

Applications

- 802.11n, MIMO solutions
- IEEE802.11b DSSS WLAN
- IEEE802.11g OFDM WLAN
- IEEE802.11a OFDM WLAN
- Access Points, PCMCIA, PC cards

Features

- 2 Transmit and 2 receive path architecture
- All RF ports matched to 50 Ω
- Integrated 2.4 GHz PA, 5 GHz PA, TX Filter, T/R switches and diplexers
- Integrated Power Detector for each TX Chain
- 18 dBm O/P Power, 802.11b, 11 Mbits, ACPR = 32 dBc
- 18 dBm @ 3.0 % EVM, 802.11g, 54 Mbits
- 16.5 dBm @ 3.0 % EVM, 802.11a, 54 Mbits
- Single supply voltage: 3.3 V ± 10 %
- Lead free and RoHS compliant
- Thin lead free plated package, 10 mm x 14 mm x 1.1 mm, MSL 3

Ordering Information

Part No.	Package	Remark
SE2545A30	48 pin LGA	Samples
SE2545A30-T	48 pin LGA	Tray
SE2545A30-EK1	N/A	Evaluation kit

Product Description

The SE2545A30 is a complete 802.11n WLAN RF front-end module providing all the functionality of the power amplifiers, power detector, T/R switch, diplexers and associated matching. The SE2545A30 provides a complete 2.4 GHz and 5 GHz WLAN Multiple Input, Multiple Output (MIMO) RF solution from the output of the transceiver to the antennas in an ultra compact form factor.

Designed for ease of use, all RF ports are matched to $50~\Omega$ to simplify PCB layout and the interface to the transceiver RFIC. The SE2545A30 also includes a transmitter power detector for each band and transmit chain with 20 dB of dynamic range for each transmit chain. Each transmit chain has a separate digital enable control for transmitter power ramp on/off control. The power ramp rise/fall time is less than 0.5 usec.

The device also provides a notch filter from 3.2-3.3 GHz and 3.2-3.9 GHz prior to the input of each 2.4 GHz and 5 GHz power amplifiers, respectively.

Functional Block Diagram

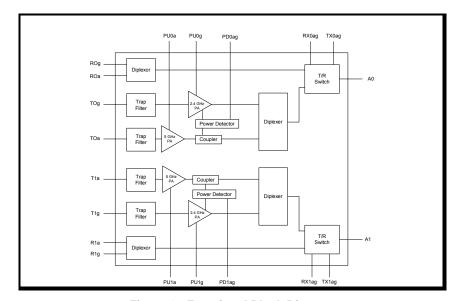


Figure 1: Functional Block Diagram

Pin Out Diagram

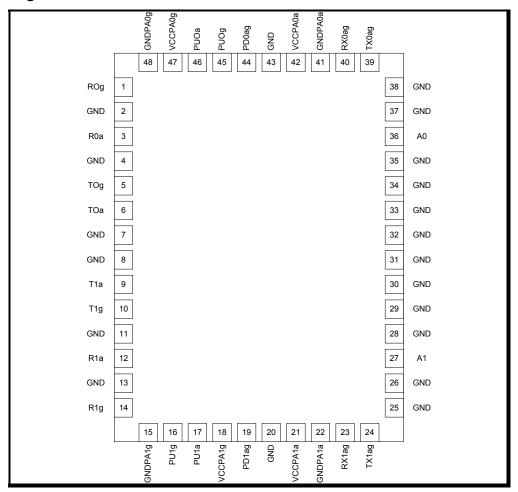


Figure 2: SE2545A30 Pin Out (Top View Through Package)

Pin Out Description

Pin No.	Name	Description
1	R0g	2.4 GHz Receive Output, Channel 0
2	GND	Ground
3	R0a	5 GHz Receive Output, Channel 0
4	GND	Ground
5	T0g	2.4 GHz Transmit Input, Channel 0
6	T0a	5 GHz Transmit Input, Channel 0
7,8	GND	Ground
9	T1a	5 GHz Transmit Input, Channel 1
10	T1g	2.4 GHz Transmit Input, Channel 1
11	GND	Ground
12	R1a	5 GHz Receive Output, Channel 1
13	GND	Ground

Pin No.	Name	Description
14	R1g	2.4 GHz Receive Output, Channel 1
15	GNDPA1g	Ground
16	PU1g	2.4 GHz PA Enable, Channel 1
17	PU1a	5 GHz PA Enable, Channel 1
18	VCCPA1g	Supply Voltage (Note 1)
19	PD1ag	Dual Band Power Detector, Channel 1
20	GND	Ground
21	VCCPA1a	Supply Voltage (Note 1)
22	GNDPA1a	Ground
23	RX1ag	Rx Switch Select, Channel 1
24	TX1ag	Tx Switch Select, Channel 1
25,26	GND	Ground
27	A1	Antenna, Channel 1
28-35	GND	Ground
36	A0	Antenna, Channel 0
37,38	GND	Ground
39	TX0ag	Tx Switch Select, Channel 0
40	RX0ag	Rx Switch Select, Channel 0
41	GNDPA0a	GND
42	VCCPA0a	Supply Voltage (Note 1)
43	GND	Ground
44	PD0ag	Dual Band Power Detector, Channel 0
45	PU0g	2.4 GHz PA Enable, Channel 0
46	PU0a	5 GHz PA Enable, Channel 0
47	VCCPA0g	Supply Voltage (Note 1)
48	GNDPA0g	Ground

Note 1: All VCC pins need to be always supplied with the supply voltage

Absolute Maximum Ratings

These are stress ratings only. Exposure to stresses beyond these maximum ratings may cause permanent damage to, or affect the reliability of the device. Avoid operating the device outside the recommended operating conditions defined below. This device is ESD sensitive. Handling and assembly of this device should be at ESD protected workstations.

Symbol	Definition	Min.	Max.	Unit
Vcc	VCCPA0g, VCCPA0a, VCCPA1g, VCCPA1a	-0.3	4.0	V
PU	PU0a, PU0g, PU1a, PU1g	-0.3	4.0	V
TXRF	T0a, T0g, T1a, T1g	-	4.0	dBm
Та	Operating Temperature Range	0	85	°C
Тѕтѕ	Storage Temperature Range	-40	150	°C

Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	3.0	3.3	3.6	V
TA	Ambient Temperature	0	25	85	°C

DC Electrical Characteristics

Conditions: Vcc = 3.3 V, TA = 25 °C, as measured on SiGe Semiconductor's SE2545A30-EV1 evaluation board (dembedded to device), all unused ports terminated with 50 ohms, unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
lcc-g	Total 802.11g Transmit Supply Current for Channel 0 or Channel 1	P _{OUT} = 18 dBm, 54 Mbps OFDM signal, 64QAM PU0g or PU01g = 3.3 V PU0a and PU1a = 0 V	-	190	-	mA
Ісс-в	Total 802.11b Transmit Supply Current for Channel 0 or Channel 1	P _{OUT} = 18 dBm, 11 Mbps CCK signal, BT = 0.45 PU0g or PU01g = 3.3 V PU0a and PU1a = 0 V	-	190	-	mA
Icc-a	Total 802.11a Transmit Supply Current for Channel 0 or Channel 1	P _{OUT} = 16.5 dBm, 54 Mbps OFDM signal, 64QAM PU0a or PU01a = 3.3 V PU0g and PU1g = 0 V	-	230	-	mA
Icc_off	Total Supply Current	No RF, PU0g = PU0a = PU1g = Pu1a = 0 V, TX0ag = RX0ag = TX1ag = RX1ag = 0 V	-	2	20	μА

Logic Characteristics

Conditions: Vcc = 3.3 V, T_A = 25 °C, as measured on SiGe Semiconductor's SE2545A30-EV1 evaluation board (dembedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Venh	Logic High Voltage for PU0g, PU0a, PU1g, PU1a (Module On)	-	2.0	-	Vcc	٧
Venl	Logic Low Voltage PU0g, PU0a, PU1g, PU1a (Module Off)	-	0	-	0.5	V
lenh	Input Current Logic High Voltage (PU0g, PU0a, PU1g, PU1a)	-	-	100	200	μΑ
lenl	Input Current Logic Low Voltage (PU0g, PU0a, PU1g, PU1a)	-	-	0.2	-	μА

Switch Characteristics

Conditions: Vcc = Ven = 3.3 V, Ta = 25 °C, as measured on SiGe Semiconductor's SE2545A30-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Vctl_on	Control Voltage (On State)	-	3.0	-	3.6	V
Vctl_off	Control Voltage (OFF State)	-	0.0	-	0.2	V
SWon	Low Loss Switch Control Voltage	High State = Vctl_on - Vctl_off	2.8	ı	Vcc	V
SWoff	High Loss Switch Control Voltage	Low State = Vctl_off - Vctl_off	0	ı	0.3	V
Ictl_on	Switch Control Bias Current (RF Applied)	On pin (TX0ag, RX0ag, TX1ag, RX1ag) being driven high. RF Applied	-	-	100	μΑ
Ictl_on	Switch Control Bias Current (No RF)	On pin (TX0ag, RX0ag, TX1ag, RX1ag) being driven high. No RF	-	1	30	μА
Ссть	Control Input Capacitance	-	-	-	100	pF

Switch Control Logic Table

Switch Logic					Operation	onal Mode	
TX0ag	RX0ag	TX1ag	RX1ag	T0g, T0a – ANT0	R0g, R0a – ANT0	T1g, T1a – ANT1	R1g, R1a – ANT1
SWon	SWoff	SWoff	SWoff	ON	OFF	OFF	OFF
SWoff	SWon	SWoff	SWoff	OFF	ON	OFF	OFF
SWoff	SWoff	SWon	SWoff	OFF	OFF	ON	OFF
SWoff	SWoff	SWoff	SWon	OFF	OFF	OFF	ON
SWon	SWoff	SWon	SWoff	ON	OFF	ON	OFF
SWoff	SWon	SWoff	SWon	OFF	ON	OFF	ON
SWoff	SWoff	SWoff	SWoff	Unsupported Switch State			

2.4 GHz AC Electrical Characteristics

2.4 GHz Transmit Characteristics (Channel 0, Channel 1)

Conditions: Vcc = 3.3 V, "PU0g and TX0ag" or "PU1g and TX1ag" = 3.3 V, PU0a = PU1a = RX0ag = RX1ag = 0 V, TA = 25 °C, as measured on SiGe Semiconductor's SE2545A30-EV1 evaluation board (de-embedded)

to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit	
Fin	Frequency Range	-	2400	-	2500	MHz	
P802.11g	Output power	54 Mbps OFDM signal, 64QAM, EVM = 3.0 %	ı	18	ı	dBm	
P802.11b	Output power	11 Mbps CCK signal, BT = 0.45 ACPR(Adj) < -32 ACPR(Alt) < -52	1	18	1	dBm	
BEVM	Backed Off EVM	54 Mbps, OFDM signal, 64 QAM, P = 8 dBm	-	1.5	-	%	
P _{1dB}	P1dB	-	22.5	25	-	dBm	
S ₂₁	Small Signal Gain	-	25	-	33	dB	
Δ\$21	Small Signal Gain Variation Over Band	-	-	1.0	2.5	dB	
S ₂₁ 3.2	Gain @ 3.2 to 3.3 GHz	-	-	0	4	dB	
2f,3f	Harmonics	Pout = 18 dBm, 1 Mbps, 802.11b CCK	-	-	-42	dBm/MHz	
IM3	3 rd Order Inter- modulation	f1 and f2 at Fc +/- 156.25 kHz, P = 18 dBm	-	-35	-	dBc	
IM5	5 th Order Inter- modulation	f1 and f2 at Fc +/- 156.25 kHz, P = 18 dBm	-	-45	-	dBc	
tr	Rise Time	10 % to 90% of final output power level	-	-	0.5	μs	
tar, taf	Delay and rise/fall Time	50 % of V _{EN} edge and 90/10 % of final output power level	-	-	0.5	μs	
S ₁₁	Input Return Loss	-	6	9	-	dB	
Tgcoup	Coupling between T0g and T1g	Test Signal applied at T0g or T1g and measured at A0 or A1	20	-	-	dBc	
STAB	Stability	Pout ≤ 18 dBm Load VSWR = 3:1	All non-harmonically related outputs less than -50 dBc/1MHz				

2.4 GHz Receive Characteristics (Channel 0, Channel 1)

Conditions: Vcc = 3.3 V, RX0ag or RX1ag = 3.3V, PU0g = PU1g = PU0a = PU1a = TX0ag = TX1ag = 0 V, TA = 25

 $^{\circ}\text{C},$ as measured on SiGe Semiconductor's SE2545A30-EV1 evaluation board (de-embedded to

device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fouт	Frequency Range	-	2400	-	2500	MHz
RXIL	Insertion Loss	-	-	1.5	2.0	dB
RX _{RL}	Return Loss	-	8	15	-	dB
Delta Rx	Delta between Rx paths	A0 to R0g and A1 to R1g	-	-	0.5	dB
TRISOL-2	Rx Leakage	RX0ag or RX1ag = 0 TX0ag or TX1ag=1 Pu0g or Pu1g=1 Transmitting 15 dBm @ A0 or A1, Power measured at R0g or R1g	-15	1	-5	dBm
ANTR _{ISOL}	Isolation between A0 and R0g ports or A1 and R1g	Small signal input (from- 15 dBm to 0 dBm) into A0 or A1, Device not transmitting, Power measured @ R0g or R1g, Rx0ag=Rx1ag=0 Tx0ag or TX1ag=1	20	ı	30	dB
Rgcoup	Coupling between R0g and R1g	Small signal input to A0 or A1 and measured at R0g and R1g	40	-	-	dBc

5 GHz AC Electrical Characteristics

5 GHz Transmit Characteristics (Channel 0, Channel 1)

Conditions: Vcc = 3.3 V, "PU0a and TX0ag" or "PU1a and TX1ag" = 3.3 V, PU0g = PU1g = RX0ag = RX1ag = 0 V, TA = 25 °C, as measured on SiGe Semiconductor's SE2545A30-EV1 evaluation board (de-embedded)

to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fin	Frequency Range	-	4900	-	5850	MHz
P _{802.11a}	Nominal Output Power	54 Mbps OFDM signal, 64 QAM, EVM = 3.0 %	-	16.5	1	dBm
BEVM	Backed Off EVM	54 Mbps, OFDM signal, 64 QAM, P = 7 dBm	-	1.5	-	%
P _{1dB}	P1dB	-	20	22.5	1	dBm
S ₂₁	Small Signal Gain	-	23	-	32	dB
ΔS ₂₁ CH	Small Signal Gain Variation Over 20 MHz Channel	-	-	-	0.5	dB
Δ\$21	Small Signal Gain Variation Over Band	-	-	2.5	4	dB
S ₂₁ 3.2	Gain @ 3.2 to 3.9 GHz	-	-	2	7	dB
2f,3f	Harmonics	Pout = 15 dBm, 54 Mbps, 802.11a signal	-	-	-42	dBm/MHz
IM3	3 rd Order Inter- modulation	f1 and f2 at Fc +/- 156.25 kHz, P = 15 dBm	-	-40	-	dBc
IM5	5 th Order Inter- modulation	f1 and f2 at Fc +/- 156.25 kHz, P = 15 dBm	-	-55	-	dBc
tr	Rise Time	10 % to 90% of final output power level	-	-	0.5	μs
tdr, tdf	Delay and rise/fall Time	50 % of V _{EN} edge and 90/10 % of final output power level	-	-	0.5	μs
S ₁₁	Input Return Loss	-	6	10	-	dB
Тасоир	Coupling between T0a and T1a	Test Signal applied at T0a or T1a and measured at A0 or A1	20	-	-	dBc
STAB	Stability	Pout ≤ 18 dBm Load VSWR = 4:1	All non-harmonically related outputs less than -50 dBc/1MHz			

5 GHz Receive Characteristics (Channel 0, Channel 1)

 $Conditions: \quad Vcc = 3.3 \text{ V}, \text{ RX0ag or RX1ag} = 3.3 \text{ V}, \text{ PU0g} = \text{PU1g} = \text{PU0a} = \text{PU1a} = \text{TX0ag} = \text{TX1ag} = 0 \text{ V}, \text{ TA} = 25 \text{ CA} = 25 \text$

 $^{\circ}\text{C}$, as measured on SiGe Semiconductor's SE2545A30-EV1 evaluation board (de-embedded to

device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fouт	Frequency Range	-	4900	-	5850	MHz
RX⊩	Insertion Loss	-	-	2.5	3.0	dB
RX _{RL}	Return Loss	-	8	15	-	dB
Delta Rx	Delta between Rx paths	A0 to R0a and A1 to R1a	1	1	1	dB
TRISOL-2	Rx Leakage	RX0ag or RX1ag = 0 TX0ag or TX1ag = 1 Pu0a or Pu1a = 1 Transmitting 15 dBm @ A0 or A1, Power measured at R0a or R1a	-12	1	-1	dBm
ANTR _{ISOL}	Isolation between A0 and R0a ports or A1 and R1a	Small signal input (from 15 dBm to 0 dBm) into A0 or A1, Device not transmitting, Power measured @ R0g or R1g, Rx0ag = Rx1ag = 0 Tx0ag or TX1ag = 1	16	-	29	dB
Ra _{coup}	Coupling between R0a and R1a	Small signal input to A0 or A1 and measured at R0a and R1a	40	-	-	dBc

2.4 GHz Power Detector Characteristics

Conditions: Vcc = 3.3 V, "PU0g and TX0ag = 3.3 V or "PU1g and TX1ag = 3.3 V", RX0ag = RX1ag = 0 V, TA = 25 °C, as measured on SiGe Semiconductor's SE2545A30-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fouт	Frequency Range	-	2400	-	2500	MHz
PDR	Power detect range, peak power	Measured at A0 or A1	0	-	20	dBm
PDZLOAD	DC load impedance	-	-	2.7	-	kohm
PDV _{NoRF}	Output Voltage, Pout = No RF	-	0.915	0.950	1.00	V
PDV _{p15}	Output Voltage, Pout = 15dBm	-	0.55	-	0.78	V
PDV _{p18}	Output Voltage, Pout = 18dBm	-	0.41	-	0.64	V
LPF-3dB (Note 2)	Power detect low pass filter -3dB corner frequency	Load = high impedance Min: 10 kohm Typ: 500 kohm	270	300	400	KHz

Note 2: The SE2545A30 provides the following load: PDZLOAD = 2.4 kohm, PDCLOAD = 180 pF

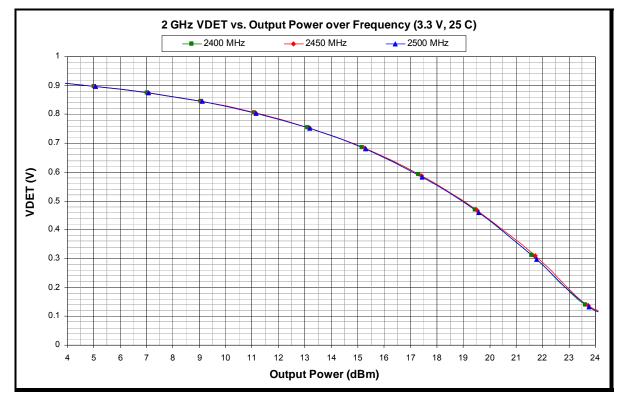


Figure 3: 2.4 GHz Power Detector Response over Frequency (CW Signal Used)

5 GHz Power Detector Characteristic

Conditions: Vcc = 3.3 V, "PU0a and TX0ag" or "PU1a and TX1ag" = 3.3 V", RX0ag = RX1ag = 0 V, TA = 25 °C, as measured on SiGe Semiconductor's SE2545A30-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fouт	Frequency Range	-	4900	-	5850	MHz
PDR	Power detect range, peak power	Measured at A0 or A1	0	-	20	dBm
PDZLOAD	DC load impedance	-	-	2.7	-	kohm
PDV _{NoRF}	Output Voltage, Pout = No RF	-	0.85	0.9	0.95	V
PDV _{p15}	Output Voltage, Pout = 15dBm	-	0.54	-	0.75	V
PDV _{p18}	Output Voltage, Pout = 18dBm	-	0.35	-	0.55	V
LPF-3dB (Note 2)	Power detect low pass filter -3dB corner frequency	Load = high impedance Min: 10 kohm Typ: 500 kohm	270	300	400	KHz

Note 2: The SE2545A30 provides the following load: PDZLOAD = 2.4 kohm, PDCLOAD = 180 pF

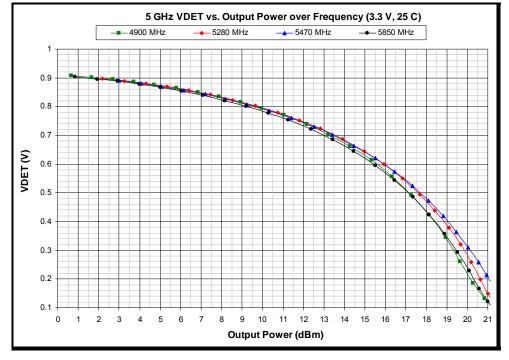


Figure 4: SE2545A30 5 GHz Power Detector Response over Frequency (CW Signal)

Package Information

Figure 5 and Figure 6 show the detailed device package diagram. The pads on the SiGe RF modules are plated with gold over nickel, with a gold thickness of approx. 0.75 to 1.0 um. The modules can be reflowed onto FR4 based material using eutectic Pb based or common tin based Pb free solder pastes.

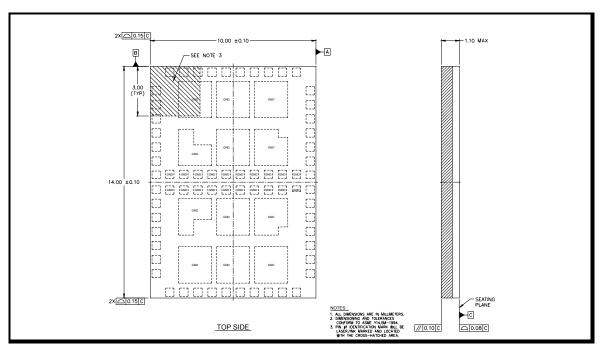


Figure 5: SE2545A30 Package Diagram (173-POD-01-01)

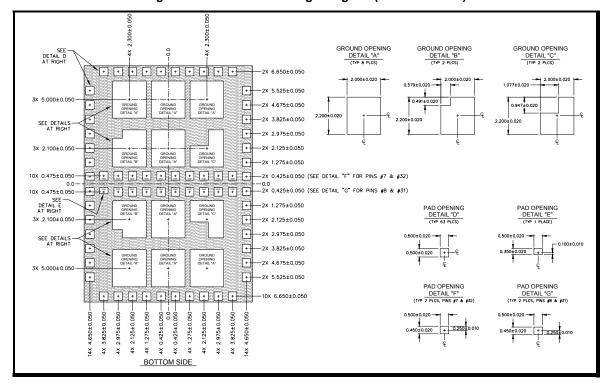


Figure 6: SE2545A30 Detailed Package Diagram (173-POD-01-01)

Recommended PCB Footprint

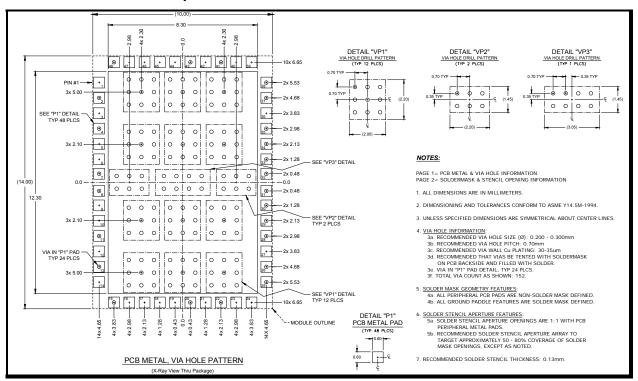


Figure 7: Recommended PCB Footprint - PCB Metal, Via Hole Pattern (173-DWG-10-1.0)

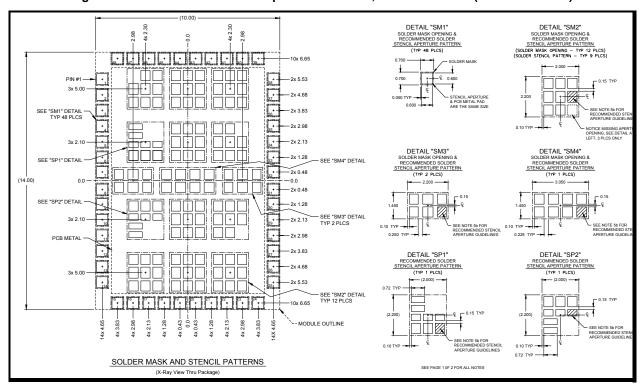


Figure 8: Recommended PCB Footprint - Solder Mask and Stencil Patterns (173-DWG-10-1.0)

Package Handling Information

Because of its sensitivity to moisture absorption, instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly. The SE2545A30 is capable of withstanding a Pb free solder reflow. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. If the part is manually attached, precaution should be taken to insure that the device is not subjected to temperatures above its rated peak temperature for an extended period of time. For details on both attachment techniques, precautions, and handling procedures recommended by SiGe, please refer to:

- SiGe's Application Note: "Land Grid Array Module Solder Reflow & Rework Information", Document Number 69-APP-01
- SiGe's Application Note: "Handling, Packing, Shipping and Use of Moisture Sensitive LGA", Document Number 69-APP-02.

Branding Information

The device branding is shown in Figure 9.

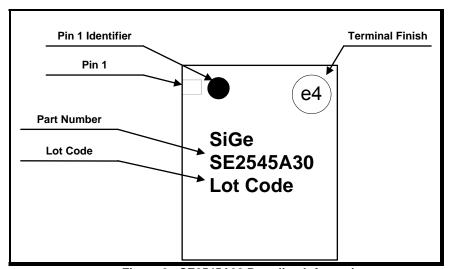


Figure 9: SE2545A30 Branding Information

Tray Information

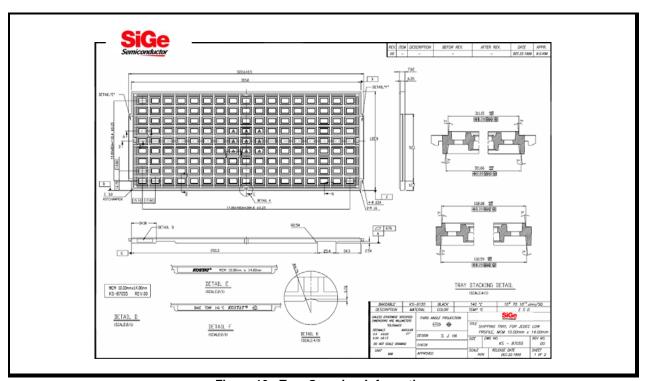


Figure 10: Tray Overview Information

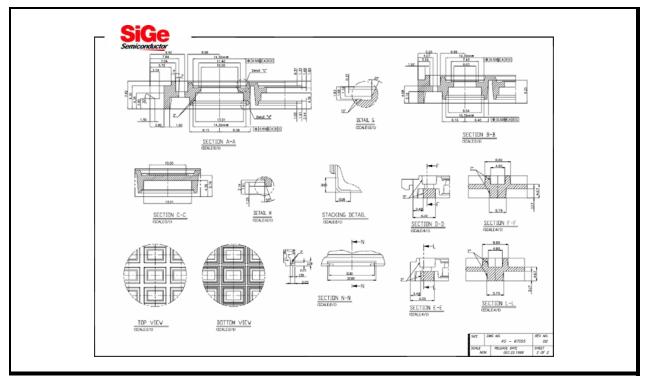


Figure 11: Tray Pocket Information

This page intentionally left blank.

http://www.sige.com

Email: sales@sige.com

Customer Service Locations

North America 1050 Morrison Drive, Suite 100 Ottawa ON K2H 8K7 Canada

Phone: +1 613 820 9244 Fax: +1 613 820 4933 Hong Kong

Phone: +852 3428 7222 Fax: +852 3579 5450

San Diego

Phone: +1 858 668 3541 Fax: +1 858 668 3546

United Kingdom

Phone: +44 1279 464217 Fax: +44 1279 464201

Product Preview

The datasheet contains information from the product concept specification. SiGe Semiconductor, Inc. reserves the right to change information at any time without notification.

Preliminary Information

The datasheet contains information from the design target specification. SiGe Semiconductor, Inc. reserves the right to change information at any time without notification.

Production testing may not include testing of all parameters.

Information furnished is believed to be accurate and reliable and is provided on an "as is" basis. SiGe Semiconductor, Inc. assumes no responsibility or liability for the direct or indirect consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license or indemnity is granted by implication or otherwise under any patent or other intellectual property rights of SiGe Semiconductor, Inc. or third parties. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SiGe Semiconductor, Inc. products are NOT authorized for use in implantation or life support applications or systems without express written approval from SiGe Semiconductor, Inc.

Copyright 2006 SiGe Semiconductor, Inc. All Rights Reserved