	Роит			+27		dBm
Power added efficiency (Note 2)	PAE			25		%
Ramp-up/ramp-down (Note 3)	Ts			<0.5		μ\$
Using IEEE802.11g Orthogonal Frequency	Division Multiplexi	ng Input Signal, Data Rate =	54 Mbps			
Total supply current	ICC_TOTAL			1050		mA
Output power (Note 4)	Роит			+27		dBm
Output power @ EVM = 3%	Роит_еум			+22		dBm
Power added efficiency (Note 2)	PAE			22		%
Error Vector Magnitude	EVM	All power levels between +13 dBm and +22 dBm per IEEE802.11g @ 54 Mbps 0FDM			3	%
Using Continuous Wave Input Signals						
Small signal gain	G	Pın = −25 dBm		30		dB
Gain flatness over band		From 2.4 GHz to 2.5 GHz		±2		dB
Gain flatness over channel (16.25 MHz)		Over any 20 MHz within band		±1		dB
Output IP3	OIP3	PTONE = +25 dBm, Delta_freq = 5 MHz		+40		dBm
Quiescent Current	la	No RF input		420	460	mA
Noise Figure	NF			5	7	dB
Power detector dynamic range				20		dB
Power detector accuracy		Over temperature		±0.5		dB

Table 4. SKY65238 Electrical Specifications (2 of 2) (VCC1, VCC2, VCC3, VREF1, VREF2, VREF3, VCC_DET, and VC_BIAS = 5 V at the Evaluation Board Terminals, $T_c = +25$ °C, Test Frequency = 2.442 GHz Unless Otherwise Noted)

Parameter	Symbol	Test Condition	Min	Typical	Max	Units	
Using Continuous Wave Input Signals (continued)							
Lower passband frequency				2402		MHz	
Upper passband frequency	F2			2472		MHz	
Lower stopband attenuation		@ 2.39 GHz	10			dB	
Upper stopband attenuation		@ 2.4835 GHz	10			dB	
Second harmonic attenuation band			40			dB	

- Note 1: Defined as the maximum power level for which the IEEE802.11b transmit mask requirements are met.
- Note 2: Measured at the specified average output RF power and modulation type.
- Note 3: Ramp-up and ramp-down times are defined from the 10% to 90% power points.
- Note 4: Defined as the maximum power level for which the IEEE802.11g transmit mask requirements are met.

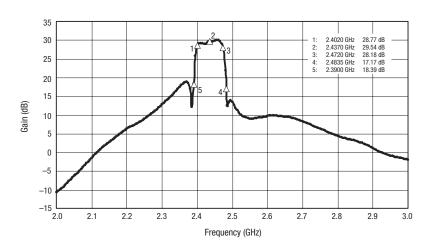
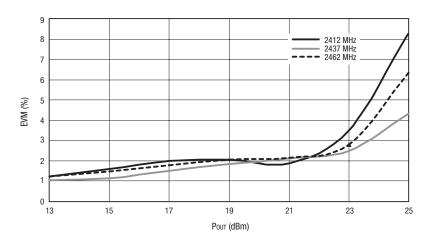
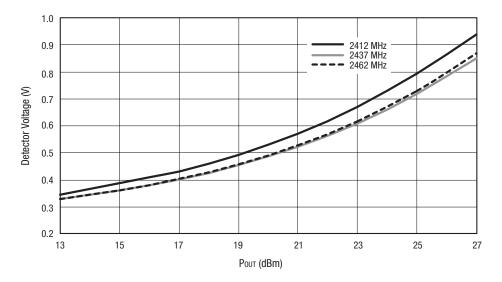




Figure 4. Gain Response

Figure 5. EVM vs Output Power Over Frequency

Figure 6. Detector Voltage vs Output Power Over Frequency

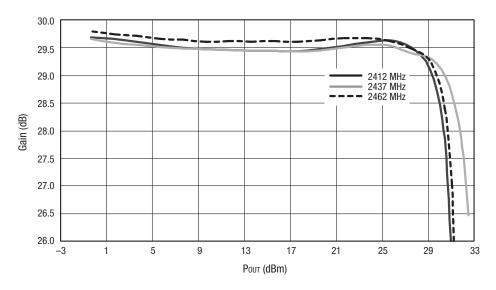


Figure 7. Typical Gain vs Output Power

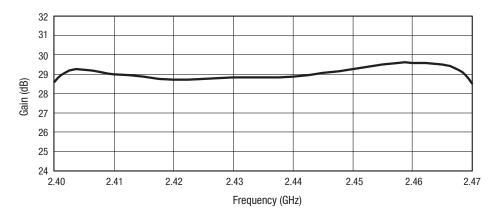
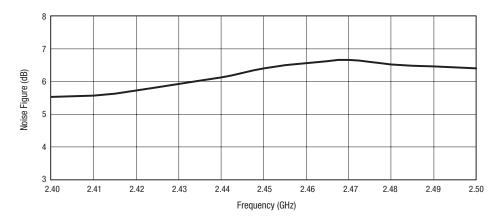



Figure 8. Gain vs Frequency

Figure 9. Typical Noise Figure vs Frequency

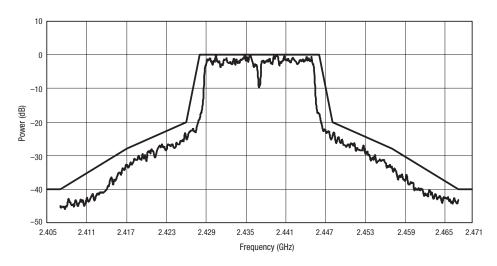


Figure 10. Output Spectrum Response for 802.11g Signal (Pout = + 28 dBm)

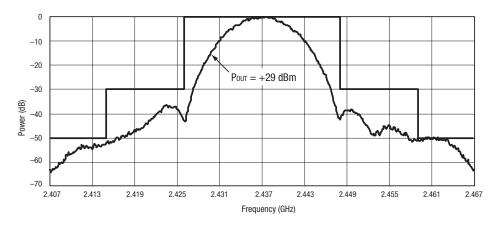


Figure 11. Output Spectrum Response for 802.11b CCK-Coded Signal (Pout = +29 dBm)

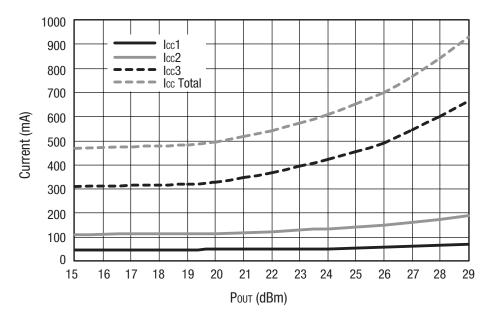
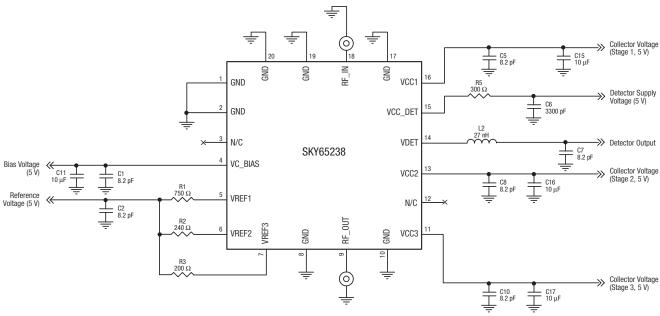
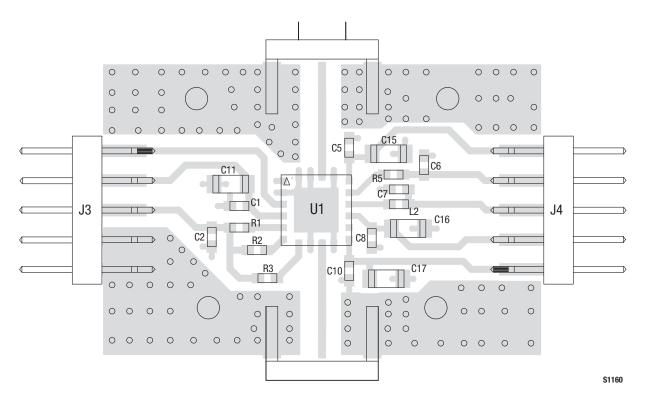
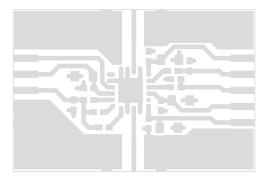



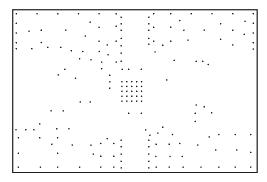
Figure 12. Individual Stage Currents and Total Current vs. RF Output Power

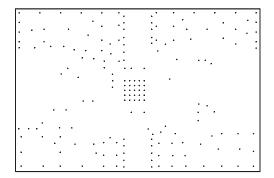


Note: Evaluation Board material: four-layer Rogers 4003-12, $\varepsilon_r = 3.38$.


Some component labels may be different than the corresponding component symbol shown here. Component values, however, are accurate as of the date of this Data Sheet.

S1309


Figure 13. SKY65238 Evaluation Board Schematic


Figure 14. Evaluation Board Assembly Drawing

Layer 1: Top Metal

Layer 2: Ground

Layer 3: Inner Traces

Layer 4: Ground

S1159

Figure 15. Evaluation Board Layer Detail

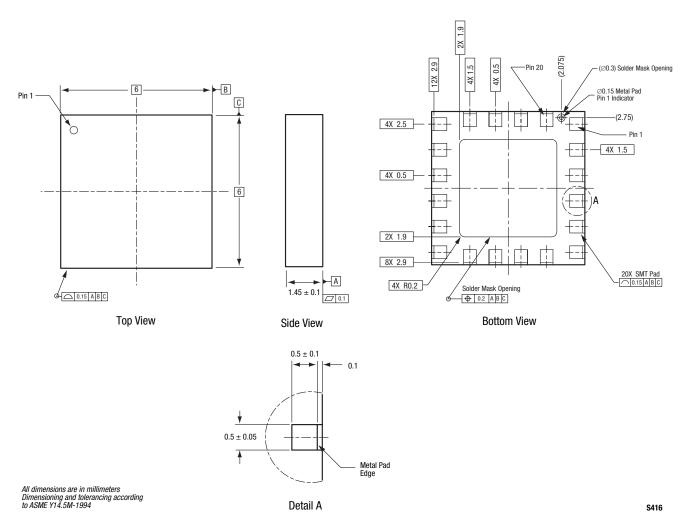
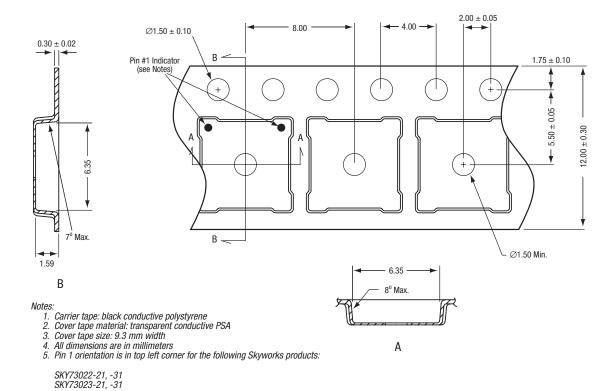



Figure 16. SKY65238 20-Pin MCM Package Dimensions

PRELIMINARY DATA SHEET • SKY65238 WLAN PAM WITH BAW FILTER

For all other 6 x 6 mm MCM/RFLGA products, pin 1 orientation is in top right corner.

S1183

Figure 17. SKY65238 20-Pin MCM Tape and Reel Dimensions

Ordering Information

Model Name	Manufacturing Part Number	Evaluation Kit Part Number
SKY65238 WLAN Power Amplifier with BAW Filter	SKY65238-21 (Pb-free package)	TW16-D281

Copyright @ 2007, 2008 Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and "Breakthrough Simplicity" are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.