

Applications

- IEEE802.11b DSSS WLAN
- IEEE802.11g OFDM WLAN
- IEEE802.11a OFDM WLAN
- IEEE802.11n WLAN
- Access Points, PCMCIA, PC cards

Features

- 5GHz RF output port is matched to 50 Ω
- 2GHz RF output port is externally matched
- Integrated Harmonic Filter for each TX Chain
- Integrated Power Detector for each TX Chain
- 19 dBm @ 3.0 % EVM, 802.11g, 54 Mbits
- 18 dBm @ 3.0 % EVM, 802.11a, 54 Mbits
- 21 dBm O/P Power, 802.11b, 11 Mbits, ACPR = 35 dBc
- Lead free, Halogen free, RoHS compliant, MSL 1
- 3mm x 3mm x 0.9mm, QFN Package

Ordering Information

Part No.	Package	Remark
SE2580L	20 pin QFN	Samples
SE2580L-R	20 pin QFN	Tape and Reel
SE2580L-EK1	N/A	Evaluation kit

Functional Block Diagram

Product Description

The SE2580L is a matched 802.11a/b/g/n WLAN RF Power Amplifier module providing all the functionality of the power amplifiers, match, harmonic filters and power detector.

Designed for ease of use, 5GHz RF port is matched to 50 Ω to simplify PCB layout and the interface to the transceiver RFIC and switch/diplexer. The SE2580L includes a transmitter power detector for each band and transmit chain with 20 dB of dynamic range for each transmit chain. Each transmit chain has a separate 1.8V CMOS digital Enable control for transmitter power ramp on/off control. The power ramp rise/fall time is less than 0.4 μ sec.

The SE2580L packaged in 3mm x 3mm x 0.9mm, Halogen free, Lead free, ROHS compliant, MSL 1 QFN package.

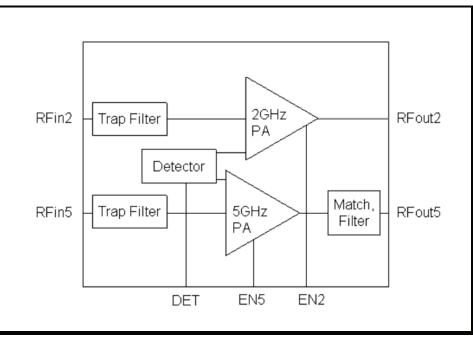
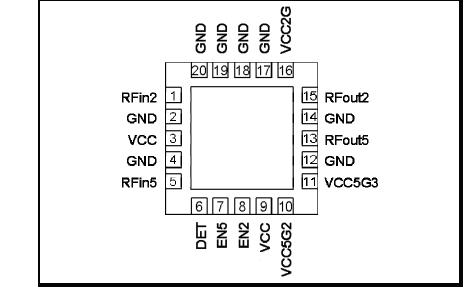
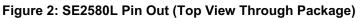




Figure 1: SE2580L Functional Block Diagram

Pin Out Diagram

Pin Out Description

Pin No.	Name	Description	
1	RFin2	2GHz RF Input	
2	GND	Ground	
3	VCC	2GHz First Stage Supply	
4	GND	Ground	
5	RFin5	5GHz RF Input	
6	DET	2GHz and 5GHz Detector Output	
7	EN5	5GHz PA Enable	
8	EN2	2GHz PA Enable	
9	VCC	5GHz First Stage Supply	
10	VCC5G2	5GHz Power Stage supply	
11	VCC5G3	5GHz Power Stage Supply	
12	GND	Ground	
13	RFout5	5GHz RF Output	
14	GND	Ground	
15	RFout2	2GHz RF Output	
16	VCC2G	2GHz Power Stage supply	
17-20	GND	Ground	
Paddle	GND	Ground	

Absolute Maximum Ratings

These are stress ratings only. Exposure to stresses beyond these maximum ratings may cause permanent damage to, or affect the reliability of the device. Avoid operating the device outside the recommended operating conditions defined below. This device is ESD sensitive. Handling and assembly of this device should be at ESD protected workstations.

Symbol	Definition	Min.	Max.	Unit
Vcc	Supply Voltage	-0.3	4.0	V
PU	EN5, EN2	-0.3	4.0	V
TXRF	RFin2, RFin5, RFout2, RFout5 terminated into 50 ohms	-	12.0	dBm
TA	Operating Temperature Range	0	85	°C
TSRFIN2	Storage Temperature Range	-40	150	°C

Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	3.0	3.3	3.6	V
TA	Ambient Temperature	-10	25	85	°C

DC Electrical Characteristics

Conditions: Vcc = 3.3 V, T_A = 25 °C, as measured on SiGe Semiconductor's SE2580L-EV1 evaluation board (deembedded to device), all unused ports terminated with 50 ohms, unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Ісс-в	Total 802.11g Transmit Supply Current	P _{OUT} = 19 dBm, 54 Mbps OFDM signal, 64 QAM EN2 = 3.3 V, EN5 = 0 V	-	165	-	mA
lcq-g	Quiescent current, 802.11g Transmit supply current	No RF applied EN2 = 3.3V, EN5 = 0V,	-	115	-	mA
Ісс-в	Total 802.11b Transmit Supply Current	P _{OUT} = 21 dBm, 11 Mbps CCK signal, BT = 0.45, EN2 = 3.3 V, EN5 = 0 V	-	190	-	mA
ICC-A	Total 802.11a Transmit Supply Current	P _{OUT} = 18 dBm, 54 Mbps OFDM signal, 64 QAM, EN5 = 3.3 V, EN2 = 0 V	-	230	-	mA
ICQ-A	Quiescent current, 802.11a Transmit supply current	No RF applied EN5 = 3.3V, EN2 = 0V,	-	145	-	mA
ICC_OFF	Total Supply Current	No RF, EN2 = EN5 = 0 V	-	10	100	μΑ

Logic Characteristics

Conditions: Vcc = 3.3 V, T_A = 25 °C, as measured on SiGe Semiconductor's SE2580L-EV1 evaluation board (deembedded to device), all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Venh	Logic High Voltage for EN2, EN5 (Module On)	-	1.8	-	Vcc	V
Venl	Logic Low Voltage EN2, EN5 (Module Off)	-	0	-	0.5	V
Ienh	Input Current Logic High Voltage (EN2, EN5)	-	-	350	400	μA
Ienl	Input Current Logic Low Voltage (EN2, EN5)	At V _{ENL} = 0.4V	-	45	-	μΑ

2.4 GHz AC Electrical Characteristics

2.4 GHz Transmit Characteristics

Conditions: Vcc = EN2 = 3.3 V, EN5 = 0 V, T_A = 25 °C, as measured on SiGe Semiconductor's SE2580L-EV1 evaluation board, all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fin	Frequency Range	-	2400	-	2500	MHz
P802.11g	Output power	54 Mbps OFDM signal, 64QAM, EVM = 3.0 %	-	19	-	dBm
P802.11b	Output power	11 Mbps CCK signal, BT = 0.45 ACPR(± 11MHz offset) < -35 ACPR(± 22MHz offset) < -56	-	21	-	dBm
P _{1dB}	P1dB	-	-	27	-	dBm
S 21	Small Signal Gain	-	26	-	32	dB
ΔS ₂₁	Small Signal Gain Variation Over Band	-	-	1.0	2.0	dB
2f,3f	Harmonics	Pout ≤ 21 dBm, 11Mbps, CCK	-	-50	-45	dBm/MHz
tdr, tdf	Delay and rise/fall Time	50 % of EN2 edge and 90/10 % of final output power level	-	-	0.25	μs
S11	Input Return Loss	-	-	-7	-	dB
STAB	Stability	CW, Pout = 21 dBm 0.1 GHz – 21 GHz Load VSWR = 6:1	All non-harmonically related outputs less than -42 dBm/MHz		itputs less	
Ru	Ruggedness	CW, Pout = 21dBm, Load VSWR = 10:1		No Irrevers	sible damag	le

5 GHz AC Electrical Characteristics

5 GHz Transmit Characteristics

Conditions:	Vcc = EN5 = 3.3 V, EN2 = 0 V, TA = 25 °C, as measured on SiGe Semiconductor's SE2580L-EV1
	evaluation board, all unused ports terminated with 50 ohms, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fin	Frequency Range	-	4900	-	5875	MHz
P802.11a	Nominal Output Power	54 Mbps OFDM signal, 64 QAM, EVM = 3.0 %	-	18	-	dBm
P _{1dB}	P1dB	-	-	24	-	dBm
S 21	Small Signal Gain	-	27	-	34	dB
	Small Signal Gain Variat	ion Over 40 MHz Channel	-	-	0.5	dB
ΔS ₂₁	Small Signal Gain Variation Over sub- bands	4.9 – 5.1 GHz 5.15 – 5.7 GHz 5.7 – 5.85 GHz	-	1	3	dB
2f,3f	Harmonics @19dBm, 54Mbps, 802.11a	-	-	-50	-	dBm/MHz
tdr, tdf	Delay and rise/fall Time	50 % of V _{EN} edge and 90/10 % of final output power level	-	-	0.25	μs
S11	Input Return Loss	-	-	-8	-	dB
STAB	Stability	64 QAM, Pout = 19 dBm 0.1 GHz – 21 GHz Load VSWR = 6:1	All non-harmonically related outputs less than -42 dBm/MHz		puts less than	
Ru	Ruggedness	CW, Pout = 21 dBm, Load VSWR = 10:1		No Irreve	rsible dama	ige

2.4 GHz Power Detector Characteristic

Conditions: Vcc = EN2 = 3.3 V, EN5 = 0V, T_A = 25 °C, as measured on SiGe Semiconductor's SE2580L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 Ω, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fout	Frequency Range	-	2400	-	2500	MHz
PDR	Power detect range, peak power	Measured at RFout2	0	-	22	dBm
PDZout	DC Output impedance	-	-	2400	-	Ω
PDV _{P21}	Output Voltage, Pour = 21dBm	-	-	0.75	-	V
PDV _{p19}	Output Voltage, Pour = 19dBm	-	-	0.65	-	V
PDVpnoRF	Output Voltage, Pour = No RF	-	-	0.30	-	V
LPF-3dB	Power detect low pass filter -3dB corner frequency	Load = high impedance Typ: 500 kΩ	-	300	-	KHz

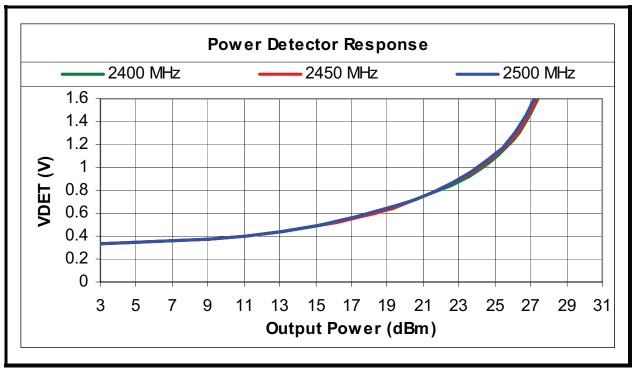


Figure 3: SE2580L Power Detector vs. Output Power over Frequency into 1Mohm

5 GHz Power Detector Characteristic

Conditions: Vcc = EN5 = 3.3, EN2 = 0V, T_A = 25 °C, as measured on SiGe Semiconductor's SE2580L-EV1 evaluation board (de-embedded to device), all unused ports terminated with 50 Ω, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Fout	Frequency Range	-	4900	-	5850	MHz
PDR	Power detect range, peak power	Measured at ANT	0	-	21	dBm
PDZout	DC Output impedance	-	-	2400	-	Ω
PDV _{p18}	Output Voltage, Pour = 18dBm	-	-	0.72	-	V
PDV _{p15}	Output Voltage, Pout = 15dBm	-	-	0.55	-	V
PDVNORF	Output Voltage, Pout = No RF	-	-	0.30	-	V
LPF-3dB	Power detect low pass filter -3dB corner frequency	Load = high impedance Typ: 500 kΩ	-	300	-	KHz

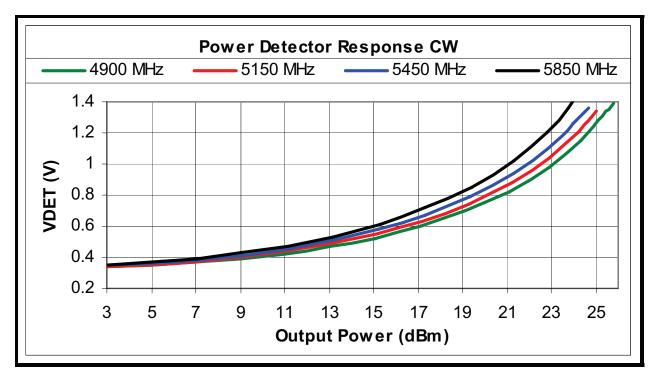
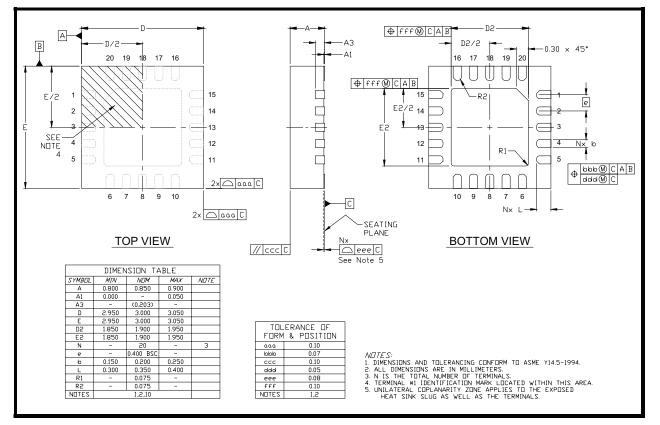
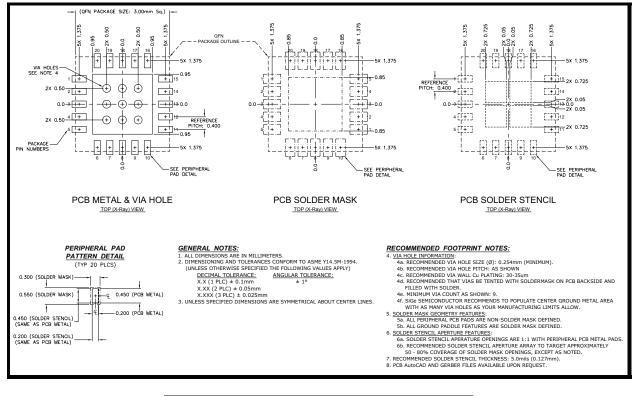



Figure 4: Preliminary SE2580L Power Detector vs. Output Power over Frequency into 1Mohm


Package Diagram

Recommended Land and Solder Patterns

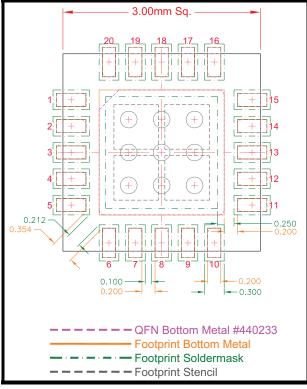


Figure 6: Recommended Land and Solder Patterns

DST-00304 • Rev 1.6 • Nov-15-2010

Confidential

Package Handling Information

Because of its sensitivity to moisture absorption, instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly. The SE2580L is capable of withstanding a Pb free solder reflow. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. If the part is manually attached, precaution should be taken to insure that the device is not subjected to temperatures above its rated peak temperature for an extended period of time. For details on both attachment techniques, precautions, and handling procedures recommended by SiGe, please refer to:

- SiGe's Application Note: "Quad Flat No-Lead Module Solder Reflow & Rework Information", Document Number QAD-00045
- SiGe's Application Note: "Handling, Packing, Shipping and Use of Moisture Sensitive QFN", *Document Number* QAD-00044

Product Branding

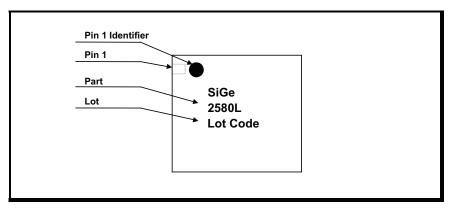


Figure 8: SE2580L Branding Information

Tape and Reel Information

Parameter	Value
Devices Per Reel	3000
Reel Diameter	13 inches
Tape Width	12 millimeters
pin 1 corner	
	0 0 0 0 0 \langle
Product Code Lot Numoer Lot Numoer	Product Code Lot Number Lot Number Lot Number

Figure 9: Detailed Tape and Reel Information (All diminensions in Millimeters)

Document Change History

Revision	Date	Notes
1.0	May 6, 2009	Created
1.1	Jul 30, 2009	Updated Ruggedness Specification
1.2	Dec 15, 2009	Corrected pin out definition, updated performance per design validation test
1.3	Aug 20, 2010	Updated ESD classification from Class 0 to Class 1C Corrected pin description.
1.4	Sep 4, 2010	Update I _{EN} (Low) Update LO Gain at 5GHz band Update S11 return loss Update Rise/Fall time
1.5	Sep 30, 2010	Removed LO filter specifications.
1.6	Nov 15, 2010	Updated marking diagram

http://www.sige.com

Email: sales@sige.com

Customer Service Locations:

North America: 1050 Morrison Drive, Suite 100 Ottawa ON K2H 8K7 Canada

Phone: +1 613 820 9244 Fax: +1 613 820 4933 Hong Kong Phone: +852 3428 7222 Fax: +852 3579 5450

San Diego Phone:+1 858 668 3541 (ext. 226) Fax: +1 858 668 3546

United Kingdom Phone: +44 1279 464217 Fax: +44 1279 464201

Product Preview

The datasheet contains information from the product concept specification. SiGe Semiconductor, Inc. reserves the right to change information at any time without notification.

Preliminary Information

The datasheet contains information from the design target specification. SiGe Semiconductor, Inc. reserves the right to change information at any time without notification.

Production testing may not include testing of all parameters.

Information furnished is believed to be accurate and reliable and is provided on an "as is" basis. SiGe Semiconductor, Inc. assumes no responsibility or liability for the direct or indirect consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license or indemnity is granted by implication or otherwise under any patent or other intellectual property rights of SiGe Semiconductor, Inc. or third parties. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SiGe Semiconductor, Inc. products are NOT authorized for use in implantation or life support applications or systems without express written approval from SiGe Semiconductor, Inc.

Copyright 2010 SiGe Semiconductor, Inc. All Rights Reserved

DST-00304 • Rev 1.6 • Nov-15-2010

Confidential