Stacked Multi-chip Product (MCP)
 5I2/256/I28 Megabit (32/I6/8 M x 16-bit) CMOS 3.0 Volt-only MirrorBit ${ }^{\text {TM }}$ Page-mode Flash Memory with 64 Megabit (4M x 16-bit) pSRAM

Data Sheet

Distinctive Characteristics

MCP Features

■ Power supply voltage of 2.7 to $\mathbf{3 . 1 V}$

High Performance

- 100 ns access time (S71GL128N, S71GL256N)
- 110 ns access time (S71GL512N)
- 25 ns page read times

■ Packages:
$-9.0 \times 12.0 \mathrm{~mm} \times 1.2 \mathrm{~mm}$ FBGA (TLD084) (S71GL512N)
$-8.0 \times 11.6 \mathrm{~mm} \times 1.2 \mathrm{~mm}$ FBGA (TLA084) (S71GL128N, S71GL256N)

- Operating Temperature
$--25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Wireless)

General Description

The S71GL Series is a product line of stacked Multi-chip Product (MCP) packages and consists of

- One Flash memory die
- One pSRAM

The products covered by this document are listed in the table below. For details about their specifications, please refer to the individual constituent datasheets for further details.

	Flash Memory Density			
	$\mathbf{5 1 2} \mathbf{~ M b}$	$\mathbf{2 5 6} \mathbf{~ M b}$	$\mathbf{1 2 8} \mathbf{~ M b}$	
pSRAM Density	64 Mb	S71GL512NC0	S71GL256NC0	S71GL128NC0

S7IGLxxxNC0

General Description I
Product Selector Guide 4
MCP Block Diagram (I28Mb Flash +64 Mb pSRAM) 5
MCP Block Diagram (256 Mb Flash +64 Mb pSRAM) 5
MCP Block Diagram (512 Mb Flash +64 Mb pSRAM) 6
Connection Diagrams 7
512 Mb Flash +64 Mb pSRAM Pinout 7
256 Mb Flash + 64 Mb pSRAM Pinout 8
128 Mb Flash +64 Mb pSRAM Pinout 9
Input/Output Descriptions 10
Logic Symbol 10
Ordering Information II
Physical Dimensions 15
TLD084-84-ball Fine-Pitch Ball Grid Array (FBGA) $9.0 \times 12.0 \times 1.2 \mathrm{~mm}$ MCP Compatible Package 15
TLA084-84-ball Fine-Pitch Ball Grid Array (FBGA) $8.0 \times 11.6 \times 1.2 \mathrm{~mm}$ MCP Compatible Package 16
S29GLxxxN MirrorBit ${ }^{\text {TM }}$ Flash Family
General Description 18
Product Selector Guide 20
Block Diagram 21
Pin Description 22
Logic Symbol 23
S29GL512N 23
S29GL256N 23
S29GLI28N 23
Device Bus Operations 24
Table 1. Device Bus Operations 24
VersatilelO ${ }^{T M}\left(V_{1 O}\right)$ Control 24
Requirements for Reading Array Data 24
Page Mode Read 25
Writing Commands/Command Sequences 25
Write Buffer 25
Accelerated Program Operation 25
Autoselect Functions 26
Standby Mode 26
Automatic Sleep Mode 26
RESET\#: Hardware Reset Pin 26
Output Disable Mode 27
Table 2. Sector Address Table-S29GL512N 27
Table 3. Sector Address Table-S29GL256N 42
Table 4. Sector Address Table-S29GL128N 49
Autoselect Mode 53
Table 5. Autoselect Codes, (High Voltage Method) 54
Sector Protection 54
Persistent Sector Protection 54
Password Sector Protection 54
WP\# Hardware Protection 54
Selecting a Sector Protection Mode 54
Advanced Sector Protection 55
Lock Register 55
Table 6. Lock Register 56
Persistent Sector Protection 56
Dynamic Protection Bit (DYB) 56
Persistent Protection Bit (PPB) 57
Persistent Protection Bit Lock (PPB Lock Bit) 57
Table 7. Sector Protection Schemes 58
Persistent Protection Mode Lock Bit 58
Password Sector Protection 59
Password and Password Protection Mode Lock Bit 59
64-bit Password 60
Persistent Protection Bit Lock (PPB Lock Bit) 60
Secured Silicon Sector Flash Memory Region 60
Write Protect (WP\#) 62
Hardware Data Protection 62
Low VCC Write Inhibit 62
Write Pulse "Glitch" Protection 62
Logical Inhibit 62
Power-Up Write Inhibit 62
Common Flash Memory Interface (CFI) 62
Table 8. CFI Query Identification String 63
Table 9. System Interface String. 64
Table 10. Device Geometry Definition. 65
Table 11. Primary Vendor-Specific Extended Query 66
Command Definitions 66
Reading Array Data 67
Reset Command 67
Autoselect Command Sequence 67
Enter Secured Silicon Sector/Exit Secured Silicon Sector Command Sequence 68
Word Program Command Sequence 68
Unlock Bypass Command Sequence 69
Write Buffer Programming 69
Accelerated Program 70
Figure 1. Write Buffer Programming Operation 71
Figure 2. Program Operation 72
Program Suspend/Program Resume Command Sequence 72
Figure 3. Program Suspend/Program Resume 73
Chip Erase Command Sequence 73
Sector Erase Command Sequence 74
Figure 4. Erase Operation 75
Erase Suspend/Erase Resume Commands 75
Lock Register Command Set Definitions 76
Password Protection Command Set Definitions 76
Non-Volatile Sector Protection Command Set Definitions 78
Global Volatile Sector Protection Freeze Command Set 78
Volatile Sector Protection Command Set 79
Secured Silicon Sector Entry Command 80
Secured Silicon Sector Exit Command 80
Command Definitions 8
Table 12. S29GL512N, S29GL256N, S29GL128N Command Definitions, x16 81
Write Operation Status 84
DQ7: Data\# Polling 84
Figure 5. Data\# Polling Algorithm 85
RY/BY\#: Ready/Busy\# 85
DQ6: Toggle Bit I 86
Figure 6. Toggle Bit Algorithm 87
DQ2: Toggle Bit II 87
Reading Toggle Bits DQ6/DQ2 88
DQ5: Exceeded Timing Limits 88
DQ3: Sector Erase Timer 88
DQI: Write-to-Buffer Abort 89
Table 13. Write Operation Status 89
Absolute Maximum Ratings 90
Figure 7. Maximum Negative Overshoot Waveform. 90

Figure 8. Maximum Positive

Overshoot Waveform.. 90

Operating Ranges . 90
DC Characteristics . 91
Test Conditions . 92
Figure 9. Test Setup .. 92
Table 14. Test Specifications ... 92
Key to Switching Waveforms 92
Figure 10. Input Waveforms and Measurement Levels............. 92
AC Characteristics . 93
Read-Only Operations-S29GLI28N, S29GL256N, S29GL512N 93
Figure 11. Read Operation Timings 94
Figure 12. Page Read Timings.. 94
Hardware Reset (RESET\#) .. 95
Figure 13. Reset Timings... 95

Figure 14. Program Operation Timings 97
Figure 15. Accelerated Program Timing Diagram 97
Figure 16. Chip/Sector Erase Operation Timings..................... 98
Figure 17. Data\# Polling Timings
(During Embedded Algorithms) .. 99
Figure 18. Toggle Bit Timings (During Embedded Algorithms) 100
Figure 19. DQ2 vs. DQ6 .. 100
Alternate CE\# Controlled Erase and Program Operations-
S29GLI28N, S29GL256N, S29GL5I2N ...
Figure 20. Alternate CE\# Controlled Write (Erase/ Program) Operation Timings.102
Erase And Programming Performance 103
TSOP Pin and BGA Package Capacitance 103
pSRAM Type 7
Features 104
Pin Description 104
Functional Description 105
Power Down (for 32M, 64M Only) 105
Power Down 105
Power Down Program Sequence 106
Address Key 106
Absolute Maximum Ratings 107
Recommended Operating Conditions 107
Package Capacitance 107
DC Characteristics 108
AC Characteristics 109
Read Operation 109
Write Operation IIO
Power Down Parameters III
Other Timing Parameters III
AC Test Conditions 112
AC Measurement Output Load Circuits 12
Figure 21. AC Output Load Circuit - 16 Mb 112
Figure 22. AC Output Load Circuit - 32 Mb and 64 Mb 112
Timing Diagrams II3
Read Timings 113
Figure 23. Read Timing \#1 (Basic Timing) 113
Figure 24. Read Timing \#2 (OE\# Address Access. 113
Figure 25. Read Timing \#3 (LB\#/UB\# Byte Access) 114
Figure 26. Read Timing \#4 (Page Address Access after CE1\# ControAccess for 32M and 64M Only)114
Figure 27. Read Timing \#5 (Random and Page Address Access for
32M and 64M Only) 115
Write Timings II5
Figure 28. Write Timing \#1 (Basic Timing) 115
Figure 29. Write Timing \#2 (WE\# Control) 116
Figure 30. Write Timing \#3-1(WE\#/LB\#/UB\# Byte Write Control) 116
Figure 31. Write Timing \#3-3 (WE\#/LB\#/UB\# Byte Write Control) 117
Figure 32. Write Timing \#3-4 (WE\#/LB\#/UB\# Byte Write Control) 117
Read/Write Timings II8
Figure 33. Read/Write Timing \#1-1 (CE1\# Control) 118
Figure 34. Read / Write Timing \#1-2
(CE1\#/WE\#/OE\# Control) 118
Figure 35. Read / Write Timing \#2 (OE\#, WE\# Control) 119
Figure 36. Read / Write Timing \#3 119
Figure 37. Power-up Timing \#1 120
Figure 38. Power-up Timing \#2 120
Figure 39. Power Down Entry and Exit Timing 120
Figure 40. Standby Entry Timing after Read or Write 121
Figure 41. Power Down Program Timing (for 32M/64M Only) 121
Revision Summary 122

Advancelnformation

Product Selector Guide

S7IGL5I2NC0			
Access Times at $\mathrm{V}_{\mathbf{C C}}=2.7$ - $\mathbf{3}$. V	Flash		pSRAM
Max. Access Time (ns)	110	100	70
Max. CE\# Access Time (ns)	110	100	70
Max. Page Access Time (ns)	25		25
Max. OE\# Access Time (ns)	25		25

S7IGL256NC0			
Access Times at $\mathbf{V}_{\mathbf{c c}}=\mathbf{2 . 7} \mathbf{- 3 . 1 ~ V}$	Flash	pSRAM	
Max. Access Time (ns)	100	90	70
Max. CE\# Access Time (ns)	100	90	70
Max. Page Access Time (ns)	25	25	
Max. OE\# Access Time (ns)	25	25	

S7IGLI28NC0			
Access Times at $\mathbf{V}_{\text {cc }}=\mathbf{2 . 7} \mathbf{- 3 . 1 ~ V}$	Flash		pSRAM
Max. Access Time (ns)	100	90	70
Max. CE\# Access Time (ns)	100	90	70
Max. Page Access Time (ns)	25	25	
Max. OE\# Access Time (ns)	25	25	

MCP Block Diagram (I28Mb Flash + 64Mb pSRAM)

MCP Block Diagram (256Mb Flash + 64Mb pSRAM)

Advancelnformation

MCP Block Diagram (5I2Mb Flash + 64Mb pSRAM)

Connection Diagrams

512 Mb Flash + 64 Mb pSRAM Pinout

84-ball Fine-Pitch Ball Grid Array
 512 Mb Flash + 64 Mb pSRAM

Pinout
(Top View, Balls Facing Down)

256 Mb Flash + 64 Mb pSRAM Pinout

84-ball Fine-Pitch Ball Grid Array
 $\mathbf{2 5 6}$ Mb Flash + $\mathbf{6 4}$ Mb pSRAM Pinout

(Top View, Balls Facing Down)

I28 Mb Flash + 64 Mb pSRAM Pinout

84-ball Fine-Pitch Ball Grid Array
 128 Mb Flash + 64 Mb pSRAM Pinout

(Top View, Balls Facing Down)

Input/Output Descriptions

A24-A0	=	25 Address inputs (512 Mb)
A23-A0	=	24 Address inputs (256 Mb)
A22-A0	=	23 Address inputs (128 Mb)
DQ15-DQ0	=	Data input/output
OE\#	=	Output Enable input. Asynchronous relative to CLK for the Burst mode.
WE\#	=	Write Enable input.
V_{SS}	=	Ground
NC	=	No Connect; not connected internally
RESET\#	=	Hardware reset input. Low = device resets and returns to reading array data
WP\#/ACC	$=$	Hardware write protect input / programming acceleration input.
CE1\#s, CE2s	$=$	Chip-enable input for pSRAM.
CE\#f1	=	Chip-enable input for Flash 1.
$V_{\text {CC }}{ }^{\text {f }}$	=	Flash 3.0 Volt-only single power supply.
$\mathrm{V}_{\mathrm{CC}} \mathrm{S}$	=	pSRAM Power Supply.
UB\#s	=	Upper Byte Control (pSRAM).
LB\#s	=	Lower Byte Control (pSRAM).
RFU	$=$	Reserved for future use.
RY/BY\#	=	Ready/Busy output.

Logic Symbol

	A Max $^{*}-$ A0 CE1\#s DQ15-DQ0 CE2s OE\# WE\# WP\#/ACC WE\# RESET\# RY/BY\# UB\# LB\# CE\#f1	
	$\begin{aligned} & =\mathrm{A} 24[512 \mathrm{Mb}] \\ & =\mathrm{A} 23[256 \mathrm{Mb}] \\ & =\mathrm{A} 22[128 \mathrm{Mb}] \end{aligned}$	

Ordering Information

The order number (Valid Combination) is formed by the following:

S71GL512NC0 Valid Combinations				Flash Initial/Page Speed (ns)	Address Sector Protection	(p)SRAM Supplier	(p)SRAM Type/ Access Time (ns)	Package Type	Package Marking
Base Ordering Part Number	Package \& Temperature	Package Modifier/ Model Number	Packing Type						
S71GL512NC0	BAW	EU	$0,2,3$ (Note 1)	110/25	Lowest Add		70/25	$9 \mathrm{~mm} \times 12 \mathrm{~mm}$ 84-ball Lead (Pb)-free Compliant	(Note 2)
		EZ			Highest Add				
		ET		100 (Note 3)/	Lowest Add				
		EY		25	Highest Add				
S71GL512NC0	BFW	EU	$\begin{gathered} 0,2,3 \\ \text { (Note 1) } \end{gathered}$	110/25	Lowest Add		70/25	$9 \mathrm{~mm} \times 12 \mathrm{~mm}$ 84-ball Lead (Pb)-free	
		EZ			Highest Add	Type 7			
		ET		$\begin{gathered} 100 \text { (Note 3)/ } \\ 25 \end{gathered}$	Lowest Add	Type 7			
		EY			Highest Add				

Notes:

1. Type 0 is standard. Specify other options as required.
2. BGA package marking omits leading "S" and packing type designator from ordering part number.
3. Contact the factory for the 100 ns speed option.

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult your local sales office to confirm availability of specific valid combinations and to check on newly released combinations.

S71GL256NC0 Valid Combinations				Flash Initial/ Page Speed (ns)	Address Sector Protection	(p)SRAM Supplier	$\begin{aligned} & \text { (p)SRAM } \\ & \text { Type/ } \\ & \text { Access } \\ & \text { Time (ns) } \end{aligned}$	Package Type	Package Marking
Base Ordering Part Number	Package \& Temperature	Package Modifier/ Model Number	Packing Type						
S71GL256NC0	BAW	AU	$\begin{gathered} 0,2,3 \\ \text { (Note 1) } \end{gathered}$	100/25	Lowest Add		70/25	8 mmx 11.6 mm 84-ball Lead (Pb)-free Compliant	(Note 2)
		AZ			Highest Add	Type 7			
		AT		90 (Note 3)/	Lowest Add				
		AY		25	Highest Add	yp			
S71GL256NC0	BFW	AU	$0,2,3$ (Note 1)	100/25	Lowest Add		70/25	$8 \mathrm{~mm} \times 11.6 \mathrm{~mm}$ 84-ball Lead (Pb)-free	
		AZ			Highest Add	pe 7			
		AT		$\begin{gathered} 90 \text { (Note 3)/ } \\ 25 \end{gathered}$	Lowest Add	Type 7			
		AY			Highest Add				

Notes:

1. Type 0 is standard. Specify other options as required.
2. BGA package marking omits leading "S" and packing type designator from ordering part number.
3. Contact the factory for the 90 ns speed option.

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult your local sales office to confirm availability of specific valid combinations and to check on newly released combinations.

S71GL128NC0 Valid Combinations				Flash Initial/Page Speed (ns)	Address Sector Protection	(p)SRAM Supplier	(p)SRAM Type/ Access Time (ns)	Package Type	Package Marking
Base Ordering Part Number	Package \& Temperature	Package Modifier/ Model Number	Packing Type						
S71GL128NC0	BAW	AU	$\begin{gathered} 0,2,3 \\ \text { (Note 1) } \end{gathered}$	100/25	Lowest Add		70/25	8 mmx 11.6 mm 84-ball Lead (Pb)-free Compliant	(Note 2)
		AZ			Highest Add	Type 7			
		AT		90 (Note 3)/	Lowest Add				
		AY		25	Highest Add				
S71GL128NC0	BFW	AU	$0,2,3$ (Note 1)	100/25	Lowest Add		70/25	8 mmx 11.6 mm 84-ball Lead (Pb)-free	
		AZ			Highest Add	7			
		AT		$\begin{aligned} & 90 \text { (Note 3)/ } \\ & 25 \end{aligned}$	Lowest Add	Type 7			
		AY			Highest Add				

Notes:

1. Type 0 is standard. Specify other options as required.
2. BGA package marking omits leading "S" and packing type designator from ordering part number.
3. Contact the factory for the 90 ns speed option.

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult your local sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Physical Dimensions

TLD084-84-ball Fine-Pitch Ball Grid Array (FBGA) $9.0 \times 12.0 \times 1.2 \mathrm{~mm}$ MCP Compatible Package

PACKAGE	TLD 084			
JEDEC	N/A			
DxE	$12.00 \mathrm{~mm} \times 9.00 \mathrm{~mm}$ PACKAGE			
SYMBOL	MIN	NOM	MAX	NOTE
A	---	---	1.20	PROFILE
A1	0.17	---	---	BALL HEIGHT
A2	0.81	---	0.97	BODY THICKNESS
D	12.00 BSC.			BODY SIZE
E	9.00 BSC.			BODY SIZE
D1	8.80 BSC.			MATRIX FOOTPRINT
E1	7.20 BSC.			MATRIX FOOTPRINT
MD	12			MATRIX SIZE D DIRECTION
ME	10			MATRIX SIZE E DIRECTION
n	84			BALL COUNT
b	0.35	0.40	0.45	BALL DIAMETER
e⿴囗	0.80 BSC.			BALL PITCH
ed	0.80 BSC			BALL PITCH
SD / SE	0.40 BSC .			SOLDER BALL PLACEMENT
	A2,A3,A4,A5,A6,A7,A8,A9 B1,B10,C1,C10,D1,D10 E1,E10,F1,F10,G1,G10 H1,H10, J1, J10,K1,K10 L1,L10,M2,M3,M4,M5,M6, M7,M8,M9			DEPOPULATED SOLDER BALLS

NOTES:

1. DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS.
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.
4. e REPRESENTS THE SOLDER BALL GRID PITCH.
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
6 DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
7 SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW SD OR SE $=0.000$.
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, SD OR SE = e/2
6. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.
7. N / A

10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.

Note: BSC is an ANSI standard for Basic Space Centering

TLA084-84-ball Fine-Pitch Ball Grid Array (FBGA) $8.0 \times \mathrm{II} .6 \mathrm{xl} .2 \mathrm{~mm}$ MCP Compatible Package

BOTTOM VIEW

NOTES:

PACKAGE	TLA 084			
JEDEC	N/A			
D $\times \mathrm{E}$	$11.60 \mathrm{~mm} \times 8.00 \mathrm{~mm}$PACKAGE			
SYMBOL	MIN	NOM	MAX	NOTE
A	---	---	1.20	PROFILE
A1	0.17	---	---	BALL HEIGHT
A2	0.81	---	0.97	BODY THICKNESS
D	11.60 BSC.			BODY SIZE
E	8.00 BSC.			BODY SIZE
D1	8.80 BSC.			MATRIX FOOTPRINT
E1	7.20 BSC.			MATRIX FOOTPRINT
MD	12			MATRIX SIZE D DIRECTION
ME	10			MATRIX SIZE E DIRECTION
n	84			BALL COUNT
\varnothing b	0.35	0.40	0.45	BALL DIAMETER
eE	0.80 BSC.			BALL PITCH
eD	0.80 BSC			BALL PITCH
SD / SE	0.40 BSC.			SOLDER BALL PLACEMENT
	A2,A3,A4,A5,A6,A7,A8,A9 B1,B10,C1,C10,D1,D10, E1,E10,F1,F10,G1,G10, H1,H10,J1,J10,K1,K10,L1,L10, M2,M3,M4,M5,M6,M7,M8,M9			DEPOPULATED SOLDER BALLS

1. DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS
3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.
4. e REPRESENTS THE SOLDER BALL GRID PITCH.
5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.
n IS THE NUMBER OF POPULTED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
6 DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
7 SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW.
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW SD OR SE $=0.000$.
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, SD OR SE $=\mathrm{e} / 2$
6. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.
7. N / A

10 A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.

Note: BSC is an ANSI standard for Basic Space Centering

S29GLxxxN MirrorBit ${ }^{\text {TM }}$ Flash Family S29GL5I2N, S29GL256N, S29GLI28N 512 Megabit, 256 Megabit, and 128 Megabit, 3.0 Volt-only Page Mode Flash Memory featuring IIO nm MirrorBit process technology

Data Sheet

Distinctive Characteristics

Architectural Advantages

- Single power supply operation
- 3 volt read, erase, and program operations
- Enhanced VersatileI/ $O^{\text {TM }}$ control
- All input levels (address, control, and DQ input levels) and outputs are determined by voltage on V_{10} input. V_{IO} range is 1.65 to V_{CC}

■ Manufactured on 110 nm MirrorBit process technology
■ Secured Silicon Sector region

- 128-word/256-byte sector for permanent, secure identification through an 8 -word/16-byte random Electronic Serial Number, accessible through a command sequence
- May be programmed and locked at the factory or by the customer
- Flexible sector architecture
- S29GL512N: Five hundred twelve 64 Kword (128 Kbyte) sectors
- S29GL256N: Two hundred fifty-six 64 Kword (128 Kbyte) sectors
- S29GL128N: One hundred twenty-eight 64 Kword (128 Kbyte) sectors
- Compatibility with JEDEC standards
- Provides pinout and software compatibility for singlepower supply flash, and superior inadvertent write protection
- 100,000 erase cycles per sector typical
- 20-year data retention typical

Performance Characteristics
■ High performance

- 90 ns access time (S29GL128N, S29GL256N, S29GL512N)
- 8 -word/16-byte page read buffer
- 25 ns page read times
- 16-word/32-byte write buffer reduces overall programming time for multiple-word updates
■ Low power consumption (typical values at $3.0 \mathrm{~V}, 5$ MHz)
- 25 mA typical active read current;
- 50 mA typical erase/program current
- $1 \mu \mathrm{~A}$ typical standby mode current

Software \& Hardware Features

■ Software features

- Program Suspend \& Resume: read other sectors before programming operation is completed
- Erase Suspend \& Resume: read/program other sectors before an erase operation is completed
- Data\# polling \& toggle bits provide status
- Unlock Bypass Program command reduces overall multiple-word programming time
- CFI (Common Flash Interface) compliant: allows host system to identify and accommodate multiple flash devices

Hardware features

- Advanced Sector Protection
- WP\#/ACC input accelerates programming time (when high voltage is applied) for greater throughput during system production. Protects first or last sector regardless of sector protection settings
- Hardware reset input (RESET\#) resets device
- Ready/Busy\# output (RY/BY\#) detects program or erase cycle completion

General Description

The S29GL512/256/128N family of devices are 3.0V single power flash memory manufactured using 110 nm MirrorBit technology. The S29GL512N is a 512 Mbit, organized as $33,554,432$ words or $67,108,864$ bytes. The S29GL256N is a 256 Mbit, organized as $16,777,216$ words or $33,554,432$ bytes. The S29GL128N is a 128 Mbit, organized as $8,388,608$ words or $16,777,216$ bytes. The device can be programmed either in the host system or in standard EPROM programmers.

Access times as fast as 90 ns (S29GL128N, S29GL256N, S29GL512N) are available. Note that each access time has a specific operating voltage range (V_{CC}) and an I/O voltage range (V_{IO}), as specified in the "Product Selector Guide" section. The devices are offered in a 56-pin TSOP or 64-ball Fortified BGA package. Each device has separate chip enable (CE\#), write enable (WE\#) and output enable (OE\#) controls.

Each device requires only a single 3.0 volt power supply for both read and write functions. In addition to a V_{CC} input, a high-voltage accelerated program (WP\#/ACC) input provides shorter programming times through increased current. This feature is intended to facilitate factory throughput during system production, but may also be used in the field if desired.

The devices are entirely command set compatible with the JEDEC single-power-supply Flash standard. Commands are written to the device using standard microprocessor write timing. Write cycles also internally latch addresses and data needed for the programming and erase operations.

The sector erase architecture allows memory sectors to be erased and reprogrammed without affecting the data contents of other sectors. The device is fully erased when shipped from the factory.

Device programming and erasure are initiated through command sequences. Once a program or erase operation has begun, the host system need only poll the DQ7 (Data\# Polling) or DQ6 (toggle) status bits or monitor the Ready/Busy\# (RY/BY\#) output to determine whether the operation is complete. To facilitate programming, an Unlock Bypass mode reduces command sequence overhead by requiring only two write cycles to program data instead of four.

The Enhanced VersatileI/ $\mathbf{O}^{\text {TM }}\left(\mathrm{V}_{10}\right)$ control allows the host system to set the voltage levels that the device generates and tolerates on all input levels (address, chip control, and DQ input levels) to the same voltage level that is asserted on the $\mathrm{V}_{\text {Io }}$ pin. This allows the device to operate in a 1.8 V or 3 V system environment as required.
Hardware data protection measures include a low V_{CC} detector that automatically inhibits write operations during power transitions. Persistent Sector Protection provides in-system, command-enabled protection of any combination of sectors using a single power supply at V_{CC}. Password Sector Protection prevents unauthorized write and erase operations in any combination of sectors through a user-defined 64-bit password.

The Erase Suspend/Erase Resume feature allows the host system to pause an erase operation in a given sector to read or program any other sector and then complete the erase operation. The Program Suspend/Program Resume feature enables the host system to pause a program operation in a given sector to read any other sector and then complete the program operation.

The hardware RESET\# pin terminates any operation in progress and resets the device, after which it is then ready for a new operation. The RESET\# pin may be
tied to the system reset circuitry. A system reset would thus also reset the device, enabling the host system to read boot-up firmware from the Flash memory device.

The device reduces power consumption in the standby mode when it detects specific voltage levels on CE\# and RESET\#, or when addresses have been stable for a specified period of time.

The Secured Silicon Sector provides a 128-word/256-byte area for code or data that can be permanently protected. Once this sector is protected, no further changes within the sector can occur.
The Write Protect (WP\# / ACC) feature protects the first or last sector by asserting a logic low on the WP\# pin.
MirrorBit flash technology combines years of Flash memory manufacturing experience to produce the highest levels of quality, reliability and cost effectiveness. The device electrically erases all bits within a sector simultaneously via hot-hole assisted erase. The data is programmed using hot electron injection.

Advancelnformation

Product Selector Guide

S29GL512N

Part Number		S29GL512N				
Speed Option	$\mathrm{V}_{\mathrm{CC}}=2.7-3.6 \mathrm{~V}$	$\mathrm{~V}_{10}=2.7-3.6 \mathrm{~V}$		$\mathbf{1 0}$	$\mathbf{1 1}$	
					$\mathbf{1 1}$	
	$\mathrm{~V}_{\mathrm{CC}}=3.0-3.6 \mathrm{~V}$	$\mathrm{~V}_{10}=3.0-3.6 \mathrm{~V}$	$\mathbf{9 0}$			
Max. Access Time (ns)	90	100	110	110		
Max. CE\# Access Time (ns)	90	100	110	110		
Max. Page access time (ns)	25	25	25	30		
Max. OE\# Access Time (ns)	25	25	25	30		

S29GL256N

Part Number		S29GL256N				
Speed Option	$\mathrm{V}_{\mathrm{CC}}=2.7-3.6 \mathrm{~V}$	$V_{10}=2.7-3.6 \mathrm{~V}$		10	11	
		$\mathrm{V}_{10}=1.65-1.95 \mathrm{~V}$				11
	$\mathrm{V}_{\mathrm{CC}}=$ Regulated (3.0-3.6V)	$\mathrm{V}_{10}=$ Regulated (3.0-3.6V)	90			
Max. Access Time (ns)			90	100	110	110
Max. CE\# Access Time (ns)			90	100	110	110
Max. Page access time (ns)			25	25	25	30
Max. OE\# Access Time (ns)			25	25	25	30

S29GLI28N

Part Number		S29GL128N				
Speed Option	$\mathrm{V}_{\mathrm{CC}}=2.7-3.6 \mathrm{~V}$	$\mathrm{V}_{10}=2.7-3.6 \mathrm{~V}$		10	11	
		$\mathrm{V}_{10}=1.65-1.95 \mathrm{~V}$				11
	$\mathrm{V}_{\mathrm{CC}}=$ Regulated (3.0-3.6V)	$\mathrm{V}_{10}=$ Regulated (3.0-3.6V)	90			
Max. Access Time (ns)			90	100	110	110
Max. CE\# Access Time (ns)			90	100	110	110
Max. Page access time (ns)			25	25	25	30
Max. OE\# Access Time (ns)			25	25	25	30

Block Diagram

Notes:

1. $A_{\text {Max }} G L 512 N=A 24, A_{\text {Max }} G L 256 N=A 23, A_{\text {Max }} G L 128 N=A 22$

Pin Description

A24-A0	=	25 Address inputs (512 Mb)
A23-A0	=	24 Address inputs (256 Mb)
A22-A0	=	23 Address inputs (128 Mb)
DQ14-DQ0	=	15 Data inputs/outputs
DQ15/A-1	=	DQ15 (Data input/output, word mode), A-1 (LSB Address input
CE\#	=	Chip Enable input
OE\#	=	Output Enable input
WE\#	=	Write Enable input
WP\#/ACC	=	Hardware Write Protect input; Acceleration input
RESET\#	=	Hardware Reset Pin input
RY/BY\#	=	Ready/Busy output
$\mathrm{V}_{\text {CC }}$	=	3.0 volt-only single power supply (see Product Selector Guide for speed options and voltage supply tolerances)
V_{10}	=	Output Buffer power
$\mathrm{V}_{\text {SS }}$	=	Device Ground
NC	=	Pin Not Connected Internally

Logic Symbol

S29GL256N

S29GL128N

Device Bus Operations

This section describes the requirements and use of the device bus operations, which are initiated through the internal command register. The command register itself does not occupy any addressable memory location. The register is a latch used to store the commands, along with the address and data information needed to execute the command. The contents of the register serve as inputs to the internal state machine. The state machine outputs dictate the function of the device. Table 1 lists the device bus operations, the inputs and control levels they require, and the resulting output. The following subsections describe each of these operations in further detail.

Table I. Device Bus Operations

Operation	CE\#	OE\#	WE\#	RESET\#	WP\#/ ACC	Addresses (Note 1)	DQ0-DQ15
Read	L	L	H	H	X	$\mathrm{A}_{\text {IN }}$	$\mathrm{D}_{\text {Out }}$
Write (Program/Erase)	L	H	L	H	Note 2	$\mathrm{A}_{\text {IN }}$	(Note 3)
Accelerated Program	L	H	L	H	$\mathrm{V}_{\text {HH }}$	$\mathrm{A}_{\text {IN }}$	(Note 3)
Standby	$\mathrm{V}_{\mathrm{CC}} \pm 0.3 \mathrm{~V}$	X	X	$\mathrm{V}_{\mathrm{CC}} \pm$ 0.3 V	H	X	High-Z
Output Disable	L	H	H	H	X	X	High-Z
Reset	X	X	X	L	X	X	High-Z

Legend: $L=$ Logic Low $=V_{I L}, H=$ Logic High $=V_{I H}, V_{I D}=11.5-12.5 V, V_{H H}=11.5-12.5 V, X=$ Don't Care, $S A=$ Sector Address, $A_{I N}=$ Address In, $D_{I N}=$ Data In, $D_{O U T}=$ Data Out

Notes:

1. Addresses are AMax:AO in word mode. Sector addresses are $A_{\text {Max }}: A 16$ in both modes.
2. If $W P \#=V_{I L}$, the first or last sector group remains protected. If $W P \#=V_{I H}$, the first or last sector will be protected or unprotected as determined by the method described in "Write Protect (WP\#)". All sectors are unprotected when shipped from the factory (The Secured Silicon Sector may be factory protected depending on version ordered.)
3. $D_{I N}$ or $D_{\text {OUT }}$ as required by command sequence, data polling, or sector protect algorithm (see Figure 2, Figure 4, and Figure 5).

VersatileIO ${ }^{\text {TM }}\left(\mathbf{V}_{10}\right)$ Control

The VersatileIO ${ }^{\text {TM }}\left(\mathrm{V}_{10}\right)$ control allows the host system to set the voltage levels that the device generates and tolerates on CE\# and DQ I/Os to the same voltage level that is asserted on V_{10}. See Ordering Information for V_{10} options on this device.

For example, a $\mathrm{V}_{\mathrm{I} / \mathrm{O}}$ of 1.65 V to 3.6 V allows for I / O at the 1.8 or 3 volt levels, driving and receiving signals to and from other $1.8-\mathrm{V}$ or $3-\mathrm{V}$ devices on the same data bus.

Requirements for Reading Array Data

To read array data from the outputs, the system must drive the CE\# and OE\# pins to V_{IL}. $\mathrm{CE} \#$ is the power control and selects the device. OE\# is the output control and gates array data to the output pins. WE\# should remain at V_{IH}.

The internal state machine is set for reading array data upon device power-up, or after a hardware reset. This ensures that no spurious alteration of the memory
content occurs during the power transition. No command is necessary in this mode to obtain array data. Standard microprocessor read cycles that assert valid addresses on the device address inputs produce valid data on the device data outputs. The device remains enabled for read access until the command register contents are altered.

See "Reading Array Data" on page 67 for more information. Refer to the AC ReadOnly Operations table for timing specifications and to Figure 11 for the timing diagram. Refer to the DC Characteristics table for the active current specification on reading array data.

Page Mode Read

The device is capable of fast page mode read and is compatible with the page mode Mask ROM read operation. This mode provides faster read access speed for random locations within a page. The page size of the device is 8 words/ 16 bytes. The appropriate page is selected by the higher address bits $\mathrm{A}(\mathrm{max})-\mathrm{A} 3$. Address bits A2-A0 determine the specific word within a page. This is an asynchronous operation; the microprocessor supplies the specific word location.

The random or initial page access is equal to $t_{A C C}$ or $t_{C E}$ and subsequent page read accesses (as long as the locations specified by the microprocessor falls within that page) is equivalent to $t_{\text {PACC }}$. When CE\# is de-asserted and reasserted for a subsequent access, the access time is $t_{A C C}$ or $t_{C E}$. Fast page mode accesses are obtained by keeping the "read-page addresses" constant and changing the "intra-read page" addresses.

Writing Commands/Command Sequences

To write a command or command sequence (which includes programming data to the device and erasing sectors of memory), the system must drive WE\# and $C E \#$ to $V_{I L}$, and $O E \#$ to $V_{I H}$.
The device features an Unlock Bypass mode to facilitate faster programming. Once the device enters the Unlock Bypass mode, only two write cycles are required to program a word or byte, instead of four. The "Word Program Command Sequence" section has details on programming data to the device using both standard and Unlock Bypass command sequences.

An erase operation can erase one sector, multiple sectors, or the entire device. Table 2, Table 4, and Table 5 indicate the address space that each sector occupies.

Refer to the DC Characteristics table for the active current specification for the write mode. The AC Characteristics section contains timing specification tables and timing diagrams for write operations.

Write Buffer

Write Buffer Programming allows the system write to a maximum of 16 words/32 bytes in one programming operation. This results in faster effective programming time than the standard programming algorithms. See "Write Buffer" for more information.

Accelerated Program Operation

The device offers accelerated program operations through the ACC function. This is one of two functions provided by the WP\#/ACC pin. This function is primarily intended to allow faster manufacturing throughput at the factory.

If the system asserts V_{HH} on this pin, the device automatically enters the aforementioned Unlock Bypass mode, temporarily unprotects any protected sector groups, and uses the higher voltage on the pin to reduce the time required for program operations. The system would use a two-cycle program command sequence as required by the Unlock Bypass mode. Removing V_{HH} from the WP\#/ ACC pin returns the device to normal operation. Note that the WP\#/ACC pin must not be at $V_{H H}$ for operations other than accelerated programming, or device damage may result. WP\# has an internal pullup; when unconnected, WP\# is at $V_{I H}$.

Autoselect Functions

If the system writes the autoselect command sequence, the device enters the autoselect mode. The system can then read autoselect codes from the internal register (which is separate from the memory array) on DQ7-DQ0. Standard read cycle timings apply in this mode. Refer to the "Autoselect Mode" section on page 53 and "Autoselect Command Sequence" section on page 67 sections for more information.

Standby Mode

When the system is not reading or writing to the device, it can place the device in the standby mode. In this mode, current consumption is greatly reduced, and the outputs are placed in the high impedance state, independent of the OE\# input.

The device enters the CMOS standby mode when the CE\# and RESET\# pins are both held at $\mathrm{V}_{10} \pm 0.3 \mathrm{~V}$. (Note that this is a more restricted voltage range than $\mathrm{V}_{I H}$.) If CE\# and RESET\# are held at $\mathrm{V}_{I H}$, but not within $\mathrm{V}_{I O} \pm 0.3 \mathrm{~V}$, the device will be in the standby mode, but the standby current will be greater. The device requires standard access time ($t_{C E}$) for read access when the device is in either of these standby modes, before it is ready to read data.

If the device is deselected during erasure or programming, the device draws active current until the operation is completed.

Refer to the "DC Characteristics" section on page 91 for the standby current specification.

Automatic Sleep Mode

The automatic sleep mode minimizes Flash device energy consumption. The device automatically enables this mode when addresses remain stable for $t_{\text {ACC }}+$ 30 ns. The automatic sleep mode is independent of the CE\#, WE\#, and OE\# control signals. Standard address access timings provide new data when addresses are changed. While in sleep mode, output data is latched and always available to the system. Refer to the "DC Characteristics" section on page 91 for the automatic sleep mode current specification.

RESET\#: Hardware Reset Pin

The RESET\# pin provides a hardware method of resetting the device to reading array data. When the RESET\# pin is driven low for at least a period of $t_{R P}$, the device immediately terminates any operation in progress, tristates all output pins, and ignores all read/write commands for the duration of the RESET\# pulse. The device also resets the internal state machine to reading array data. The operation that was interrupted should be reinitiated once the device is ready to accept another command sequence, to ensure data integrity.

Current is reduced for the duration of the RESET\# pulse. When RESET\# is held at $\mathrm{V}_{\mathrm{SS}} \pm 0.3 \mathrm{~V}$, the device draws CMOS standby current ($\mathrm{I}_{\mathrm{CC} 5}$). If RESET\# is held at $\mathrm{V}_{\text {IL }}$ but not within $\mathrm{V}_{\mathrm{SS}} \pm 0.3 \mathrm{~V}$, the standby current will be greater.

The RESET\# pin may be tied to the system reset circuitry. A system reset would thus also reset the Flash memory, enabling the system to read the boot-up firmware from the Flash memory.

Refer to the AC Characteristics tables for RESET\# parameters and to Figure 13 for the timing diagram.

Output Disable Mode

When the OE\# input is at $\mathrm{V}_{1 H}$, output from the device is disabled. The output pins are placed in the high impedance state.

Table 2. Sector Address Table-S29GL5I2N

Sector	A24-A16									Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SAO	0	0	0	0	0	0	0	0	0	128/64	0000000-000FFFF
SA1	0	0	0	0	0	0	0	0	1	128/64	0010000-001FFFF
SA2	0	0	0	0	0	0	0	1	0	128/64	0020000-002FFFF
SA3	0	0	0	0	0	0	0	1	1	128/64	0030000-003FFFF
SA4	0	0	0	0	0	0	1	0	0	128/64	0040000-004FFFF
SA5	0	0	0	0	0	0	1	0	1	128/64	0050000-005FFFF
SA6	0	0	0	0	0	0	1	1	0	128/64	0060000-006FFFF
SA7	0	0	0	0	0	0	1	1	1	128/64	0070000-007FFFF
SA8	0	0	0	0	0	1	0	0	0	128/64	0080000-008FFFF
SA9	0	0	0	0	0	1	0	0	1	128/64	0090000-009FFFF
SA10	0	0	0	0	0	1	0	1	0	128/64	00A0000-00AFFFF
SA11	0	0	0	0	0	1	0	1	1	128/64	00B0000-00BFFFF
SA12	0	0	0	0	0	1	1	0	0	128/64	00C0000-00CFFFF
SA13	0	0	0	0	0	1	1	0	1	128/64	00D0000-00DFFFF
SA14	0	0	0	0	0	1	1	1	0	128/64	00E0000-00EFFFF
SA15	0	0	0	0	0	1	1	1	1	128/64	00F0000-00FFFFF
SA16	0	0	0	0	1	0	0	0	0	128/64	0100000-010FFFF
SA17	0	0	0	0	1	0	0	0	1	128/64	0110000-011FFFF
SA18	0	0	0	0	1	0	0	1	0	128/64	0120000-012FFFF
SA19	0	0	0	0	1	0	0	1	1	128/64	0130000-013FFFF
SA20	0	0	0	0	1	0	1	0	0	128/64	0140000-014FFFF
SA21	0	0	0	0	1	0	1	0	1	128/64	0150000-015FFFF
SA22	0	0	0	0	1	0	1	1	0	128/64	0160000-016FFFF
SA23	0	0	0	0	1	0	1	1	1	128/64	0170000-017FFFF

Table 2. Sector Address Table-S29GL5I2N (Continued)

Sector	A24-A16									Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SA24	0	0	0	0	1	1	0	0	0	128/64	0180000-018FFFF
SA25	0	0	0	0	1	1	0	0	1	128/64	0190000-019FFFF
SA26	0	0	0	0	1	1	0	1	0	128/64	01A0000-01AFFFF
SA27	0	0	0	0	1	1	0	1	1	128/64	01B0000-01BFFFF
SA28	0	0	0	0	1	1	1	0	0	128/64	01C0000-01CFFFF
SA29	0	0	0	0	1	1	1	0	1	128/64	01D0000-01DFFFF
SA30	0	0	0	0	1	1	1	1	0	128/64	01E0000-01EFFFF
SA31	0	0	0	0	1	1	1	1	1	128/64	01F0000-01FFFFF
SA32	0	0	0	1	0	0	0	0	0	128/64	0200000-020FFFF
SA33	0	0	0	1	0	0	0	0	1	128/64	0210000-021FFFF
SA34	0	0	0	1	0	0	0	1	0	128/64	0220000-022FFFF
SA35	0	0	0	1	0	0	0	1	1	128/64	0230000-023FFFF
SA36	0	0	0	1	0	0	1	0	0	128/64	0240000-024FFFF
SA37	0	0	0	1	0	0	1	0	1	128/64	0250000-025FFFF
SA38	0	0	0	1	0	0	1	1	0	128/64	0260000-026FFFF
SA39	0	0	0	1	0	0	1	1	1	128/64	0270000-027FFFF
SA40	0	0	0	1	0	1	0	0	0	128/64	0280000-028FFFF
SA41	0	0	0	1	0	1	0	0	1	128/64	0290000-029FFFF
SA42	0	0	0	1	0	1	0	1	0	128/64	02A0000-02AFFFF
SA43	0	0	0	1	0	1	0	1	1	128/64	02B0000-02BFFFF
SA44	0	0	0	1	0	1	1	0	0	128/64	02C0000-02CFFFF
SA45	0	0	0	1	0	1	1	0	1	128/64	02D0000-02DFFFF
SA46	0	0	0	1	0	1	1	1	0	128/64	02E0000-02EFFFF
SA47	0	0	0	1	0	1	1	1	1	128/64	02F0000-02FFFFF
SA48	0	0	0	1	1	0	0	0	0	128/64	0300000-030FFFF
SA49	0	0	0	1	1	0	0	0	1	128/64	0310000-031FFFF
SA50	0	0	0	1	1	0	0	1	0	128/64	0320000-032FFFF
SA51	0	0	0	1	1	0	0	1	1	128/64	0330000-033FFFF
SA52	0	0	0	1	1	0	1	0	0	128/64	0340000-034FFFF
SA53	0	0	0	1	1	0	1	0	1	128/64	0350000-035FFFF
SA54	0	0	0	1	1	0	1	1	0	128/64	0360000-036FFFF
SA55	0	0	0	1	1	0	1	1	1	128/64	0370000-037FFFF
SA56	0	0	0	1	1	1	0	0	0	128/64	0380000-038FFFF
SA57	0	0	0	1	1	1	0	0	1	128/64	0390000-039FFFF
SA58	0	0	0	1	1	1	0	1	0	128/64	03A0000-03AFFFF

Table 2. Sector Address Table-S29GL5I2N (Continued)

Sector	A24-A16									Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SA59	0	0	0	1	1	1	0	1	1	128/64	03B0000-03BFFFF
SA60	0	0	0	1	1	1	1	0	0	128/64	03C0000-03CFFFF
SA61	0	0	0	1	1	1	1	0	1	128/64	03D0000-03DFFFF
SA62	0	0	0	1	1	1	1	1	0	128/64	03E0000-03EFFFF
SA63	0	0	0	1	1	1	1	1	1	128/64	03F0000-03FFFFF
SA64	0	0	1	0	0	0	0	0	0	128/64	0400000-040FFFF
SA65	0	0	1	0	0	0	0	0	1	128/64	0410000-041FFFF
SA66	0	0	1	0	0	0	0	1	0	128/64	0420000-042FFFF
SA67	0	0	1	0	0	0	0	1	1	128/64	0430000-043FFFF
SA68	0	0	1	0	0	0	1	0	0	128/64	0440000-044FFFF
SA69	0	0	1	0	0	0	1	0	1	128/64	0450000-045FFFF
SA70	0	0	1	0	0	0	1	1	0	128/64	0460000-046FFFF
SA71	0	0	1	0	0	0	1	1	1	128/64	0470000-047FFFF
SA72	0	0	1	0	0	1	0	0	0	128/64	0480000-048FFFF
SA73	0	0	1	0	0	1	0	0	1	128/64	0490000-049FFFF
SA74	0	0	1	0	0	1	0	1	0	128/64	04A0000-04AFFFF
SA75	0	0	1	0	0	1	0	1	1	128/64	04B0000-04BFFFF
SA76	0	0	1	0	0	1	1	0	0	128/64	04C0000-04CFFFF
SA77	0	0	1	0	0	1	1	0	1	128/64	04D0000-04DFFFF
SA78	0	0	1	0	0	1	1	1	0	128/64	04E0000-04EFFFF
SA79	0	0	1	0	0	1	1	1	1	128/64	04F0000-04FFFFF
SA80	0	0	1	0	1	0	0	0	0	128/64	0500000-050FFFF
SA81	0	0	1	0	1	0	0	0	1	128/64	0510000-051FFFF
SA82	0	0	1	0	1	0	0	1	0	128/64	0520000-052FFFF
SA83	0	0	1	0	1	0	0	1	1	128/64	0530000-053FFFF
SA84	0	0	1	0	1	0	1	0	0	128/64	0540000-054FFFF
SA85	0	0	1	0	1	0	1	0	1	128/64	0550000-055FFFF
SA86	0	0	1	0	1	0	1	1	0	128/64	0560000-056FFFF
SA87	0	0	1	0	1	0	1	1	1	128/64	0570000-057FFFF
SA88	0	0	1	0	1	1	0	0	0	128/64	0580000-058FFFF
SA89	0	0	1	0	1	1	0	0	1	128/64	0590000-059FFFF
SA90	0	0	1	0	1	1	0	1	0	128/64	05A0000-05AFFFF
SA91	0	0	1	0	1	1	0	1	1	128/64	05B0000-05BFFFF
SA92	0	0	1	0	1	1	1	0	0	128/64	05C0000-05CFFFF
SA93	0	0	1	0	1	1	1	0	1	128/64	05D0000-05DFFFF

Table 2. Sector Address Table-S29GL5I2N (Continued)

Sector	A24-A16									Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SA94	0	0	1	0	1	1	1	1	0	128/64	05E0000-05EFFFF
SA95	0	0	1	0	1	1	1	1	1	128/64	05F0000-05FFFFF
SA96	0	0	1	1	0	0	0	0	0	128/64	0600000-060FFFF
SA97	0	0	1	1	0	0	0	0	1	128/64	0610000-061FFFF
SA98	0	0	1	1	0	0	0	1	0	128/64	0620000-062FFFF
SA99	0	0	1	1	0	0	0	1	1	128/64	0630000-063FFFF
SA100	0	0	1	1	0	0	1	0	0	128/64	0640000-064FFFF
SA101	0	0	1	1	0	0	1	0	1	128/64	0650000-065FFFF
SA102	0	0	1	1	0	0	1	1	0	128/64	0660000-066FFFF
SA103	0	0	1	1	0	0	1	1	1	128/64	0670000-067FFFF
SA104	0	0	1	1	0	1	0	0	0	128/64	0680000-068FFFF
SA105	0	0	1	1	0	1	0	0	1	128/64	0690000-069FFFF
SA106	0	0	1	1	0	1	0	1	0	128/64	06A0000-06AFFFF
SA107	0	0	1	1	0	1	0	1	1	128/64	06B0000-06BFFFF
SA108	0	0	1	1	0	1	1	0	0	128/64	06C0000-06CFFFF
SA109	0	0	1	1	0	1	1	0	1	128/64	06D0000-06DFFFF
SA110	0	0	1	1	0	1	1	1	0	128/64	06E0000-06EFFFF
SA111	0	0	1	1	0	1	1	1	1	128/64	06F0000-06FFFFF
SA112	0	0	1	1	1	0	0	0	0	128/64	0700000-070FFFF
SA113	0	0	1	1	1	0	0	0	1	128/64	0710000-071FFFF
SA114	0	0	1	1	1	0	0	1	0	128/64	0720000-072FFFF
SA115	0	0	1	1	1	0	0	1	1	128/64	0730000-073FFFF
SA116	0	0	1	1	1	0	1	0	0	128/64	0740000-074FFFF
SA117	0	0	1	1	1	0	1	0	1	128/64	0750000-075FFFF
SA118	0	0	1	1	1	0	1	1	0	128/64	0760000-076FFFF
SA119	0	0	1	1	1	0	1	1	1	128/64	0770000-077FFFF
SA120	0	0	1	1	1	1	0	0	0	128/64	0780000-078FFFF
SA121	0	0	1	1	1	1	0	0	1	128/64	0790000-079FFFF
SA122	0	0	1	1	1	1	0	1	0	128/64	07A0000-07AFFFF
SA123	0	0	1	1	1	1	0	1	1	128/64	07B0000-07BFFFF
SA124	0	0	1	1	1	1	1	0	0	128/64	07C0000-07CFFFF
SA125	0	0	1	1	1	1	1	0	1	128/64	07D0000-07DFFFF
SA126	0	0	1	1	1	1	1	1	0	128/64	07E0000-07EFFFF
SA127	0	0	1	1	1	1	1	1	1	128/64	07F0000-07FFFFF
SA128	0	1	0	0	0	0	0	0	0	128/64	0800000-080FFFF

Table 2. Sector Address Table-S29GL5I2N (Continued)

Sector	A24-A16									Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SA129	0	1	0	0	0	0	0	0	1	128/64	0810000-081FFFF
SA130	0	1	0	0	0	0	0	1	0	128/64	0820000-082FFFF
SA131	0	1	0	0	0	0	0	1	1	128/64	0830000-083FFFF
SA132	0	1	0	0	0	0	1	0	0	128/64	0840000-084FFFF
SA133	0	1	0	0	0	0	1	0	1	128/64	0850000-085FFFF
SA134	0	1	0	0	0	0	1	1	0	128/64	0860000-086FFFF
SA135	0	1	0	0	0	0	1	1	1	128/64	0870000-087FFFF
SA136	0	1	0	0	0	1	0	0	0	128/64	0880000-088FFFF
SA137	0	1	0	0	0	1	0	0	1	128/64	0890000-089FFFF
SA138	0	1	0	0	0	1	0	1	0	128/64	08A0000-08AFFFF
SA139	0	1	0	0	0	1	0	1	1	128/64	08B0000-08BFFFF
SA140	0	1	0	0	0	1	1	0	0	128/64	08C0000-08CFFFF
SA141	0	1	0	0	0	1	1	0	1	128/64	08D0000-08DFFFF
SA142	0	1	0	0	0	1	1	1	0	128/64	08E0000-08EFFFF
SA143	0	1	0	0	0	1	1	1	1	128/64	08F0000-08FFFFF
SA144	0	1	0	0	1	0	0	0	0	128/64	0900000-090FFFF
SA145	0	1	0	0	1	0	0	0	1	128/64	0910000-091FFFF
SA146	0	1	0	0	1	0	0	1	0	128/64	0920000-092FFFF
SA147	0	1	0	0	1	0	0	1	1	128/64	0930000-093FFFF
SA148	0	1	0	0	1	0	1	0	0	128/64	0940000-094FFFF
SA149	0	1	0	0	1	0	1	0	1	128/64	0950000-095FFFF
SA150	0	1	0	0	1	0	1	1	0	128/64	0960000-096FFFF
SA151	0	1	0	0	1	0	1	1	1	128/64	0970000-097FFFF
SA152	0	1	0	0	1	1	0	0	0	128/64	0980000-098FFFF
SA153	0	1	0	0	1	1	0	0	1	128/64	0990000-099FFFF
SA154	0	1	0	0	1	1	0	1	0	128/64	09A0000-09AFFFF
SA155	0	1	0	0	1	1	0	1	1	128/64	09B0000-09BFFFF
SA156	0	1	0	0	1	1	1	0	0	128/64	09C0000-09CFFFF
SA157	0	1	0	0	1	1	1	0	1	128/64	09D0000-09DFFFF
SA158	0	1	0	0	1	1	1	1	0	128/64	09E0000-09EFFFF
SA159	0	1	0	0	1	1	1	1	1	128/64	09F0000-09FFFFF
SA160	0	1	0	1	0	0	0	0	0	128/64	0A00000-0A0FFFF
SA161	0	1	0	1	0	0	0	0	1	128/64	0A10000-0A1FFFF
SA162	0	1	0	1	0	0	0	1	0	128/64	0A20000-0A2FFFF
SA163	0	1	0	1	0	0	0	1	1	128/64	0A30000-0A3FFFF

Table 2. Sector Address Table-S29GL5I2N (Continued)

Sector	A24-A16									Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SA164	0	1	0	1	0	0	1	0	0	128/64	0A40000-0A4FFFF
SA165	0	1	0	1	0	0	1	0	1	128/64	0A50000-0A5FFFF
SA166	0	1	0	1	0	0	1	1	0	128/64	0A60000-0A6FFFF
SA167	0	1	0	1	0	0	1	1	1	128/64	0A70000-0A7FFFF
SA168	0	1	0	1	0	1	0	0	0	128/64	0A80000-0A8FFFF
SA169	0	1	0	1	0	1	0	0	1	128/64	0A90000-0A9FFFF
SA170	0	1	0	1	0	1	0	1	0	128/64	OAA0000-0AAFFFF
SA171	0	1	0	1	0	1	0	1	1	128/64	OAB0000-0ABFFFF
SA172	0	1	0	1	0	1	1	0	0	128/64	OAC0000-0ACFFFF
SA173	0	1	0	1	0	1	1	0	1	128/64	OAD0000-0ADFFFF
SA174	0	1	0	1	0	1	1	1	0	128/64	OAE0000-0AEFFFF
SA175	0	1	0	1	0	1	1	1	1	128/64	OAF0000-0AFFFFF
SA176	0	1	0	1	1	0	0	0	0	128/64	OB00000-0B0FFFF
SA177	0	1	0	1	1	0	0	0	1	128/64	0B10000-0B1FFFF
SA178	0	1	0	1	1	0	0	1	0	128/64	0B20000-0B2FFFF
SA179	0	1	0	1	1	0	0	1	1	128/64	0B30000-0B3FFFF
SA180	0	1	0	1	1	0	1	0	0	128/64	0B40000-0B4FFFF
SA181	0	1	0	1	1	0	1	0	1	128/64	0B50000-0B5FFFF
SA182	0	1	0	1	1	0	1	1	0	128/64	0B60000-0B6FFFF
SA183	0	1	0	1	1	0	1	1	1	128/64	0B70000-0B7FFFF
SA184	0	1	0	1	1	1	0	0	0	128/64	0B80000-0B8FFFF
SA185	0	1	0	1	1	1	0	0	1	128/64	0B90000-0B9FFFF
SA186	0	1	0	1	1	1	0	1	0	128/64	OBA0000-0BAFFFF
SA187	0	1	0	1	1	1	0	1	1	128/64	OBB0000-0BBFFFF
SA188	0	1	0	1	1	1	1	0	0	128/64	OBC0000-0BCFFFF
SA189	0	1	0	1	1	1	1	0	1	128/64	OBD0000-0BDFFFF
SA190	0	1	0	1	1	1	1	1	0	128/64	OBE0000-0BEFFFF
SA191	0	1	0	1	1	1	1	1	1	128/64	OBF0000-0BFFFFF
SA192	0	1	1	0	0	0	0	0	0	128/64	0C00000-0C0FFFF
SA193	0	1	1	0	0	0	0	0	1	128/64	0C10000-0C1FFFF
SA194	0	1	1	0	0	0	0	1	0	128/64	0C20000-0C2FFFF
SA195	0	1	1	0	0	0	0	1	1	128/64	0C30000-0C3FFFF
SA196	0	1	1	0	0	0	1	0	0	128/64	0C40000-0C4FFFF
SA197	0	1	1	0	0	0	1	0	1	128/64	0C50000-0C5FFFF
SA198	0	1	1	0	0	0	1	1	0	128/64	0C60000-0C6FFFF

Table 2. Sector Address Table-S29GL5I2N (Continued)

Sector	A24-A16									Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SA199	0	1	1	0	0	0	1	1	1	128/64	0C70000-0C7FFFF
SA200	0	1	1	0	0	1	0	0	0	128/64	0C80000-0C8FFFF
SA201	0	1	1	0	0	1	0	0	1	128/64	0C90000-0C9FFFF
SA202	0	1	1	0	0	1	0	1	0	128/64	OCA0000-0CAFFFF
SA203	0	1	1	0	0	1	0	1	1	128/64	OCB0000-0CBFFFF
SA204	0	1	1	0	0	1	1	0	0	128/64	0CC0000-0CCFFFF
SA205	0	1	1	0	0	1	1	0	1	128/64	OCD0000-0CDFFFF
SA206	0	1	1	0	0	1	1	1	0	128/64	OCE0000-0CEFFFF
SA207	0	1	1	0	0	1	1	1	1	128/64	OCF0000-0CFFFFF
SA208	0	1	1	0	1	0	0	0	0	128/64	OD00000-0D0FFFF
SA209	0	1	1	0	1	0	0	0	1	128/64	0D10000-0D1FFFF
SA210	0	1	1	0	1	0	0	1	0	128/64	0D20000-0D2FFFF
SA211	0	1	1	0	1	0	0	1	1	128/64	0D30000-0D3FFFF
SA212	0	1	1	0	1	0	1	0	0	128/64	0D40000-0D4FFFF
SA213	0	1	1	0	1	0	1	0	1	128/64	0D50000-0D5FFFF
SA214	0	1	1	0	1	0	1	1	0	128/64	0D60000-0D6FFFF
SA215	0	1	1	0	1	0	1	1	1	128/64	0D70000-0D7FFFF
SA216	0	1	1	0	1	1	0	0	0	128/64	0D80000-0D8FFFF
SA217	0	1	1	0	1	1	0	0	1	128/64	0D90000-0D9FFFF
SA218	0	1	1	0	1	1	0	1	0	128/64	ODA0000-0DAFFFF
SA219	0	1	1	0	1	1	0	1	1	128/64	ODB0000-0DBFFFF
SA220	0	1	1	0	1	1	1	0	0	128/64	ODC0000-0DCFFFF
SA221	0	1	1	0	1	1	1	0	1	128/64	0DD0000-0DDFFFF
SA222	0	1	1	0	1	1	1	1	0	128/64	ODE0000-0DEFFFF
SA223	0	1	1	0	1	1	1	1	1	128/64	0DF0000-0DFFFFF
SA224	0	1	1	1	0	0	0	0	0	128/64	0E00000-0E0FFFF
SA225	0	1	1	1	0	0	0	0	1	128/64	0E10000-0E1FFFF
SA226	0	1	1	1	0	0	0	1	0	128/64	0E20000-0E2FFFF
SA227	0	1	1	1	0	0	0	1	1	128/64	0E30000-0E3FFFF
SA228	0	1	1	1	0	0	1	0	0	128/64	0E40000-0E4FFFF
SA229	0	1	1	1	0	0	1	0	1	128/64	0E50000-0E5FFFF
SA230	0	1	1	1	0	0	1	1	0	128/64	0E60000-0E6FFFF
SA231	0	1	1	1	0	0	1	1	1	128/64	0E70000-0E7FFFF
SA232	0	1	1	1	0	1	0	0	0	128/64	0E80000-0E8FFFF
SA233	0	1	1	1	0	1	0	0	1	128/64	0E90000-0E9FFFF

Table 2. Sector Address Table-S29GL5I2N (Continued)

Sector	A24-A16									Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SA234	0	1	1	1	0	1	0	1	0	128/64	0EA0000-0EAFFFF
SA235	0	1	1	1	0	1	0	1	1	128/64	OEB0000-0EBFFFF
SA236	0	1	1	1	0	1	1	0	0	128/64	0EC0000-0ECFFFF
SA237	0	1	1	1	0	1	1	0	1	128/64	OED0000-0EDFFFF
SA238	0	1	1	1	0	1	1	1	0	128/64	OEE0000-0EEFFFF
SA239	0	1	1	1	0	1	1	1	1	128/64	OEF0000-0EFFFFF
SA240	0	1	1	1	1	0	0	0	0	128/64	OF00000-0FOFFFF
SA241	0	1	1	1	1	0	0	0	1	128/64	OF10000-0F1FFFF
SA242	0	1	1	1	1	0	0	1	0	128/64	OF20000-0F2FFFF
SA243	0	1	1	1	1	0	0	1	1	128/64	0F30000-0F3FFFF
SA244	0	1	1	1	1	0	1	0	0	128/64	OF40000-0F4FFFF
SA245	0	1	1	1	1	0	1	0	1	128/64	OF50000-0F5FFFF
SA246	0	1	1	1	1	0	1	1	0	128/64	0F60000-0F6FFFF
SA247	0	1	1	1	1	0	1	1	1	128/64	OF70000-0F7FFFF
SA248	0	1	1	1	1	1	0	0	0	128/64	OF80000-0F8FFFF
SA249	0	1	1	1	1	1	0	0	1	128/64	0F90000-0F9FFFF
SA250	0	1	1	1	1	1	0	1	0	128/64	OFA0000- OFAFFFF
SA251	0	1	1	1	1	1	0	1	1	128/64	OFB0000-0FBFFFF
SA252	0	1	1	1	1	1	1	0	0	128/64	OFC0000-0FCFFFF
SA253	0	1	1	1	1	1	1	0	1	128/64	OFD0000-0FDFFFF
SA254	0	1	1	1	1	1	1	1	0	128/64	OFE0000-0FEFFFF
SA255	0	1	1	1	1	1	1	1	1	128/64	OFF0000-OFFFFFF
SA256	1	0	0	0	0	0	0	0	0	128/64	1000000-100FFFF
SA257	1	0	0	0	0	0	0	0	1	128/64	1010000-101FFFF
SA258	1	0	0	0	0	0	0	1	0	128/64	1020000-102FFFF
SA259	1	0	0	0	0	0	0	1	1	128/64	1030000-103FFFF
SA260	1	0	0	0	0	0	1	0	0	128/64	1040000-104FFFF
SA261	1	0	0	0	0	0	1	0	1	128/64	1050000-105FFFF
SA262	1	0	0	0	0	0	1	1	0	128/64	1060000-106FFFF
SA263	1	0	0	0	0	0	1	1	1	128/64	1070000-107FFFF
SA264	1	0	0	0	0	1	0	0	0	128/64	1080000-108FFFF
SA265	1	0	0	0	0	1	0	0	1	128/64	1090000-109FFFF
SA266	1	0	0	0	0	1	0	1	0	128/64	10A0000-10AFFFF
SA267	1	0	0	0	0	1	0	1	1	128/64	10B0000-10BFFFF
SA268	1	0	0	0	0	1	1	0	0	128/64	10C0000-10CFFFF

Table 2. Sector Address Table-S29GL5I2N (Continued)

Sector	A24-A16									Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SA269	1	0	0	0	0	1	1	0	1	128/64	10D0000-10DFFFF
SA270	1	0	0	0	0	1	1	1	0	128/64	10E0000-10EFFFF
SA271	1	0	0	0	0	1	1	1	1	128/64	10F0000-10FFFFF
SA272	1	0	0	0	1	0	0	0	0	128/64	1100000-110FFFF
SA273	1	0	0	0	1	0	0	0	1	128/64	1110000-111FFFF
SA274	1	0	0	0	1	0	0	1	0	128/64	1120000-112FFFF
SA275	1	0	0	0	1	0	0	1	1	128/64	1130000-113FFFF
SA276	1	0	0	0	1	0	1	0	0	128/64	1140000-114FFFF
SA277	1	0	0	0	1	0	1	0	1	128/64	1150000-115FFFF
SA278	1	0	0	0	1	0	1	1	0	128/64	1160000-116FFFF
SA279	1	0	0	0	1	0	1	1	1	128/64	1170000-117FFFF
SA280	1	0	0	0	1	1	0	0	0	128/64	1180000-118FFFF
SA281	1	0	0	0	1	1	0	0	1	128/64	1190000-119FFFF
SA282	1	0	0	0	1	1	0	1	0	128/64	11A0000-11AFFFF
SA283	1	0	0	0	1	1	0	1	1	128/64	11B0000-11BFFFF
SA284	1	0	0	0	1	1	1	0	0	128/64	11C0000-11CFFFF
SA285	1	0	0	0	1	1	1	0	1	128/64	11D0000-11DFFFF
SA286	1	0	0	0	1	1	1	1	0	128/64	11E0000-11EFFFF
SA287	1	0	0	0	1	1	1	1	1	128/64	11F0000-11FFFFF
SA288	1	0	0	1	0	0	0	0	0	128/64	1200000-120FFFF
SA289	1	0	0	1	0	0	0	0	1	128/64	1210000-121FFFF
SA290	1	0	0	1	0	0	0	1	0	128/64	1220000-122FFFF
SA291	1	0	0	1	0	0	0	1	1	128/64	1230000-123FFFF
SA292	1	0	0	1	0	0	1	0	0	128/64	1240000-124FFFF
SA293	1	0	0	1	0	0	1	0	1	128/64	1250000-125FFFF
SA294	1	0	0	1	0	0	1	1	0	128/64	1260000-126FFFF
SA295	1	0	0	1	0	0	1	1	1	128/64	1270000-127FFFF
SA296	1	0	0	1	0	1	0	0	0	128/64	1280000-128FFFF
SA297	1	0	0	1	0	1	0	0	1	128/64	1290000-129FFFF
SA298	1	0	0	1	0	1	0	1	0	128/64	12A0000-12AFFFF
SA299	1	0	0	1	0	1	0	1	1	128/64	12B0000-12BFFFF
SA300	1	0	0	1	0	1	1	0	0	128/64	12C0000-12CFFFF
SA301	1	0	0	1	0	1	1	0	1	128/64	12D0000-12DFFFF
SA302	1	0	0	1	0	1	1	1	0	128/64	12E0000-12EFFFF
SA303	1	0	0	1	0	1	1	1	1	128/64	12F0000-12FFFFF

Table 2. Sector Address Table-S29GL5I2N (Continued)

Sector	A24-A16									Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SA304	1	0	0	1	1	0	0	0	0	128/64	1300000-130FFFF
SA305	1	0	0	1	1	0	0	0	1	128/64	1310000-131FFFF
SA306	1	0	0	1	1	0	0	1	0	128/64	1320000-132FFFF
SA307	1	0	0	1	1	0	0	1	1	128/64	1330000-133FFFF
SA308	1	0	0	1	1	0	1	0	0	128/64	1340000-134FFFF
SA309	1	0	0	1	1	0	1	0	1	128/64	1350000-135FFFF
SA310	1	0	0	1	1	0	1	1	0	128/64	1360000-136FFFF
SA311	1	0	0	1	1	0	1	1	1	128/64	1370000-137FFFF
SA312	1	0	0	1	1	1	0	0	0	128/64	1380000-138FFFF
SA313	1	0	0	1	1	1	0	0	1	128/64	1390000-139FFFF
SA314	1	0	0	1	1	1	0	1	0	128/64	13A0000-13AFFFF
SA315	1	0	0	1	1	1	0	1	1	128/64	13B0000-13BFFFF
SA316	1	0	0	1	1	1	1	0	0	128/64	13C0000-13CFFFF
SA317	1	0	0	1	1	1	1	0	1	128/64	13D0000-13DFFFF
SA318	1	0	0	1	1	1	1	1	0	128/64	13E0000-13EFFFF
SA319	1	0	0	1	1	1	1	1	1	128/64	13F0000-13FFFFF
SA320	1	0	1	0	0	0	0	0	0	128/64	1400000-140FFFF
SA321	1	0	1	0	0	0	0	0	1	128/64	1410000-141FFFF
SA322	1	0	1	0	0	0	0	1	0	128/64	1420000-142FFFF
SA323	1	0	1	0	0	0	0	1	1	128/64	1430000-143FFFF
SA324	1	0	1	0	0	0	1	0	0	128/64	1440000-144FFFF
SA325	1	0	1	0	0	0	1	0	1	128/64	1450000-145FFFF
SA326	1	0	1	0	0	0	1	1	0	128/64	1460000-146FFFF
SA327	1	0	1	0	0	0	1	1	1	128/64	1470000-147FFFF
SA328	1	0	1	0	0	1	0	0	0	128/64	1480000-148FFFF
SA329	1	0	1	0	0	1	0	0	1	128/64	1490000-149FFFF
SA330	1	0	1	0	0	1	0	1	0	128/64	14A0000-14AFFFF
SA331	1	0	1	0	0	1	0	1	1	128/64	14B0000-14BFFFF
SA332	1	0	1	0	0	1	1	0	0	128/64	14C0000-14CFFFF
SA333	1	0	1	0	0	1	1	0	1	128/64	14D0000-14DFFFF
SA334	1	0	1	0	0	1	1	1	0	128/64	14E0000-14EFFFF
SA335	1	0	1	0	0	1	1	1	1	128/64	14F0000-14FFFFF
SA336	1	0	1	0	1	0	0	0	0	128/64	1500000-150FFFF
SA337	1	0	1	0	1	0	0	0	1	128/64	1510000-151FFFF
SA338	1	0	1	0	1	0	0	1	0	128/64	1520000-152FFFF

Table 2. Sector Address Table-S29GL5I2N (Continued)

Sector	A24-A16									Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SA339	1	0	1	0	1	0	0	1	1	128/64	1530000-153FFFF
SA340	1	0	1	0	1	0	1	0	0	128/64	1540000-154FFFF
SA341	1	0	1	0	1	0	1	0	1	128/64	1550000-155FFFF
SA342	1	0	1	0	1	0	1	1	0	128/64	1560000-156FFFF
SA343	1	0	1	0	1	0	1	1	1	128/64	1570000-157FFFF
SA344	1	0	1	0	1	1	0	0	0	128/64	1580000-158FFFF
SA345	1	0	1	0	1	1	0	0	1	128/64	1590000-159FFFF
SA346	1	0	1	0	1	1	0	1	0	128/64	15A0000-15AFFFF
SA347	1	0	1	0	1	1	0	1	1	128/64	15B0000-15BFFFF
SA348	1	0	1	0	1	1	1	0	0	128/64	15C0000-15CFFFF
SA349	1	0	1	0	1	1	1	0	1	128/64	15D0000-15DFFFF
SA350	1	0	1	0	1	1	1	1	0	128/64	15E0000-15EFFFF
SA351	1	0	1	0	1	1	1	1	1	128/64	15F0000-15FFFFF
SA352	1	0	1	1	0	0	0	0	0	128/64	1600000-160FFFF
SA353	1	0	1	1	0	0	0	0	1	128/64	1610000-161FFFF
SA354	1	0	1	1	0	0	0	1	0	128/64	1620000-162FFFF
SA355	1	0	1	1	0	0	0	1	1	128/64	1630000-163FFFF
SA356	1	0	1	1	0	0	1	0	0	128/64	1640000-164FFFF
SA357	1	0	1	1	0	0	1	0	1	128/64	1650000-165FFFF
SA358	1	0	1	1	0	0	1	1	0	128/64	1660000-166FFFF
SA359	1	0	1	1	0	0	1	1	1	128/64	1670000-167FFFF
SA360	1	0	1	1	0	1	0	0	0	128/64	1680000-168FFFF
SA361	1	0	1	1	0	1	0	0	1	128/64	1690000-169FFFF
SA362	1	0	1	1	0	1	0	1	0	128/64	16A0000-16AFFFF
SA363	1	0	1	1	0	1	0	1	1	128/64	16B0000-16BFFFF
SA364	1	0	1	1	0	1	1	0	0	128/64	16C0000-16CFFFF
SA365	1	0	1	1	0	1	1	0	1	128/64	16D0000-16DFFFF
SA366	1	0	1	1	0	1	1	1	0	128/64	16E0000-16EFFFF
SA367	1	0	1	1	0	1	1	1	1	128/64	16F0000-16FFFFF
SA368	1	0	1	1	1	0	0	0	0	128/64	1700000-170FFFF
SA369	1	0	1	1	1	0	0	0	1	128/64	1710000-171FFFF
SA370	1	0	1	1	1	0	0	1	0	128/64	1720000-172FFFF
SA371	1	0	1	1	1	0	0	1	1	128/64	1730000-173FFFF
SA372	1	0	1	1	1	0	1	0	0	128/64	1740000-174FFFF
SA373	1	0	1	1	1	0	1	0	1	128/64	1750000-175FFFF

Table 2. Sector Address Table-S29GL5I2N (Continued)

Sector	A24-A16									Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SA374	1	0	1	1	1	0	1	1	0	128/64	1760000-176FFFF
SA375	1	0	1	1	1	0	1	1	1	128/64	1770000-177FFFF
SA376	1	0	1	1	1	1	0	0	0	128/64	1780000-178FFFF
SA377	1	0	1	1	1	1	0	0	1	128/64	1790000-179FFFF
SA378	1	0	1	1	1	1	0	1	0	128/64	17A0000-17AFFFF
SA379	1	0	1	1	1	1	0	1	1	128/64	17B0000-17BFFFF
SA380	1	0	1	1	1	1	1	0	0	128/64	17C0000-17CFFFF
SA381	1	0	1	1	1	1	1	0	1	128/64	17D0000-17DFFFF
SA382	1	0	1	1	1	1	1	1	0	128/64	17E0000-17EFFFF
SA383	1	0	1	1	1	1	1	1	1	128/64	17F0000-17FFFFF
SA384	1	1	0	0	0	0	0	0	0	128/64	1800000-180FFFF
SA385	1	1	0	0	0	0	0	0	1	128/64	1810000-181FFFF
SA386	1	1	0	0	0	0	0	1	0	128/64	1820000-182FFFF
SA387	1	1	0	0	0	0	0	1	1	128/64	1830000-183FFFF
SA388	1	1	0	0	0	0	1	0	0	128/64	1840000-184FFFF
SA389	1	1	0	0	0	0	1	0	1	128/64	1850000-185FFFF
SA390	1	1	0	0	0	0	1	1	0	128/64	1860000-186FFFF
SA391	1	1	0	0	0	0	1	1	1	128/64	1870000-187FFFF
SA392	1	1	0	0	0	1	0	0	0	128/64	1880000-188FFFF
SA393	1	1	0	0	0	1	0	0	1	128/64	1890000-189FFFF
SA394	1	1	0	0	0	1	0	1	0	128/64	18A0000-18AFFFF
SA395	1	1	0	0	0	1	0	1	1	128/64	18B0000-18BFFFF
SA396	1	1	0	0	0	1	1	0	0	128/64	18C0000-18CFFFF
SA397	1	1	0	0	0	1	1	0	1	128/64	18D0000-18DFFFF
SA398	1	1	0	0	0	1	1	1	0	128/64	18E0000-18EFFFF
SA399	1	1	0	0	0	1	1	1	1	128/64	18F0000-18FFFFF
SA400	1	1	0	0	1	0	0	0	0	128/64	1900000-190FFFF
SA401	1	1	0	0	1	0	0	0	1	128/64	1910000-191FFFF
SA402	1	1	0	0	1	0	0	1	0	128/64	1920000-192FFFF
SA403	1	1	0	0	1	0	0	1	1	128/64	1930000-193FFFF
SA404	1	1	0	0	1	0	1	0	0	128/64	1940000-194FFFF
SA405	1	1	0	0	1	0	1	0	1	128/64	1950000-195FFFF
SA406	1	1	0	0	1	0	1	1	0	128/64	1960000-196FFFF
SA407	1	1	0	0	1	0	1	1	1	128/64	1970000-197FFFF
SA408	1	1	0	0	1	1	0	0	0	128/64	1980000-198FFFF

Table 2. Sector Address Table-S29GL5I2N (Continued)

Sector	A24-A16									Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SA409	1	1	0	0	1	1	0	0	1	128/64	1990000-199FFFF
SA410	1	1	0	0	1	1	0	1	0	128/64	19A0000-19AFFFF
SA411	1	1	0	0	1	1	0	1	1	128/64	19B0000-19BFFFF
SA412	1	1	0	0	1	1	1	0	0	128/64	19C0000-19CFFFF
SA413	1	1	0	0	1	1	1	0	1	128/64	19D0000-19DFFFF
SA414	1	1	0	0	1	1	1	1	0	128/64	19E0000-19EFFFF
SA415	1	1	0	0	1	1	1	1	1	128/64	19F0000-19FFFFF
SA416	1	1	0	1	0	0	0	0	0	128/64	1A00000-1A0FFFF
SA417	1	1	0	1	0	0	0	0	1	128/64	1A10000-1A1FFFF
SA418	1	1	0	1	0	0	0	1	0	128/64	1A20000-1A2FFFF
SA419	1	1	0	1	0	0	0	1	1	128/64	1A30000-1A3FFFF
SA420	1	1	0	1	0	0	1	0	0	128/64	1A40000-1A4FFFF
SA421	1	1	0	1	0	0	1	0	1	128/64	1A50000-1A5FFFF
SA422	1	1	0	1	0	0	1	1	0	128/64	1A60000-1A6FFFF
SA423	1	1	0	1	0	0	1	1	1	128/64	1A70000-1A7FFFF
SA424	1	1	0	1	0	1	0	0	0	128/64	1A80000-1A8FFFF
SA425	1	1	0	1	0	1	0	0	1	128/64	1A90000-1A9FFFF
SA426	1	1	0	1	0	1	0	1	0	128/64	1AA0000-1AAFFFF
SA427	1	1	0	1	0	1	0	1	1	128/64	1AB0000-1ABFFFF
SA428	1	1	0	1	0	1	1	0	0	128/64	1AC0000-1ACFFFF
SA429	1	1	0	1	0	1	1	0	1	128/64	1AD0000-1ADFFFF
SA430	1	1	0	1	0	1	1	1	0	128/64	1AE0000-1AEFFFF
SA431	1	1	0	1	0	1	1	1	1	128/64	1AF0000-1AFFFFF
SA432	1	1	0	1	1	0	0	0	0	128/64	1B00000-1B0FFFF
SA433	1	1	0	1	1	0	0	0	1	128/64	1B10000-1B1FFFF
SA434	1	1	0	1	1	0	0	1	0	128/64	1B20000-1B2FFFF
SA435	1	1	0	1	1	0	0	1	1	128/64	1B30000-1B3FFFF
SA436	1	1	0	1	1	0	1	0	0	128/64	1B40000-1B4FFFF
SA437	1	1	0	1	1	0	1	0	1	128/64	1B50000-1B5FFFF
SA438	1	1	0	1	1	0	1	1	0	128/64	1B60000-1B6FFFF
SA439	1	1	0	1	1	0	1	1	1	128/64	1B70000-1B7FFFF
SA440	1	1	0	1	1	1	0	0	0	128/64	1B80000-1B8FFFF
SA441	1	1	0	1	1	1	0	0	1	128/64	1B90000-1B9FFFF
SA442	1	1	0	1	1	1	0	1	0	128/64	1BA0000-1BAFFFF
SA443	1	1	0	1	1	1	0	1	1	128/64	1BB0000-1BBFFFF

Table 2. Sector Address Table-S29GL5I2N (Continued)

Sector	A24-A16												

Table 2. Sector Address Table-S29GL5I2N (Continued)

Sector	A24-A16									Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SA479	1	1	1	0	1	1	1	1	1	128/64	1DF0000-1DFFFFF
SA480	1	1	1	1	0	0	0	0	0	128/64	1E00000-1E0FFFF
SA481	1	1	1	1	0	0	0	0	1	128/64	1E10000-1E1FFFF
SA482	1	1	1	1	0	0	0	1	0	128/64	1E20000-1E2FFFF
SA483	1	1	1	1	0	0	0	1	1	128/64	1E30000-1E3FFFF
SA484	1	1	1	1	0	0	1	0	0	128/64	1E40000-1E4FFFF
SA485	1	1	1	1	0	0	1	0	1	128/64	1E50000-1E5FFFF
SA486	1	1	1	1	0	0	1	1	0	128/64	1E60000-1E6FFFF
SA487	1	1	1	1	0	0	1	1	1	128/64	1E70000-1E7FFFF
SA488	1	1	1	1	0	1	0	0	0	128/64	1E80000-1E8FFFF
SA489	1	1	1	1	0	1	0	0	1	128/64	1E90000-1E9FFFF
SA490	1	1	1	1	0	1	0	1	0	128/64	1EA0000-1EAFFFF
SA491	1	1	1	1	0	1	0	1	1	128/64	1EB0000-1EBFFFF
SA492	1	1	1	1	0	1	1	0	0	128/64	1EC0000-1ECFFFF
SA493	1	1	1	1	0	1	1	0	1	128/64	1ED0000-1EDFFFF
SA494	1	1	1	1	0	1	1	1	0	128/64	1EE0000-1EEFFFF
SA495	1	1	1	1	0	1	1	1	1	128/64	1EF0000-1EFFFFF
SA496	1	1	1	1	1	0	0	0	0	128/64	1F00000-1F0FFFF
SA497	1	1	1	1	1	0	0	0	1	128/64	1F10000-1F1FFFF
SA498	1	1	1	1	1	0	0	1	0	128/64	1F20000-1F2FFFF
SA499	1	1	1	1	1	0	0	1	1	128/64	1F30000-1F3FFFF
SA500	1	1	1	1	1	0	1	0	0	128/64	1F40000-1F4FFFF
SA501	1	1	1	1	1	0	1	0	1	128/64	1F50000-1F5FFFF
SA502	1	1	1	1	1	0	1	1	0	128/64	1F60000-1F6FFFF
SA503	1	1	1	1	1	0	1	1	1	128/64	1F70000-1F7FFFF
SA504	1	1	1	1	1	1	0	0	0	128/64	1F80000-1F8FFFF
SA505	1	1	1	1	1	1	0	0	1	128/64	1F90000-1F9FFFF
SA506	1	1	1	1	1	1	0	1	0	128/64	1FA0000-1FAFFFF
SA507	1	1	1	1	1	1	0	1	1	128/64	1FB0000-1FBFFFF
SA508	1	1	1	1	1	1	1	0	0	128/64	1FC0000-1FCFFFF
SA509	1	1	1	1	1	1	1	0	1	128/64	1FD0000-1FDFFFF
SA510	1	1	1	1	1	1	1	1	0	128/64	1FE0000-1FEFFFF
SA511	1	1	1	1	1	1	1	1	1	128/64	1FF0000-1FFFFFF

Advancelnformation

Table 3. Sector Address Table-S29GL256N

Sector	A23-A16								Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SAO	0	0	0	0	0	0	0	0	128/64	0000000-000FFFF
SA1	0	0	0	0	0	0	0	1	128/64	0010000-001FFFF
SA2	0	0	0	0	0	0	1	0	128/64	0020000-002FFFF
SA3	0	0	0	0	0	0	1	1	128/64	0030000-003FFFF
SA4	0	0	0	0	0	1	0	0	128/64	0040000-004FFFF
SA5	0	0	0	0	0	1	0	1	128/64	0050000-005FFFF
SA6	0	0	0	0	0	1	1	0	128/64	0060000-006FFFF
SA7	0	0	0	0	0	1	1	1	128/64	0070000-007FFFF
SA8	0	0	0	0	1	0	0	0	128/64	0080000-008FFFF
SA9	0	0	0	0	1	0	0	1	128/64	0090000-009FFFF
SA10	0	0	0	0	1	0	1	0	128/64	00A0000-00AFFFF
SA11	0	0	0	0	1	0	1	1	128/64	00B0000-00BFFFF
SA12	0	0	0	0	1	1	0	0	128/64	00C0000-00CFFFF
SA13	0	0	0	0	1	1	0	1	128/64	00D0000-00DFFFF
SA14	0	0	0	0	1	1	1	0	128/64	00E0000-00EFFFF
SA15	0	0	0	0	1	1	1	1	128/64	00F0000-00FFFFF
SA16	0	0	0	1	0	0	0	0	128/64	0100000-010FFFF
SA17	0	0	0	1	0	0	0	1	128/64	0110000-011FFFF
SA18	0	0	0	1	0	0	1	0	128/64	0120000-012FFFF
SA19	0	0	0	1	0	0	1	1	128/64	0130000-013FFFF
SA20	0	0	0	1	0	1	0	0	128/64	0140000-014FFFF
SA21	0	0	0	1	0	1	0	1	128/64	0150000-015FFFF
SA22	0	0	0	1	0	1	1	0	128/64	0160000-016FFFF
SA23	0	0	0	1	0	1	1	1	128/64	0170000-017FFFF
SA24	0	0	0	1	1	0	0	0	128/64	0180000-018FFFF
SA25	0	0	0	1	1	0	0	1	128/64	0190000-019FFFF
SA26	0	0	0	1	1	0	1	0	128/64	01A0000-01AFFFF
SA27	0	0	0	1	1	0	1	1	128/64	01B0000-01BFFFF
SA28	0	0	0	1	1	1	0	0	128/64	01C0000-01CFFFF
SA29	0	0	0	1	1	1	0	1	128/64	01D0000-01DFFFF
SA30	0	0	0	1	1	1	1	0	128/64	01E0000-01EFFFF
SA31	0	0	0	1	1	1	1	1	128/64	01F0000-01FFFFF
SA32	0	0	1	0	0	0	0	0	128/64	0200000-020FFFF
SA33	0	0	1	0	0	0	0	1	128/64	0210000-021FFFF

Table 3. Sector Address Table-S29GL256N (Continued)

Sector	A23-A16								Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SA34	0	0	1	0	0	0	1	0	128/64	0220000-022FFFF
SA35	0	0	1	0	0	0	1	1	128/64	0230000-023FFFF
SA36	0	0	1	0	0	1	0	0	128/64	0240000-024FFFF
SA37	0	0	1	0	0	1	0	1	128/64	0250000-025FFFF
SA38	0	0	1	0	0	1	1	0	128/64	0260000-026FFFF
SA39	0	0	1	0	0	1	1	1	128/64	0270000-027FFFF
SA40	0	0	1	0	1	0	0	0	128/64	0280000-028FFFF
SA41	0	0	1	0	1	0	0	1	128/64	0290000-029FFFF
SA42	0	0	1	0	1	0	1	0	128/64	02A0000-02AFFFF
SA43	0	0	1	0	1	0	1	1	128/64	02B0000-02BFFFF
SA44	0	0	1	0	1	1	0	0	128/64	02C0000-02CFFFF
SA45	0	0	1	0	1	1	0	1	128/64	02D0000-02DFFFF
SA46	0	0	1	0	1	1	1	0	128/64	02E0000-02EFFFF
SA47	0	0	1	0	1	1	1	1	128/64	02F0000-02FFFFF
SA48	0	0	1	1	0	0	0	0	128/64	0300000-030FFFF
SA49	0	0	1	1	0	0	0	1	128/64	0310000-031FFFF
SA50	0	0	1	1	0	0	1	0	128/64	0320000-032FFFF
SA51	0	0	1	1	0	0	1	1	128/64	0330000-033FFFF
SA52	0	0	1	1	0	1	0	0	128/64	0340000-034FFFF
SA53	0	0	1	1	0	1	0	1	128/64	0350000-035FFFF
SA54	0	0	1	1	0	1	1	0	128/64	0360000-036FFFF
SA55	0	0	1	1	0	1	1	1	128/64	0370000-037FFFF
SA56	0	0	1	1	1	0	0	0	128/64	0380000-038FFFF
SA57	0	0	1	1	1	0	0	1	128/64	0390000-039FFFF
SA58	0	0	1	1	1	0	1	0	128/64	03A0000-03AFFFF
SA59	0	0	1	1	1	0	1	1	128/64	03B0000-03BFFFF
SA60	0	0	1	1	1	1	0	0	128/64	03C0000-03CFFFF
SA61	0	0	1	1	1	1	0	1	128/64	03D0000-03DFFFF
SA62	0	0	1	1	1	1	1	0	128/64	03E0000-03EFFFF
SA63	0	0	1	1	1	1	1	1	128/64	03F0000-03FFFFF
SA64	0	1	0	0	0	0	0	0	128/64	0400000-040FFFF
SA65	0	1	0	0	0	0	0	1	128/64	0410000-041FFFF
SA66	0	1	0	0	0	0	1	0	128/64	0420000-042FFFF
SA67	0	1	0	0	0	0	1	1	128/64	0430000-043FFFF
SA68	0	1	0	0	0	1	0	0	128/64	0440000-044FFFF

Table 3. Sector Address Table-S29GL256N (Continued)

Sector	A23-A16								Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SA69	0	1	0	0	0	1	0	1	128/64	0450000-045FFFF
SA70	0	1	0	0	0	1	1	0	128/64	0460000-046FFFF
SA71	0	1	0	0	0	1	1	1	128/64	0470000-047FFFF
SA72	0	1	0	0	1	0	0	0	128/64	0480000-048FFFF
SA73	0	1	0	0	1	0	0	1	128/64	0490000-049FFFF
SA74	0	1	0	0	1	0	1	0	128/64	04A0000-04AFFFF
SA75	0	1	0	0	1	0	1	1	128/64	04B0000-04BFFFF
SA76	0	1	0	0	1	1	0	0	128/64	04C0000-04CFFFF
SA77	0	1	0	0	1	1	0	1	128/64	04D0000-04DFFFF
SA78	0	1	0	0	1	1	1	0	128/64	04E0000-04EFFFF
SA79	0	1	0	0	1	1	1	1	128/64	04F0000-04FFFFF
SA80	0	1	0	1	0	0	0	0	128/64	0500000-050FFFF
SA81	0	1	0	1	0	0	0	1	128/64	0510000-051FFFF
SA82	0	1	0	1	0	0	1	0	128/64	0520000-052FFFF
SA83	0	1	0	1	0	0	1	1	128/64	0530000-053FFFF
SA84	0	1	0	1	0	1	0	0	128/64	0540000-054FFFF
SA85	0	1	0	1	0	1	0	1	128/64	0550000-055FFFF
SA86	0	1	0	1	0	1	1	0	128/64	0560000-056FFFF
SA87	0	1	0	1	0	1	1	1	128/64	0570000-057FFFF
SA88	0	1	0	1	1	0	0	0	128/64	0580000-058FFFF
SA89	0	1	0	1	1	0	0	1	128/64	0590000-059FFFF
SA90	0	1	0	1	1	0	1	0	128/64	05A0000-05AFFFF
SA91	0	1	0	1	1	0	1	1	128/64	05B0000-05BFFFF
SA92	0	1	0	1	1	1	0	0	128/64	05C0000-05CFFFF
SA93	0	1	0	1	1	1	0	1	128/64	05D0000-05DFFFF
SA94	0	1	0	1	1	1	1	0	128/64	05E0000-05EFFFF
SA95	0	1	0	1	1	1	1	1	128/64	05F0000-05FFFFF
SA96	0	1	1	0	0	0	0	0	128/64	0600000-060FFFF
SA97	0	1	1	0	0	0	0	1	128/64	0610000-061FFFF
SA98	0	1	1	0	0	0	1	0	128/64	0620000-062FFFF
SA99	0	1	1	0	0	0	1	1	128/64	0630000-063FFFF
SA100	0	1	1	0	0	1	0	0	128/64	0640000-064FFFF
SA101	0	1	1	0	0	1	0	1	128/64	0650000-065FFFF
SA102	0	1	1	0	0	1	1	0	128/64	0660000-066FFFF
SA103	0	1	1	0	0	1	1	1	128/64	0670000-067FFFF

Table 3. Sector Address Table-S29GL256N (Continued)

SectorSA104	A23-A16								Sector Size (Kbytes/ Kwords) $128 / 64$	Address Range (in hexadecimal) 0680000-068FFFF
	0	1	1	0	1	0	0	0		
SA105	0	1	1	0	1	0	0	1	128/64	0690000-069FFFF
SA106	0	1	1	0	1	0	1	0	128/64	06A0000-06AFFFF
SA107	0	1	1	0	1	0	1	1	128/64	06B0000-06BFFFF
SA108	0	1	1	0	1	1	0	0	128/64	06C0000-06CFFFF
SA109	0	1	1	0	1	1	0	1	128/64	06D0000-06DFFFF
SA110	0	1	1	0	1	1	1	0	128/64	06E0000-06EFFFF
SA111	0	1	1	0	1	1	1	1	128/64	06F0000-06FFFFF
SA112	0	1	1	1	0	0	0	0	128/64	0700000-070FFFF
SA113	0	1	1	1	0	0	0	1	128/64	0710000-071FFFF
SA114	0	1	1	1	0	0	1	0	128/64	0720000-072FFFF
SA115	0	1	1	1	0	0	1	1	128/64	0730000-073FFFF
SA116	0	1	1	1	0	1	0	0	128/64	0740000-074FFFF
SA117	0	1	1	1	0	1	0	1	128/64	0750000-075FFFF
SA118	0	1	1	1	0	1	1	0	128/64	0760000-076FFFF
SA119	0	1	1	1	0	1	1	1	128/64	0770000-077FFFF
SA120	0	1	1	1	1	0	0	0	128/64	0780000-078FFFF
SA121	0	1	1	1	1	0	0	1	128/64	0790000-079FFFF
SA122	0	1	1	1	1	0	1	0	128/64	07A0000-07AFFFF
SA123	0	1	1	1	1	0	1	1	128/64	07B0000-07BFFFF
SA124	0	1	1	1	1	1	0	0	128/64	07C0000-07CFFFF
SA125	0	1	1	1	1	1	0	1	128/64	07D0000-07DFFFF
SA126	0	1	1	1	1	1	1	0	128/64	07E0000-07EFFFF
SA127	0	1	1	1	1	1	1	1	128/64	07F0000-07FFFFF
SA128	1	0	0	0	0	0	0	0	128/64	0800000-080FFFF
SA129	1	0	0	0	0	0	0	1	128/64	0810000-081FFFF
SA130	1	0	0	0	0	0	1	0	128/64	0820000-082FFFF
SA131	1	0	0	0	0	0	1	1	128/64	0830000-083FFFF
SA132	1	0	0	0	0	1	0	0	128/64	0840000-084FFFF
SA133	1	0	0	0	0	1	0	1	128/64	0850000-085FFFF
SA134	1	0	0	0	0	1	1	0	128/64	0860000-086FFFF
SA135	1	0	0	0	0	1	1	1	128/64	0870000-087FFFF
SA136	1	0	0	0	1	0	0	0	128/64	0880000-088FFFF
SA137	1	0	0	0	1	0	0	1	128/64	0890000-089FFFF
SA138	1	0	0	0	1	0	1	0	128/64	08A0000-08AFFFF

Table 3. Sector Address Table-S29GL256N (Continued)

Sector	A23-A16								Sector Size (Kbytes) Kwords)	Address Range (in hexadecimal)
SA139	1	0	0	0	1	0	1	1	128/64	08B0000-08BFFFF
SA140	1	0	0	0	1	1	0	0	128/64	08C0000-08CFFFF
SA141	1	0	0	0	1	1	0	1	128/64	08D0000-08DFFFF
SA142	1	0	0	0	1	1	1	0	128/64	08E0000-08EFFFF
SA143	1	0	0	0	1	1	1	1	128/64	08F0000-08FFFFF
SA144	1	0	0	1	0	0	0	0	128/64	0900000-090FFFF
SA145	1	0	0	1	0	0	0	1	128/64	0910000-091FFFF
SA146	1	0	0	1	0	0	1	0	128/64	0920000-092FFFF
SA147	1	0	0	1	0	0	1	1	128/64	0930000-093FFFF
SA148	1	0	0	1	0	1	0	0	128/64	0940000-094FFFF
SA149	1	0	0	1	0	1	0	1	128/64	0950000-095FFFF
SA150	1	0	0	1	0	1	1	0	128/64	0960000-096FFFF
SA151	1	0	0	1	0	1	1	1	128/64	0970000-097FFFF
SA152	1	0	0	1	1	0	0	0	128/64	0980000-098FFFF
SA153	1	0	0	1	1	0	0	1	128/64	0990000-099FFFF
SA154	1	0	0	1	1	0	1	0	128/64	09A0000-09AFFFF
SA155	1	0	0	1	1	0	1	1	128/64	09B0000-09BFFFF
SA156	1	0	0	1	1	1	0	0	128/64	09C0000-09CFFFF
SA157	1	0	0	1	1	1	0	1	128/64	09D0000-09DFFFF
SA158	1	0	0	1	1	1	1	0	128/64	09E0000-09EFFFF
SA159	1	0	0	1	1	1	1	1	128/64	09F0000-09FFFFF
SA160	1	0	1	0	0	0	0	0	128/64	OA00000-0A0FFFF
SA161	1	0	1	0	0	0	0	1	128/64	0A10000-0A1FFFF
SA162	1	0	1	0	0	0	1	0	128/64	OA20000-0A2FFFF
SA163	1	0	1	0	0	0	1	1	128/64	0A30000-0A3FFFF
SA164	1	0	1	0	0	1	0	0	128/64	0A40000-0A4FFFF
SA165	1	0	1	0	0	1	0	1	128/64	0A50000-0A5FFFF
SA166	1	0	1	0	0	1	1	0	128/64	0A60000-0A6FFFF
SA167	1	0	1	0	0	1	1	1	128/64	0A70000-0A7FFFF
SA168	1	0	1	0	1	0	0	0	128/64	0A80000-0A8FFFF
SA169	1	0	1	0	1	0	0	1	128/64	0A90000-0A9FFFF
SA170	1	0	1	0	1	0	1	0	128/64	OAA0000-0AAFFFF
SA171	1	0	1	0	1	0	1	1	128/64	OAB0000-0ABFFFF
SA172	1	0	1	0	1	1	0	0	128/64	OAC0000-0ACFFFF
SA173	1	0	1	0	1	1	0	1	128/64	OAD0000-0ADFFFF

Table 3. Sector Address Table-S29GL256N (Continued)

Sector SA174	A23-A16								Sector Size (Kbytes/ Kwords) $128 / 64$	Address Range (in hexadecimal) OAE0000-0AEFFFF
	1	0	1	0	1	1	1	0		
SA175	1	0	1	0	1	1	1	1	128/64	OAF0000-0AFFFFF
SA176	1	0	1	1	0	0	0	0	128/64	OB00000-0BOFFFF
SA177	1	0	1	1	0	0	0	1	128/64	0B10000-0B1FFFF
SA178	1	0	1	1	0	0	1	0	128/64	0B20000-0B2FFFF
SA179	1	0	1	1	0	0	1	1	128/64	0B30000-0B3FFFF
SA180	1	0	1	1	0	1	0	0	128/64	0B40000-0B4FFFF
SA181	1	0	1	1	0	1	0	1	128/64	0B50000-0B5FFFF
SA182	1	0	1	1	0	1	1	0	128/64	0B60000-0B6FFFF
SA183	1	0	1	1	0	1	1	1	128/64	0B70000-0B7FFFF
SA184	1	0	1	1	1	0	0	0	128/64	0B80000-0B8FFFF
SA185	1	0	1	1	1	0	0	1	128/64	0B90000-0B9FFFF
SA186	1	0	1	1	1	0	1	0	128/64	OBA0000-0BAFFFF
SA187	1	0	1	1	1	0	1	1	128/64	OBB0000-0BBFFFF
SA188	1	0	1	1	1	1	0	0	128/64	OBC0000-0BCFFFF
SA189	1	0	1	1	1	1	0	1	128/64	OBD0000-0BDFFFF
SA190	1	0	1	1	1	1	1	0	128/64	OBE0000-OBEFFFF
SA191	1	0	1	1	1	1	1	1	128/64	OBF0000-0BFFFFF
SA192	1	1	0	0	0	0	0	0	128/64	0C00000-0C0FFFF
SA193	1	1	0	0	0	0	0	1	128/64	0C10000-0C1FFFF
SA194	1	1	0	0	0	0	1	0	128/64	OC20000-0C2FFFF
SA195	1	1	0	0	0	0	1	1	128/64	0C30000-0C3FFFF
SA196	1	1	0	0	0	1	0	0	128/64	0C40000-0C4FFFF
SA197	1	1	0	0	0	1	0	1	128/64	OC50000-0C5FFFF
SA198	1	1	0	0	0	1	1	0	128/64	0C60000-0C6FFFF
SA199	1	1	0	0	0	1	1	1	128/64	0C70000-0C7FFFF
SA200	1	1	0	0	1	0	0	0	128/64	0C80000-0C8FFFF
SA201	1	1	0	0	1	0	0	1	128/64	0C90000-0C9FFFF
SA202	1	1	0	0	1	0	1	0	128/64	OCA0000-0CAFFFF
SA203	1	1	0	0	1	0	1	1	128/64	OCB0000-0CBFFFF
SA204	1	1	0	0	1	1	0	0	128/64	0CC0000-0CCFFFF
SA205	1	1	0	0	1	1	0	1	128/64	OCD0000-0CDFFFF
SA206	1	1	0	0	1	1	1	0	128/64	OCE0000-0CEFFFF
SA207	1	1	0	0	1	1	1	1	128/64	OCF0000-0CFFFFF
SA208	1	1	0	1	0	0	0	0	128/64	OD00000-0DOFFFF

Table 3. Sector Address Table-S29GL256N (Continued)

Sector SA209	A23-A16								Sector Size (Kbytes/ Kwords) $128 / 64$	Address Range (in hexadecimal)0D10000-0D1FFFF
	1	1	0	1	0	0	0	1		
SA210	1	1	0	1	0	0	1	0	128/64	0D20000-0D2FFFF
SA211	1	1	0	1	0	0	1	1	128/64	0D30000-0D3FFFF
SA212	1	1	0	1	0	1	0	0	128/64	OD40000-0D4FFFF
SA213	1	1	0	1	0	1	0	1	128/64	0D50000-0D5FFFF
SA214	1	1	0	1	0	1	1	0	128/64	0D60000-0D6FFFF
SA215	1	1	0	1	0	1	1	1	128/64	0D70000-0D7FFFF
SA216	1	1	0	1	1	0	0	0	128/64	0D80000-0D8FFFF
SA217	1	1	0	1	1	0	0	1	128/64	0D90000-0D9FFFF
SA218	1	1	0	1	1	0	1	0	128/64	ODA0000-0DAFFFF
SA219	1	1	0	1	1	0	1	1	128/64	ODB0000-ODBFFFF
SA220	1	1	0	1	1	1	0	0	128/64	ODC0000-0DCFFFF
SA221	1	1	0	1	1	1	0	1	128/64	ODD0000-0DDFFFF
SA222	1	1	0	1	1	1	1	0	128/64	ODE0000-ODEFFFF
SA223	1	1	0	1	1	1	1	1	128/64	ODF0000-0DFFFFF
SA224	1	1	1	0	0	0	0	0	128/64	0E00000-0EOFFFF
SA225	1	1	1	0	0	0	0	1	128/64	0E10000-0E1FFFF
SA226	1	1	1	0	0	0	1	0	128/64	0E20000-0E2FFFF
SA227	1	1	1	0	0	0	1	1	128/64	0E30000-0E3FFFF
SA228	1	1	1	0	0	1	0	0	128/64	0E40000-0E4FFFF
SA229	1	1	1	0	0	1	0	1	128/64	0E50000-0E5FFFF
SA230	1	1	1	0	0	1	1	0	128/64	0E60000-0E6FFFF
SA231	1	1	1	0	0	1	1	1	128/64	0E70000-0E7FFFF
SA232	1	1	1	0	1	0	0	0	128/64	0E80000-0E8FFFF
SA233	1	1	1	0	1	0	0	1	128/64	0E90000-0E9FFFF
SA234	1	1	1	0	1	0	1	0	128/64	OEA0000-0EAFFFF
SA235	1	1	1	0	1	0	1	1	128/64	OEB0000-0EBFFFF
SA236	1	1	1	0	1	1	0	0	128/64	OEC0000-0ECFFFF
SA237	1	1	1	0	1	1	0	1	128/64	OED0000-0EDFFFF
SA238	1	1	1	0	1	1	1	0	128/64	OEEO000-0EEFFFF
SA239	1	1	1	0	1	1	1	1	128/64	0EF0000-0EFFFFF
SA240	1	1	1	1	0	0	0	0	128/64	OF00000-0FOFFFF
SA241	1	1	1	1	0	0	0	1	128/64	0F10000-0F1FFFF
SA242	1	1	1	1	0	0	1	0	128/64	0F20000-0F2FFFF
SA243	1	1	1	1	0	0	1	1	128/64	0F30000-0F3FFFF

Table 3. Sector Address Table-S29GL256N (Continued)

Sector	A23-A16								Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SA244	1	1	1	1	0	1	0	0	128/64	OF40000-0F4FFFF
SA245	1	1	1	1	0	1	0	1	128/64	0F50000-0F5FFFF
SA246	1	1	1	1	0	1	1	0	128/64	0F60000-0F6FFFF
SA247	1	1	1	1	0	1	1	1	128/64	0F70000-0F7FFFF
SA248	1	1	1	1	1	0	0	0	128/64	0F80000-0F8FFFF
SA249	1	1	1	1	1	0	0	1	128/64	0F90000-0F9FFFF
SA250	1	1	1	1	1	0	1	0	128/64	OFA0000-OFAFFFF
SA251	1	1	1	1	1	0	1	1	128/64	OFB0000-OFBFFFF
SA252	1	1	1	1	1	1	0	0	128/64	OFC0000-OFCFFFF
SA253	1	1	1	1	1	1	0	1	128/64	OFD0000-0FDFFFF
SA254	1	1	1	1	1	1	1	0	128/64	OFE0000-OFEFFFF
SA255	1	1	1	1	1	1	1	1	128/64	OFF0000-OFFFFFF

Table 4. Sector Address Table-S29GLI28N

Sector	A22-A16						Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SAO	0	0	0	0	0	0	128/64	0000000-000FFFF
SA1	0	0	0	0	0	1	128/64	0010000-001FFFF
SA2	0	0	0	0	1	0	128/64	0020000-002FFFF
SA3	0	0	0	0	1	1	128/64	0030000-003FFFF
SA4	0	0	0	1	0	0	128/64	0040000-004FFFF
SA5	0	0	0	1	0	1	128/64	0050000-005FFFF
SA6	0	0	0	1	1	0	128/64	0060000-006FFFF
SA7	0	0	0	1	1	1	128/64	0070000-007FFFF
SA8	0	0	1	0	0	0	128/64	0080000-008FFFF
SA9	0	0	1	0	0	1	128/64	0090000-009FFFF
SA10	0	0	1	0	1	0	128/64	00A0000-00AFFFF
SA11	0	0	1	0	1	1	128/64	00B0000-00BFFFF
SA12	0	0	1	1	0	0	128/64	00C0000-00CFFFF
SA13	0	0	1	1	0	1	128/64	00D0000-00DFFFF
SA14	0	0	1	1	1	0	128/64	00E0000-00EFFFF
SA15	0	0	1	1	1	1	128/64	00F0000-00FFFFF
SA16	0	1	0	0	0	0	128/64	0100000-010FFFF
SA17	0	1	0	0	0	1	128/64	0110000-011FFFF

Advancelnformation

Table 4. Sector Address Table-S29GLI28N (Continued)

Sector	A22-A16						Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SA18	0	1	0	0	1	0	128/64	0120000-012FFFF
SA19	0	1	0	0	1	1	128/64	0130000-013FFFF
SA20	0	1	0	1	0	0	128/64	0140000-014FFFF
SA21	0	1	0	1	0	1	128/64	0150000-015FFFF
SA22	0	1	0	1	1	0	128/64	0160000-016FFFF
SA23	0	1	0	1	1	1	128/64	0170000-017FFFF
SA24	0	1	1	0	0	0	128/64	0180000-018FFFF
SA25	0	1	1	0	0	1	128/64	0190000-019FFFF
SA26	0	1	1	0	1	0	128/64	01A0000-01AFFFF
SA27	0	1	1	0	1	1	128/64	01B0000-01BFFFF
SA28	0	1	1	1	0	0	128/64	01C0000-01CFFFF
SA29	0	1	1	1	0	1	128/64	01D0000-01DFFFF
SA30	0	1	1	1	1	0	128/64	01E0000-01EFFFF
SA31	0	1	1	1	1	1	128/64	01F0000-01FFFFF
SA32	1	0	0	0	0	0	128/64	0200000-020FFFF
SA33	1	0	0	0	0	1	128/64	0210000-021FFFF
SA34	1	0	0	0	1	0	128/64	0220000-022FFFF
SA35	1	0	0	0	1	1	128/64	0230000-023FFFF
SA36	1	0	0	1	0	0	128/64	0240000-024FFFF
SA37	1	0	0	1	0	1	128/64	0250000-025FFFF
SA38	1	0	0	1	1	0	128/64	0260000-026FFFF
SA39	1	0	0	1	1	1	128/64	0270000-027FFFF
SA40	1	0	1	0	0	0	128/64	0280000-028FFFF
SA41	1	0	1	0	0	1	128/64	0290000-029FFFF
SA42	1	0	1	0	1	0	128/64	02A0000-02AFFFF
SA43	1	0	1	0	1	1	128/64	02B0000-02BFFFF
SA44	1	0	1	1	0	0	128/64	02C0000-02CFFFF
SA45	1	0	1	1	0	1	128/64	02D0000-02DFFFF
SA46	1	0	1	1	1	0	128/64	02E0000-02EFFFF
SA47	1	0	1	1	1	1	128/64	02F0000-02FFFFF
SA48	1	1	0	0	0	0	128/64	0300000-030FFFF
SA49	1	1	0	0	0	1	128/64	0310000-031FFFF
SA50	1	1	0	0	1	0	128/64	0320000-032FFFF
SA51	1	1	0	0	1	1	128/64	0330000-033FFFF
SA52	1	1	0	1	0	0	128/64	0340000-034FFFF

Table 4. Sector Address Table-S29GLI28N (Continued)

Sector	A22-A16							

Advancelnformation

Table 4. Sector Address Table-S29GLI28N (Continued)

Sector	A22-A16							

Table 4. Sector Address Table-S29GLI28N (Continued)

Sector	A22-A16						Sector Size (Kbytes/ Kwords)	Address Range (in hexadecimal)
SA123	1	1	1	0	1	1	$128 / 64$	$07 B 0000-07 B F F F F$
SA124	1	1	1	1	0	0	$128 / 64$	$07 C 0000-07 C F F F F$
SA125	1	1	1	1	0	1	$128 / 64$	$07 D 0000-07 D F F F F$
SA126	1	1	1	1	1	0	$128 / 64$	$07 E 0000-07 E F F F F$
SA127	1	1	1	1	1	1	$128 / 64$	$07 F 0000-07 F F F F F$

Autoselect Mode

The autoselect mode provides manufacturer and device identification, and sector group protection verification, through identifier codes output on DQ7-DQ0. This mode is primarily intended for programming equipment to automatically match a device to be programmed with its corresponding programming algorithm. However, the autoselect codes can also be accessed in-system through the command register.
When using programming equipment, the autoselect mode requires VID on address pin A9. Address pins A6, A3, A2, A1, and A0 must be as shown in Table 5. In addition, when verifying sector protection, the sector address must appear on the appropriate highest order address bits (see Table 2). Table 5 shows the remaining address bits that are don't care. When all necessary bits have been set as required, the programming equipment may then read the corresponding identifier code on DQ7-DQ0.

To access the autoselect codes in-system, the host system can issue the autoselect command via the command register, as shown in Table 12. This method does not require $V_{\text {ID }}$. Refer to the Autoselect Command Sequence section for more information.

Advancelnformation

Table 5. Autoselect Codes, (High Voltage Method)

Description		CE\#	OE\#	$\begin{gathered} \text { WE } \\ \# \end{gathered}$	$\begin{gathered} \text { A22 } \\ \text { to } \\ \text { A15 } \end{gathered}$	$\begin{gathered} \text { A14 } \\ \text { to } \\ \text { A10 } \end{gathered}$	A9	$\begin{aligned} & \text { A8 } \\ & \text { to } \\ & \text { A7 } \end{aligned}$	A6	A5 to A4	A3 to A2	A1	A0	$\begin{gathered} \text { DQ8 to } \\ \text { DQ15 } \end{gathered}$	DQ7 to DQ0
Manufacturer ID: Spansion Product		L	L	H	X	X	$V_{\text {ID }}$	X	L	X	L	L	L	00	01h
	Cycle 1	L	L	H	X	X	$V_{\text {ID }}$	X	L	X	L	L	H	22	7Eh
	Cycle 2										H	H	L	22	23h
	Cycle 3										H	H	H	22	01h
	Cycle 1	L	L	H	X	X	$V_{\text {ID }}$	X	L	X	L	L	H	22	7Eh
	Cycle 2										H	H	L	22	22h
	Cycle 3										H	H	H	22	01h
	Cycle 1	L	L	H	X	X	$V_{\text {ID }}$	X	L	X	L	L	H	22	7Eh
	Cycle 2										H	H	L	22	21h
	Cycle 3										H	H	H	22	01h
Sector Group Protection Verification		L	L	H	SA	X	$V_{\text {ID }}$	X	L	X	L	H	L	X	01h (protected), 00h (unprotected)
Secured Silicon Sector Indicator Bit (DQ7), WP\# protects highest address sector		L	L	H	X	X	$V_{\text {ID }}$	X	L	X	L	H	H	X	98h (factory locked), 18h (not factory locked)
Secured Silicon Sector Indicator Bit (DQ7), WP\# protects lowest address sector		L	L	H	X	X	$V_{\text {ID }}$	X	L	X	L	H	H	X	88h (factory locked), 08h (not factory locked)

Legend: $L=$ Logic Low $=V_{I L}, H=$ Logic High $=V_{I H}, S A=$ Sector Address, $X=$ Don't care.

Sector Protection

The device features several levels of sector protection, which can disable both the program and erase operations in certain sectors or sector groups:

Persistent Sector Protection

A command sector protection method that replaces the old 12 V controlled protection method.

Password Sector Protection

A highly sophisticated protection method that requires a password before changes to certain sectors or sector groups are permitted

WP\# Hardware Protection

A write protect pin that can prevent program or erase operations in the outermost sectors.

The WP\# Hardware Protection feature is always available, independent of the software managed protection method chosen.

Selecting a Sector Protection Mode

All parts default to operate in the Persistent Sector Protection mode. The customer must then choose if the Persistent or Password Protection method is most desirable. There are two one-time programmable non-volatile bits that define which sector protection method will be used. If the customer decides to continue
using the Persistent Sector Protection method, they must set the Persistent Sector Protection Mode Locking Bit. This will permanently set the part to operate only using Persistent Sector Protection. If the customer decides to use the password method, they must set the Password Mode Locking Bit. This will permanently set the part to operate only using password sector protection.

It is important to remember that setting either the Persistent Sector Protection Mode Locking Bit or the Password Mode Locking Bit permanently selects the protection mode. It is not possible to switch between the two methods once a locking bit has been set. It is important that one mode is explicitly selected when the device is first programmed, rather than relying on the default mode alone. This is so that it is not possible for a system program or virus to later set the Password Mode Locking Bit, which would cause an unexpected shift from the default Persistent Sector Protection Mode into the Password Protection Mode.

The device is shipped with all sectors unprotected. The factory offers the option of programming and protecting sectors at the factory prior to shipping the device through the ExpressFlash ${ }^{\text {TM }}$ Service. Contact your sales representative for details.
It is possible to determine whether a sector is protected or unprotected. See "Autoselect Command Sequence" section on page 67 for details.

Advanced Sector Protection

Advanced Sector Protection features several levels of sector protection, which can disable both the program and erase operations in certain sectors.

Persistent Sector Protection is a method that replaces the old 12 V controlled protection method.

Password Sector Protection is a highly sophisticated protection method that requires a password before changes to certain sectors are permitted.

Lock Register

The Lock Register consists of 3 bits (DQ2, DQ1, and DQ0). These DQ2, DQ1, DQ0 bits of the Lock Register are programmable by the user. Users are not allowed to program both DQ2 and DQ1 bits of the Lock Register to the 00 state. If the user tries to program DQ2 and DQ1 bits of the Lock Register to the 00 state, the device will abort the Lock Register back to the default 11 state. The programming time of the Lock Register is same as the typical word programming time without utilizing the Write Buffer of the device. During a Lock Register programming sequence execution, the DQ6 Toggle Bit I will toggle until the programming of the Lock Register has completed to indicate programming status. All Lock Register bits are readable to allow users to verify Lock Register statuses.
The Customer Secured Silicon Sector Protection Bit is DQ0, Persistent Protection Mode Lock Bit is DQ1, and Password Protection Mode Lock Bit is DQ2 are accessible by all users. Each of these bits are non-volatile. DQ15-DQ3 are reserved and must be 1's when the user tries to program the DQ2, DQ1, and DQ0 bits of the Lock Register. The user is not required to program DQ2, DQ1 and DQ0 bits of the Lock Register at the same time. This allows users to lock the Secured Silicon Sector and then set the device either permanently into Password Protection Mode or Persistent Protection Mode and then lock the Secured Silicon Sector at separate instances and time frames.

- Secured Silicon Sector Protection allows the user to lock the Secured Silicon Sector area

Advancelnformation

■ Persistent Protection Mode Lock Bit allows the user to set the device permanently to operate in the Persistent Protection Mode

- Password Protection Mode Lock Bit allows the user to set the device permanently to operate in the Password Protection Mode

Table 6. Lock Register

DQ15-3	DQ2	DQ1	DQ0
Don't Care	Password Protection Mode Lock Bit	Persistent Protection Mode Lock Bit	Secured Silicon Sector Protection Bit

Persistent Sector Protection

The Persistent Sector Protection method replaces the old 12 V controlled protection method while at the same time enhancing flexibility by providing three different sector protection states:

■ Dynamically Locked-The sector is protected and can be changed by a simple command

■ Persistently Locked-A sector is protected and cannot be changed

- Unlocked-The sector is unprotected and can be changed by a simple command
In order to achieve these states, three types of "bits" are going to be used:

Dynamic Protection Bit (DYB)

A volatile protection bit is assigned for each sector. After power-up or hardware reset, the contents of all DYB bits are in the "unprotected state". Each DYB is individually modifiable through the DYB Set Command and DYB Clear Command. When the parts are first shipped, all of the Persistent Protect Bits (PPB) are cleared into the unprotected state. The DYB bits and PPB Lock bit are defaulted to power up in the cleared state or unprotected state - meaning the all PPB bits are changeable.

The Protection State for each sector is determined by the logical OR of the PPB and the DYB related to that sector. For the sectors that have the PPB bits cleared, the DYB bits control whether or not the sector is protected or unprotected. By issuing the DYB Set and DYB Clear command sequences, the DYB bits will be protected or unprotected, thus placing each sector in the protected or unprotected state. These are the so-called Dynamic Locked or Unlocked states. They are called dynamic states because it is very easy to switch back and forth between the protected and un-protected conditions. This allows software to easily protect sectors against inadvertent changes yet does not prevent the easy removal of protection when changes are needed.

The DYB bits maybe set or cleared as often as needed. The PPB bits allow for a more static, and difficult to change, level of protection. The PPB bits retain their state across power cycles because they are Non-Volatile. Individual PPB bits are set with a program command but must all be cleared as a group through an erase command.

The PPB Lock Bit adds an additional level of protection. Once all PPB bits are programmed to the desired settings, the PPB Lock Bit may be set to the "freeze state". Setting the PPB Lock Bit to the "freeze state" disables all program and erase commands to the Non-Volatile PPB bits. In effect, the PPB Lock Bit locks the PPB bits into their current state. The only way to clear the PPB Lock Bit to the
"unfreeze state" is to go through a power cycle, or hardware reset. The Software Reset command will not clear the PPB Lock Bit to the "unfreeze state". System boot code can determine if any changes to the PPB bits are needed e.g. to allow new system code to be downloaded. If no changes are needed then the boot code can set the PPB Lock Bit to disable any further changes to the PPB bits during system operation.

The WP\# write protect pin adds a final level of hardware protection. When this pin is low it is not possible to change the contents of the WP\# protected sectors. These sectors generally hold system boot code. So, the WP\# pin can prevent any changes to the boot code that could override the choices made while setting up sector protection during system initialization.

It is possible to have sectors that have been persistently locked, and sectors that are left in the dynamic state. The sectors in the dynamic state are all unprotected. If there is a need to protect some of them, a simple DYB Set command sequence is all that is necessary. The DYB Set and DYB Clear commands for the dynamic sectors switch the DYB bits to signify protected and unprotected, respectively. If there is a need to change the status of the persistently locked sectors, a few more steps are required. First, the PPB Lock Bit must be disabled to the "unfreeze state" by either putting the device through a power-cycle, or hardware reset. The PPB bits can then be changed to reflect the desired settings. Setting the PPB Lock Bit once again to the "freeze state" will lock the PPB bits, and the device operates normally again.
Note: to achieve the best protection, it's recommended to execute the PPB Lock Bit Set command early in the boot code, and protect the boot code by holding $\mathrm{WP} \#=\mathrm{V}_{\mathrm{IL}}$.

Persistent Protection Bit (PPB)

A single Persistent (non-volatile) Protection Bit is assigned to each sector. If a PPB is programmed to the protected state through the "PPB Program" command, that sector will be protected from program or erase operations will be read-only. If a PPB requires erasure, all of the sector PPB bits must first be erased in parallel through the "All PPB Erase" command. The "All PPB Erase" command will preprogrammed all PPB bits prior to PPB erasing. All PPB bits erase in parallel, unlike programming where individual PPB bits are programmable. The PPB bits have the same endurance as the flash memory.
Programming the PPB bit requires the typical word programming time without utilizing the Write Buffer. During a PPB bit programming and A11 PPB bit erasing sequence execution, the DQ6 Toggle Bit I will toggle until the programming of the PPB bit or erasing of all PPB bits has completed to indicate programming and erasing status. Erasing all of the PPB bits at once requires typical sector erase time. During the erasing of all PPB bits, the DQ3 Sector Erase Timer bit will output a 1 to indicate the erasure of all PPB bits are in progress. When the erasure of all PPB bits has completed, the DQ3 Sector Erase Timer bit will output a 0 to indicate that all PPB bits have been erased. Reading the PPB Status bit requires the initial access time of the device.

Persistent Protection Bit Lock (PPB Lock Bit)

A global volatile bit. When set to the "freeze state", the PPB bits cannot be changed. When cleared to the "unfreeze state", the PPB bits are changeable. There is only one PPB Lock Bit per device. The PPB Lock Bit is cleared to the "un-

Advancelnformation
freeze state" after power-up or hardware reset. There is no command sequence to unlock or "unfreeze" the PPB Lock Bit.

Configuring the PPB Lock Bit to the freeze state requires approximately 100 ns . Reading the PPB Lock Status bit requires the initial access time of the device.

Table 7. Sector Protection Schemes

Protection States			Sector State
DYB Bit	PPB Bit	PPB Lock Bit	
Unprotect	Unprotect	Unfreeze	Unprotected - PPB and DYB are changeable
Unprotect	Unprotect	Freeze	Unprotected - PPB not changeable, DYB is changeable
Unprotect	Protect	Unfreeze	Protected - PPB and DYB are changeable
Unprotect	Protect	Freeze	Protected - PPB not changeable, DYB is changeable
Protect	Unprotect	Unfreeze	Protected - PPB and DYB are changeable
Protect	Unprotect	Freeze	Protected - PPB not changeable, DYB is changeable
Protect	Protect	Unfreeze	Protected - PPB and DYB are changeable
Protect	Protect	Freeze	Protected - PPB not changeable, DYB is changeable

Table 7 contains all possible combinations of the DYB bit, PPB bit, and PPB Lock Bit relating to the status of the sector. In summary, if the PPB bit is set, and the PPB Lock Bit is set, the sector is protected and the protection cannot be removed until the next power cycle or hardware reset clears the PPB Lock Bit to "unfreeze state". If the PPB bit is cleared, the sector can be dynamically locked or unlocked. The DYB bit then controls whether or not the sector is protected or unprotected. If the user attempts to program or erase a protected sector, the device ignores the command and returns to read mode. A program command to a protected sector enables status polling for approximately 1μ s before the device returns to read mode without having modified the contents of the protected sector. An erase command to a protected sector enables status polling for approximately $50 \mu \mathrm{~s}$ after which the device returns to read mode without having erased the protected sector. The programming of the DYB bit, PPB bit, and PPB Lock Bit for a given sector can be verified by writing a DYB Status Read, PPB Status Read, and PPB Lock Status Read commands to the device.

The Autoselect Sector Protection Verification outputs the OR function of the DYB bit and PPB bit per sector basis. When the OR function of the DYB bit and PPB bit is a 1, the sector is either protected by DYB or PPB or both. When the OR function of the DYB bit and PPB bit is a 0 , the sector is unprotected through both the DYB and PPB.

Persistent Protection Mode Lock Bit

Like the Password Protection Mode Lock Bit, a Persistent Protection Mode Lock Bit exists to guarantee that the device remain in software sector protection. Once programmed, the Persistent Protection Mode Lock Bit prevents programming of the Password Protection Mode Lock Bit. This guarantees that a hacker could not place the device in Password Protection Mode. The Password Protection Mode Lock Bit resides in the "Lock Register".

Password Sector Protection

The Password Sector Protection method allows an even higher level of security than the Persistent Sector Protection method. There are two main differences between the Persistent Sector Protection and the Password Sector Protection methods:

- When the device is first powered on, or comes out of a reset cycle, the PPB Lock Bit is set to the locked state, or the freeze state, rather than cleared to the unlocked state, or the unfreeze state.
- The only means to clear and unfreeze the PPB Lock Bit is by writing a unique 64-bit Password to the device.
The Password Sector Protection method is otherwise identical to the Persistent Sector Protection method.
A 64-bit password is the only additional tool utilized in this method.
The password is stored in a one-time programmable (OTP) region outside of the flash memory. Once the Password Protection Mode Lock Bit is set, the password is permanently set with no means to read, program, or erase it. The password is used to clear and unfreeze the PPB Lock Bit. The Password Unlock command must be written to the flash, along with a password. The flash device internally compares the given password with the pre-programmed password. If they match, the PPB Lock Bit is cleared to the "unfreezed state", and the PPB bits can be altered. If they do not match, the flash device does nothing. There is a built-in $2 \mu \mathrm{~s}$ delay for each "password check" after the valid 64 -bit password has been entered for the PPB Lock Bit to be cleared to the "unfreezed state". This delay is intended to thwart any efforts to run a program that tries all possible combinations in order to crack the password.

Password and Password Protection Mode Lock Bit

In order to select the Password Sector Protection method, the customer must first program the password. The factory recommends that the password be somehow correlated to the unique Electronic Serial Number (ESN) of the particular flash device. Each ESN is different for every flash device; therefore each password should be different for every flash device. While programming in the password region, the customer may perform Password Read operations. Once the desired password is programmed in, the customer must then set the Password Protection Mode Lock Bit. This operation achieves two objectives:

1. It permanently sets the device to operate using the Password Protection Mode. It is not possible to reverse this function.
2. It also disables all further commands to the password region. All program, and read operations are ignored.
Both of these objectives are important, and if not carefully considered, may lead to unrecoverable errors. The user must be sure that the Password Sector Protection method is desired when programming the Password Protection Mode Lock Bit. More importantly, the user must be sure that the password is correct when the Password Protection Mode Lock Bit is programmed. Due to the fact that read operations are disabled, there is no means to read what the password is afterwards. If the password is lost after programming the Password Protection Mode Lock Bit, there will be no way to clear and unfreeze the PPB Lock Bit. The Password Protection Mode Lock Bit, once programmed, prevents reading the 64-bit password on the DQ bus and further password programming. The Password Protection Mode Lock Bit is not erasable. Once Password Protection Mode Lock Bit is
programmed, the Persistent Protection Mode Lock Bit is disabled from programming, guaranteeing that no changes to the protection scheme are allowed.

64-bit Password

The 64-bit Password is located in its own memory space and is accessible through the use of the Password Program and Password Read commands. The password function works in conjunction with the Password Protection Mode Lock Bit, which when programmed, prevents the Password Read command from reading the contents of the password on the pins of the device.

Persistent Protection Bit Lock (PPB Lock Bit)

A global volatile bit. The PPB Lock Bit is a volatile bit that reflects the state of the Password Protection Mode Lock Bit after power-up reset. If the Password Protection Mode Lock Bit is also programmed after programming the Password, the Password Unlock command must be issued to clear and unfreeze the PPB Lock Bit after a hardware reset (RESET\# asserted) or a power-up reset. Successful execution of the Password Unlock command clears and unfreezes the PPB Lock Bit, allowing for sector PPB bits to be modified. Without issuing the Password Unlock command, while asserting RESET\#, taking the device through a power-on reset, or issuing the PPB Lock Bit Set command sets the PPB Lock Bit to a the "freeze state".

If the Password Protection Mode Lock Bit is not programmed, the device defaults to Persistent Protection Mode. In the Persistent Protection Mode, the PPB Lock Bit is cleared to the "unfreeze state" after power-up or hardware reset. The PPB Lock Bit is set to the "freeze state" by issuing the PPB Lock Bit Set command. Once set to the "freeze state" the only means for clearing the PPB Lock Bit to the "unfreeze state" is by issuing a hardware or power-up reset. The Password Unlock command is ignored in Persistent Protection Mode.

Reading the PPB Lock Bit requires a 200ns access time.

Secured Silicon Sector Flash Memory Region

The Secured Silicon Sector feature provides a Flash memory region that enables permanent part identification through an Electronic Serial Number (ESN). The Secured Silicon Sector is 256 bytes in length, and uses a Secured Silicon Sector Indicator Bit (DQ7) to indicate whether or not the Secured Silicon Sector is locked when shipped from the factory. This bit is permanently set at the factory and cannot be changed, which prevents cloning of a factory locked part. This ensures the security of the ESN once the product is shipped to the field.
The factory offers the device with the Secured Silicon Sector either customer lockable (standard shipping option) or factory locked (contact an AMD sales representative for ordering information). The customer-lockable version is shipped with the Secured Silicon Sector unprotected, allowing customers to program the sector after receiving the device. The customer-lockable version also has the Secured Silicon Sector Indicator Bit permanently set to a " 0 ." The factory-locked version is always protected when shipped from the factory, and has the Secured Silicon Sector Indicator Bit permanently set to a "1." Thus, the Secured Silicon Sector Indicator Bit prevents customer-lockable devices from being used to replace devices that are factory locked. Note that the ACC function and unlock bypass modes are not available when the Secured Silicon Sector is enabled.

The Secured Silicon sector address space in this device is allocated as follows:

Secured Silicon Sector Address Range	Customer Lockable	ESN Factory Locked	ExpressFlash Factory Locked
$000000 \mathrm{~h}-000007 \mathrm{~h}$	ESN	ESN or determined by customer	
Determined by customer		Unavailable	Determined by customer

The system accesses the Secured Silicon Sector through a command sequence (see "Write Protect (WP\#)"). After the system has written the Enter Secured Silicon Sector command sequence, it may read the Secured Silicon Sector by using the addresses normally occupied by the first sector (SAO). This mode of operation continues until the system issues the Exit Secured Silicon Sector command sequence, or until power is removed from the device. On power-up, or following a hardware reset, the device reverts to sending commands to sector SA0.

Customer Lockable: Secured Silicon Sector NOT Programmed or Protected At the Factory

Unless otherwise specified, the device is shipped such that the customer may program and protect the 256 -byte Secured Silicon sector.

The system may program the Secured Silicon Sector using the write-buffer, accelerated and/or unlock bypass methods, in addition to the standard programming command sequence. See "Command Definitions".
Programming and protecting the Secured Silicon Sector must be used with caution since, once protected, there is no procedure available for unprotecting the Secured Silicon Sector area and none of the bits in the Secured Silicon Sector memory space can be modified in any way.
The Secured Silicon Sector area can be protected using one of the following procedures:
■ Write the three-cycle Enter Secured Silicon Sector Region command sequence, and then follow the in-system sector protect algorithm, except that RESET\# may be at either $V_{I H}$ or $V_{I D}$. This allows in-system protection of the Secured Silicon Sector without raising any device pin to a high voltage. Note that this method is only applicable to the Secured Silicon Sector.

- To verify the protect/unprotect status of the Secured Silicon Sector, follow the algorithm.
Once the Secured Silicon Sector is programmed, locked and verified, the system must write the Exit Secured Silicon Sector Region command sequence to return to reading and writing within the remainder of the array.

Factory Locked: Secured Silicon Sector Programmed and Protected At the Factory

In devices with an ESN, the Secured Silicon Sector is protected when the device is shipped from the factory. The Secured Silicon Sector cannot be modified in any way. An ESN Factory Locked device has an 16-byte random ESN at addresses 000000h-000007h. Please contact your sales representative for details on ordering ESN Factory Locked devices.
Customers may opt to have their code programmed by the factory through the ExpressFlash service (Express Flash Factory Locked). The devices are then shipped from the factory with the Secured Silicon Sector permanently locked. Contact your sales representative for details on using the ExpressFlash service.

Write Protect (WP\#)

The Write Protect function provides a hardware method of protecting the first or last sector group without using $V_{I D}$. Write Protect is one of two functions provided by the WP\#/ACC input.

If the system asserts $\mathrm{V}_{\text {IL }}$ on the WP\#/ACC pin, the device disables program and erase functions in the first or last sector group independently of whether those sector groups were protected or unprotected using the method described in"Advanced Sector Protection" section on page 55. Note that if WP\#/ACC is at VIL when the device is in the standby mode, the maximum input load current is increased. See the table in "DC Characteristics" section on page 91.
If the system asserts $\mathbf{V}_{\text {IH }}$ on the WP\# / ACC pin, the device reverts to whether the first or last sector was previously set to be protected or unprotected using the method described in "Sector Group Protection and Unprotection". Note that WP\# has an internal pullup; when unconnected, WP\# is at $\boldsymbol{V}_{\boldsymbol{I H}}$.

Hardware Data Protection

The command sequence requirement of unlock cycles for programming or erasing provides data protection against inadvertent writes (refer to Table 12 for command definitions). In addition, the following hardware data protection measures prevent accidental erasure or programming, which might otherwise be caused by spurious system level signals during V_{CC} power-up and power-down transitions, or from system noise.

Low Vcc Write Inhibit

When V_{CC} is less than $\mathrm{V}_{\mathrm{LKO}}$, the device does not accept any write cycles. This protects data during V_{CC} power-up and power-down. The command register and all internal program/erase circuits are disabled, and the device resets to the read mode. Subsequent writes are ignored until V_{CC} is greater than $\mathrm{V}_{\mathrm{LKO}}$. The system must provide the proper signals to the control pins to prevent unintentional writes when V_{CC} is greater than $\mathrm{V}_{\mathrm{LKO}}$.

Write Pulse "Glitch" Protection

Noise pulses of less than 5 ns (typical) on OE\#, CE\# or WE\# do not initiate a write cycle.

Logical Inhibit

Write cycles are inhibited by holding any one of $O E \#=V_{I L}$, $C E \#=V_{I H}$ or WE\# $=$ $\mathrm{V}_{I H}$. To initiate a write cycle, CE\# and WE\# must be a logical zero while OE\# is a logical one.

Power-Up Write Inhibit

If WE\# $=C E \#=V_{I L}$ and $O E \#=V_{I H}$ during power up, the device does not accept commands on the rising edge of WE\#. The internal state machine is automatically reset to the read mode on power-up.

Common Flash Memory Interface (CFI)

The Common Flash Interface (CFI) specification outlines device and host system software interrogation handshake, which allows specific vendor-specified software algorithms to be used for entire families of devices. Software support can
then be device-independent, JEDEC ID-independent, and forward- and back-ward-compatible for the specified flash device families. Flash vendors can standardize their existing interfaces for long-term compatibility.

This device enters the CFI Query mode when the system writes the CFI Query command, 98 h , to address 55 h , any time the device is ready to read array data. The system can read CFI information at the addresses given in Tables 8-11. To terminate reading CFI data, the system must write the reset command.

The system can also write the CFI query command when the device is in the autoselect mode. The device enters the CFI query mode, and the system can read CFI data at the addresses given in Tables 8-11. The system must write the reset command to return the device to reading array data.

For further information, please refer to the CFI Specification and CFI Publication 100, available via the World Wide Web at http://www.amd.com/flash/cfi. Alternatively, contact your sales representative for copies of these documents.

Table 8. CFI Query Identification String

$\begin{gathered} \text { Addresses } \\ (\times 16) \end{gathered}$	Data	Description
10h	0051h	
11h	0052h	Query Unique ASCII string "QRY"
12h	0059h	
13h	0002h	Primary OEM Command Set
14h	0000h	Primary OEM Command Set
15 h	0040h	Address for Primary Extended Table
17h	0000h	
18h	0000h	Alternate OEM Command Set (00h = none exists)
19h	0000h	Address for Alternate OEM Extended Table (00h = none exists)
1Ah	0000h	

Advancelnformation

Table 9. System Interface String

Addresses (x16)	Data	Description
1Bh	0027h	V_{CC} Min. (write/erase) D7-D4: volt, D3-D0: 100 millivolt
1Ch	0036h	V_{CC} Max. (write/erase) D7-D4: volt, D3-D0: 100 millivolt
1Dh	0000h	V_{PP} Min. voltage ($00 \mathrm{~h}=$ no $\mathrm{V}_{\text {PP }}$ pin present)
1Eh	0000h	V_{PP} Max. voltage ($00 \mathrm{~h}=$ no V_{PP} pin present)
1Fh	0007h	Typical timeout per single byte/ word write $2^{N} \mu \mathrm{~s}$
20h	0007h	Typical timeout for Min. size buffer write $2^{N} \mu \mathrm{~s}$ ($00 \mathrm{~h}=$ not supported)
21h	000Ah	Typical timeout per individual block erase $2^{\mathrm{N}} \mathrm{ms}$
22h	0000h	Typical timeout for full chip erase $2^{\mathrm{N}} \mathrm{ms}$ ($00 \mathrm{~h}=$ not supported)
23h	0001h	Max. timeout for byte/word write 2^{N} times typical
24h	0005h	Max. timeout for buffer write 2^{N} times typical
25h	0004h	Max. timeout per individual block erase 2^{N} times typical
26h	0000h	Max. timeout for full chip erase 2^{N} times typical ($00 \mathrm{~h}=$ not supported)

Table 10. Device Geometry Definition

Addresses (x16)	Data	Description
27h	001Ah 0019h 0018h	Device Size $=2^{N}$ byte $1 \mathrm{~A}=512 \mathrm{Mb}, 19=256 \mathrm{Mb}, 18=128 \mathrm{Mb}$
$\begin{aligned} & 28 \mathrm{~h} \\ & 29 \mathrm{~h} \end{aligned}$	$\begin{aligned} & \text { 0002h } \\ & \text { 0000h } \end{aligned}$	Flash Device Interface description (refer to CFI publication 100)
$\begin{aligned} & \text { 2Ah } \\ & 2 \mathrm{Bh} \end{aligned}$	$\begin{aligned} & \text { 0005h } \\ & 0000 \mathrm{~h} \end{aligned}$	Max. number of byte in multi-byte write $=2^{\mathrm{N}}$ (00h = not supported)
2 Ch	0001h	Number of Erase Block Regions within device (01h = uniform device, 02h = boot device)
$\begin{aligned} & \text { 2Dh } \\ & \text { 2Eh } \\ & \text { 2Fh } \\ & 30 \mathrm{~h} \end{aligned}$	00xxh 000xh 0000h 000xh	Erase Block Region 1 Information (refer to the CFI specification or CFI publication 100) 00FFh, 001h, 0000h, 0002h $=512 \mathrm{Mb}$ 00FFh, 0000h, 0000h, 0002h $=256 \mathrm{Mb}$ 007Fh, 0000h, 0000h, 0002h $=128 \mathrm{Mb}$
$\begin{aligned} & 31 \mathrm{~h} \\ & 32 \mathrm{~h} \\ & 33 \mathrm{~h} \\ & 34 \mathrm{~h} \end{aligned}$	0000h 0000h 0000h 0000h	Erase Block Region 2 Information (refer to CFI publication 100)
$\begin{aligned} & 35 \mathrm{~h} \\ & 36 \mathrm{~h} \\ & 37 \mathrm{~h} \\ & 38 \mathrm{~h} \end{aligned}$	0000h 0000h 0000h 0000h	Erase Block Region 3 Information (refer to CFI publication 100)
$\begin{aligned} & \text { 39h } \\ & \text { 3Ah } \\ & \text { 3Bh } \\ & \text { 3Ch } \end{aligned}$	0000h 0000h 0000h 0000h	Erase Block Region 4 Information (refer to CFI publication 100)

Advancelnformation

Table II. Primary Vendor-Specific Extended Query

$\begin{aligned} & \text { Addresses } \\ & \text { (x16) } \end{aligned}$	Data	Description
$\begin{aligned} & 40 \mathrm{~h} \\ & 41 \mathrm{~h} \\ & 42 \mathrm{~h} \end{aligned}$	$\begin{aligned} & 0050 \mathrm{~h} \\ & 0052 \mathrm{~h} \\ & 0049 \mathrm{~h} \end{aligned}$	Query-unique ASCII string "PRI"
43h	0031h	Major version number, ASCII
44h	0033h	Minor version number, ASCII
45h	0010h	Address Sensitive Unlock (Bits 1-0) 0 = Required, $1=$ Not Required Process Technology (Bits 7-2) 0100b $=110$ nm MirrorBit
46h	0002h	Erase Suspend 0 = Not Supported, 1 = To Read Only, 2 = To Read \& Write
47h	0001h	Sector Protect $0=$ Not Supported, $X=$ Number of sectors in per group
48h	0000h	Sector Temporary Unprotect $00=$ Not Supported, 01 = Supported
49h	0008h	Sector Protect/Unprotect scheme 0008h = Advanced Sector Protection
4Ah	0000h	Simultaneous Operation $00=$ Not Supported, $\mathrm{X}=$ Number of Sectors in Bank
4Bh	0000h	Burst Mode Type $00=$ Not Supported, 01 = Supported
4Ch	0002h	Page Mode Type $00=$ Not Supported, $01=4$ Word Page, $02=8$ Word Page
4Dh	00B5h	ACC (Acceleration) Supply Minimum 00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV
4Eh	00C5h	ACC (Acceleration) Supply Maximum 00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV
4Fh	00xxh	WP\# Protection 04h $=$ Uniform sectors bottom WP\# protect, 05h $=$ Uniform sectors top WP\# protect
50h	0001h	Program Suspend 00h = Not Supported, 01h = Supported

Command Definitions

Writing specific address and data commands or sequences into the command register initiates device operations. Table 12 defines the valid register command sequences. Writing incorrect address and data values or writing them in the improper sequence may place the device in an unknown state. A reset command is then required to return the device to reading array data.
All addresses are latched on the falling edge of WE\# or CE\#, whichever happens later. All data is latched on the rising edge of WE\# or CE\#, whichever happens first. Refer to the AC Characteristics section for timing diagrams.

Reading Array Data

The device is automatically set to reading array data after device power-up. No commands are required to retrieve data. The device is ready to read array data after completing an Embedded Program or Embedded Erase algorithm.

After the device accepts an Erase Suspend command, the device enters the erase-suspend-read mode, after which the system can read data from any non-erase-suspended sector. After completing a programming operation in the Erase Suspend mode, the system may once again read array data with the same exception. See the Erase Suspend/Erase Resume Commands section for more information.

The system must issue the reset command to return the device to the read (or erase-suspend-read) mode if DQ5 goes high during an active program or erase operation, or if the device is in the autoselect mode. See the next section, Reset Command, for more information.

See also Requirements for Reading Array Data in the Device Bus Operations section for more information. The Read-Only Operations-"AC Characteristics" section provides the read parameters, and Figure 11 shows the timing diagram.

Reset Command

Writing the reset command resets the device to the read or erase-suspend-read mode. Address bits are don't cares for this command.

The reset command may be written between the sequence cycles in an erase command sequence before erasing begins. This resets the device to the read mode. Once erasure begins, however, the device ignores reset commands until the operation is complete.

The reset command may be written between the sequence cycles in a program command sequence before programming begins. This resets the device to the read mode. If the program command sequence is written while the device is in the Erase Suspend mode, writing the reset command returns the device to the erase-suspend-read mode. Once programming begins, however, the device ignores reset commands until the operation is complete.

The reset command may be written between the sequence cycles in an autoselect command sequence. Once in the autoselect mode, the reset command must be written to return to the read mode. If the device entered the autoselect mode while in the Erase Suspend mode, writing the reset command returns the device to the erase-suspend-read mode.
If DQ5 goes high during a program or erase operation, writing the reset command returns the device to the read mode (or erase-suspend-read mode if the device was in Erase Suspend).
Note that if DQ1 goes high during a Write Buffer Programming operation, the system must write the Write-to-Buffer-Abort Reset command sequence to reset the device for the next operation.

Autoselect Command Sequence

The autoselect command sequence allows the host system to access the manufacturer and device codes, and determine whether or not a sector is protected. Table 12 shows the address and data requirements. This method is an alternative to that shown in Table 5, which is intended for PROM programmers and requires $\mathrm{V}_{\text {ID }}$ on address pin A9. The autoselect command sequence may be written to an
address that is either in the read or erase-suspend-read mode. The autoselect command may not be written while the device is actively programming or erasing.

The autoselect command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle that contains the autoselect command. The device then enters the autoselect mode. The system may read at any address any number of times without initiating another autoselect command sequence:

- A read cycle at address XX00h returns the manufacturer code.

■ Three read cycles at addresses 01h, 0Eh, and OFh return the device code.

- A read cycle to an address containing a sector address (SA), and the address 02 h on A7-A0 in word mode returns 01 h if the sector is protected, or 00h if it is unprotected.
The system must write the reset command to return to the read mode (or erase-suspend-read mode if the device was previously in Erase Suspend).

Enter Secured Silicon Sector/Exit Secured Silicon Sector Command Sequence

The Secured Silicon Sector region provides a secured data area containing an 8-word/16-byte random Electronic Serial Number (ESN). The system can access the Secured Silicon Sector region by issuing the three-cycle Enter Secured Silicon Sector command sequence. The device continues to access the Secured Silicon Sector region until the system issues the four-cycle Exit Secured Silicon Sector command sequence. The Exit Secured Silicon Sector command sequence returns the device to normal operation. Table 12 shows the address and data requirements for both command sequences. See also "Secured Silicon Sector Flash Memory Region" for further information. Note that the ACC function and unlock bypass modes are not available when the Secured Silicon Sector is enabled.

Word Program Command Sequence

Programming is a four-bus-cycle operation. The program command sequence is initiated by writing two unlock write cycles, followed by the program set-up command. The program address and data are written next, which in turn initiate the Embedded Program algorithm. The system is not required to provide further controls or timings. The device automatically provides internally generated program pulses and verifies the programmed cell margin. Table 12 shows the address and data requirements for the word program command sequence.

When the Embedded Program algorithm is complete, the device then returns to the read mode and addresses are no longer latched. The system can determine the status of the program operation by using DQ7 or DQ6. Refer to the Write Operation Status section for information on these status bits.

Any commands written to the device during the Embedded Program Algorithm are ignored. Note that the Secured Silicon Sector, autoselect, and CFI functions are unavailable when a program operation is in progress. Note that a hardware reset immediately terminates the program operation. The program command sequence should be reinitiated once the device has returned to the read mode, to ensure data integrity.

Programming is allowed in any sequence of address locations and across sector boundaries. Programming to the same word address multiple times without intervening erases (incremental bit programming) requires a modified programming method. For such application requirements, please contact your
local Spansion representative. Word programming is supported for backward compatibility with existing Flash driver software and for occasional writing of individual words. Use of Write Buffer Programming is strongly recommended for general programming use when more than a few words are to be programmed. The effective word programming time using Write Buffer Programming is much shorter than the single word programming time. Any word cannot be programmed from "0" back to a "1." Attempting to do so may cause the device to set DQ5 $=1$, or cause the DQ7 and DQ6 status bits to indicate the operation was successful. However, a succeeding read will show that the data is still " 0 ." Only erase operations can convert a " 0 " to a " 1. "

Unlock Bypass Command Sequence

The unlock bypass feature allows the system to program words to the device faster than using the standard program command sequence. The unlock bypass command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle containing the unlock bypass command, 20h. The device then enters the unlock bypass mode. A two-cycle unlock bypass program command sequence is all that is required to program in this mode. The first cycle in this sequence contains the unlock bypass program command, A0h; the second cycle contains the program address and data. Additional data is programmed in the same manner. This mode dispenses with the initial two unlock cycles required in the standard program command sequence, resulting in faster total programming time. Table 12 shows the requirements for the command sequence.

During the unlock bypass mode, only the Unlock Bypass Program and Unlock Bypass Reset commands are valid. To exit the unlock bypass mode, the system must issue the two-cycle unlock bypass reset command sequence. (See Table 12).

Write Buffer Programming

Write Buffer Programming allows the system write to a maximum of 16 words/ 32 bytes in one programming operation. This results in faster effective programming time than the standard programming algorithms. The Write Buffer Programming command sequence is initiated by first writing two unlock cycles. This is followed by a third write cycle containing the Write Buffer Load command written at the Sector Address in which programming will occur. The fourth cycle writes the sector address and the number of word locations, minus one, to be programmed. For example, if the system will program 6 unique address locations, then 05 h should be written to the device. This tells the device how many write buffer addresses will be loaded with data and therefore when to expect the Program Buffer to Flash command. The number of locations to program cannot exceed the size of the write buffer or the operation will abort.

The fifth cycle writes the first address location and data to be programmed. The write-buffer-page is selected by address bits $A_{\text {MAX }}-A_{4}$. All subsequent address/ data pairs must fall within the selected-write-buffer-page. The system then writes the remaining address/data pairs into the write buffer. Write buffer locations may be loaded in any order.

The write-buffer-page address must be the same for all address/ data pairs loaded into the write buffer. (This means Write Buffer Programming cannot be performed across multiple write-buffer pages. This also means that Write Buffer Programming cannot be performed across multiple sectors. If the system attempts to load programming data outside of the selected write-buffer page, the operation will abort.)

Note that if a Write Buffer address location is loaded multiple times, the address/ data pair counter will be decremented for every data load operation. The host system must therefore account for loading a write-buffer location more than once. The counter decrements for each data load operation, not for each unique write-buffer-address location. Note also that if an address location is loaded more than once into the buffer, the final data loaded for that address will be programmed.

Once the specified number of write buffer locations have been loaded, the system must then write the Program Buffer to Flash command at the sector address. Any other address and data combination aborts the Write Buffer Programming operation. The device then begins programming. Data polling should be used while monitoring the last address location loaded into the write buffer. DQ7, DQ6, DQ5, and DQ1 should be monitored to determine the device status during Write Buffer Programming.

The write-buffer programming operation can be suspended using the standard program suspend/resume commands. Upon successful completion of the Write Buffer Programming operation, the device is ready to execute the next command.

The Write Buffer Programming Sequence can be aborted in the following ways:
■ Load a value that is greater than the page buffer size during the Number of Locations to Program step.
■ Write to an address in a sector different than the one specified during the Write-Buffer-Load command.

- Write an Address/Data pair to a different write-buffer-page than the one selected by the Starting Address during the write buffer data loading stage of the operation.
- Write data other than the Confirm Command after the specified number of data load cycles.
The abort condition is indicated by DQ1 = 1, DQ7 = DATA\# (for the last address location loaded), $\mathrm{DQ} 6=$ toggle, and $\mathrm{DQ} 5=0$. A Write-to-Buffer-Abort Reset command sequence must be written to reset the device for the next operation. Note that the full 3-cycle Write-to-Buffer-Abort Reset command sequence is required when using Write-Buffer-Programming features in Unlock Bypass mode.

Write buffer programming is allowed in any sequence. Note that the Secured Silicon sector, autoselect, and CFI functions are unavailable when a program operation is in progress. This flash device is capable of handling multiple write buffer programming operations on the same write buffer address range without intervening erases. For applications requiring incremental bit programming, a modified programming method is required, please contact your local Spansion representative. Any bit in a write buffer address range cannot be programmed from "0" back to a "1." Attempting to do so may cause the device to set DQ5 $=1$, or cause the DQ7 and DQ6 status bits to indicate the operation was successful. However, a succeeding read will show that the data is still " 0 ." Only erase operations can convert a " 0 " to a " 1 ."

Accelerated Program

The device offers accelerated program operations through the WP\#/ACC pin. When the system asserts V_{HH} on the WP\#/ACC pin, the device automatically enters the Unlock Bypass mode. The system may then write the two-cycle Unlock Bypass program command sequence. The device uses the higher voltage on the WP\#/ACC pin to accelerate the operation. Note that the WP\#/ACC pin must not
be at $V_{H H}$ for operations other than accelerated programming, or device damage may result. WP\# has an internal pullup; when unconnected, WP\# is at $V_{I H}$.

Figure 2 illustrates the algorithm for the program operation. Refer to the Erase and Program Operations- "AC Characteristics" section for parameters, and Figure 14 for timing diagrams.

Figure I. Write Buffer Programming Operation

Note: See Table 12 for program command sequence.

Figure 2. Program Operation

Program Suspend/Program Resume Command Sequence

The Program Suspend command allows the system to interrupt a programming operation or a Write to Buffer programming operation so that data can be read from any non-suspended sector. When the Program Suspend command is written during a programming process, the device halts the program operation within 15 $\mu \mathrm{s}$ maximum ($5 \mu \mathrm{~s}$ typical) and updates the status bits. Addresses are not required when writing the Program Suspend command.
After the programming operation has been suspended, the system can read array data from any non-suspended sector. The Program Suspend command may also be issued during a programming operation while an erase is suspended. In this case, data may be read from any addresses not in Erase Suspend or Program Suspend. If a read is needed from the Secured Silicon Sector area (One-time Program area), then user must use the proper command sequences to enter and exit this region. Note that the Secured Silicon Sector autoselect, and CFI functions are unavailable when program operation is in progress.
The system may also write the autoselect command sequence when the device is in the Program Suspend mode. The system can read as many autoselect codes as required. When the device exits the autoselect mode, the device reverts to the Program Suspend mode, and is ready for another valid operation. See Autoselect Command Sequence for more information.

After the Program Resume command is written, the device reverts to programming. The system can determine the status of the program operation using the DQ7 or DQ6 status bits, just as in the standard program operation. See Write Operation Status for more information.

The system must write the Program Resume command (address bits are don't care) to exit the Program Suspend mode and continue the programming operation. Further writes of the Resume command are ignored. Another Program Suspend command can be written after the device has resume programming.

Figure 3. Program Suspend/Program Resume

Chip Erase Command Sequence

Chip erase is a six bus cycle operation. The chip erase command sequence is initiated by writing two unlock cycles, followed by a set-up command. Two additional unlock write cycles are then followed by the chip erase command, which in turn invokes the Embedded Erase algorithm. The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm automatically preprograms and verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations. Table 12 shows the address and data requirements for the chip erase command sequence.

When the Embedded Erase algorithm is complete, the device returns to the read mode and addresses are no longer latched. The system can determine the status of the erase operation by using DQ7, DQ6, or DQ2. Refer to the Write Operation Status section for information on these status bits.

Any commands written during the chip erase operation are ignored, including erase suspend commands. However, note that a hardware reset immediately terminates the erase operation. If that occurs, the chip erase command sequence should be reinitiated once the device has returned to reading array data, to ensure data integrity.

Figure 4 illustrates the algorithm for the erase operation. Note that the Secured Silicon Sector, autoselect, and CFI functions are unavailable when an erase operation in is progress. Refer to the "Erase And Programming Performance" section on page 103 in the AC Characteristics section for parameters, and Figure 16 section for timing diagrams.

Sector Erase Command Sequence

Sector erase is a six bus cycle operation. The sector erase command sequence is initiated by writing two unlock cycles, followed by a set-up command. Two additional unlock cycles are written, and are then followed by the address of the sector to be erased, and the sector erase command. Table 12 shows the address and data requirements for the sector erase command sequence.

The device does not require the system to preprogram prior to erase. The Embedded Erase algorithm automatically programs and verifies the entire memory for an all zero data pattern prior to electrical erase. The system is not required to provide any controls or timings during these operations.

After the command sequence is written, a sector erase time-out of $50 \mu \mathrm{~s}$ occurs. During the time-out period, additional sector addresses and sector erase commands may be written. Loading the sector erase buffer may be done in any sequence, and the number of sectors may be from one sector to all sectors. The time between these additional cycles must be less than $50 \mu \mathrm{~s}$, otherwise erasure may begin. Any sector erase address and command following the exceeded timeout may or may not be accepted. It is recommended that processor interrupts be disabled during this time to ensure all commands are accepted. The interrupts can be re-enabled after the last Sector Erase command is written. Any command other than Sector Erase or Erase Suspend during the time-out period resets the device to the read mode. Note that the Secured Silicon Sector, autoselect, and CFI functions are unavailable when an erase operation in is progress. The system must rewrite the command sequence and any additional addresses and commands.

The system can monitor DQ3 to determine if the sector erase timer has timed out (See the section on DQ3: Sector Erase Timer.). The time-out begins from the rising edge of the final WE\# pulse in the command sequence.

When the Embedded Erase algorithm is complete, the device returns to reading array data and addresses are no longer latched. The system can determine the status of the erase operation by reading DQ7, DQ6, or DQ2 in the erasing sector. Refer to the Write Operation Status section for information on these status bits.

Once the sector erase operation has begun, only the Erase Suspend command is valid. All other commands are ignored. However, note that a hardware reset immediately terminates the erase operation. If that occurs, the sector erase command sequence should be reinitiated once the device has returned to reading array data, to ensure data integrity.

Figure 4 illustrates the algorithm for the erase operation. Refer to the Erase and Program Operations table in the AC Characteristics section for parameters, and Figure 16 section for timing diagrams.

Notes:

1. See Table 12 for program command sequence.
2. See the section on DQ3 for information on the sector erase timer.

Figure 4. Erase Operation

Erase Suspend/Erase Resume Commands

The Erase Suspend command, BOh, allows the system to interrupt a sector erase operation and then read data from, or program data to, any sector not selected for erasure. This command is valid only during the sector erase operation, including the 50μ s time-out period during the sector erase command sequence. The Erase Suspend command is ignored if written during the chip erase operation or Embedded Program algorithm.
When the Erase Suspend command is written during the sector erase operation, the device requires a typical of $5 \mu \mathrm{~s}$ (maximum of $20 \mu \mathrm{~s}$) to suspend the erase operation. However, when the Erase Suspend command is written during the sector erase time-out, the device immediately terminates the time-out period and suspends the erase operation.

After the erase operation has been suspended, the device enters the erase-sus-pend-read mode. The system can read data from or program data to any sector not selected for erasure. (The device "erase suspends" all sectors selected for erasure.) Reading at any address within erase-suspended sectors produces status information on DQ7-DQ0. The system can use DQ7, or DQ6 and DQ2 together, to determine if a sector is actively erasing or is erase-suspended. Refer to the Write Operation Status section for information on these status bits.

After an erase-suspended program operation is complete, the device returns to the erase-suspend-read mode. The system can determine the status of the pro-
gram operation using the DQ7 or DQ6 status bits, just as in the standard word program operation. Refer to the Write Operation Status section for more information.

In the erase-suspend-read mode, the system can also issue the autoselect command sequence. Refer to the "Autoselect Mode" section and "Autoselect Command Sequence" section on page 67 sections for details.
To resume the sector erase operation, the system must write the Erase Resume command. The address of the erase-suspended sector is required when writing this command. Further writes of the Resume command are ignored. Another Erase Suspend command can be written after the chip has resumed erasing. It is important to allow an interval of at least 5 ms between Erase Resume and Erase Suspend.

Lock Register Command Set Definitions

The Lock Register Command Set permits the user to one-time program the Secured Silicon Sector Protection Bit, Persistent Protection Mode Lock Bit, and Password Protection Mode Lock Bit. The Lock Register bits are all readable after an initial access delay.
The Lock Register Command Set Entry command sequence must be issued prior to any of the following commands listed, to enable proper command execution.

Note that issuing the Lock Register Command Set Entry command disables reads and writes for the flash memory.

- Lock Register Program Command
- Lock Register Read Command

The Lock Register Command Set Exit command must be issued after the execution of the commands to reset the device to read mode. Otherwise the device will hang. If this happens, the flash device must be reset. Please refer to RESET\# for more information. It is important to note that the device will be in either Persistent Protection mode or Password Protection mode depending on the mode selected prior to the device hang.

For either the Secured Silicon Sector to be locked, or the device to be permanently set to the Persistent Protection Mode or the Password Protection Mode, the associated Lock Register bits must be programmed. Note that the Persistent Protection Mode Lock Bit and Password Protection Mode Lock Bit can never be programmed together at the same time. If so, the Lock Register Program operation will abort.

The Lock Register Command Set Exit command must be initiated to reenable reads and writes to the main memory.

Password Protection Command Set Definitions

The Password Protection Command Set permits the user to program the 64 -bit password, verify the programming of the 64 -bit password, and then later unlock the device by issuing the valid 64 -bit password.
The Password Protection Command Set Entry command sequence must be issued prior to any of the commands listed following to enable proper command execution.

Note that issuing the Password Protection Command Set Entry command disabled reads and writes the main memory.

- Password Program Command

■ Password Read Command
■ Password Unlock Command
The Password Program command permits programming the password that is used as part of the hardware protection scheme. The actual password is 64-bits long. There is no special addressing order required for programming the password. The password is programmed in 8-bit or 16-bit portions. Each portion requires a Password Program Command.

Once the Password is written and verified, the Password Protection Mode Lock Bit in the "Lock Register" must be programmed in order to prevent verification. The Password Program command is only capable of programming "0"s. Programming a " 1 " after a cell is programmed as a " 0 " results in a time-out by the Embedded Program Algorithm ${ }^{\text {TM }}$ with the cell remaining as a " 0 ". The password is all F 's when shipped from the factory. All 64-bit password combinations are valid as a password.
The Password Read command is used to verify the Password. The Password is verifiable only when the Password Protection Mode Lock Bit in the "Lock Register" is not programmed. If the Password Protection Mode Lock Bit in the "Lock Register" is programmed and the user attempts to read the Password, the device will always drive all F's onto the DQ databus.
The lower two address bits (A1-A0) for word mode and (A1-A-1) for by byte mode are valid during the Password Read, Password Program, and Password Unlock commands. Writing a "1" to any other address bits ($\mathrm{A}_{\text {max }}-\mathrm{A} 2$) will abort the Password Read and Password Program commands.

The Password Unlock command is used to clear the PPB Lock Bit to the "unfreeze state" so that the PPB bits can be modified. The exact password must be entered in order for the unlocking function to occur. This 64-bit Password Unlock command sequence will take at least $\mathbf{2} \mu$ s to process each time to prevent a hacker from running through the all 64-bit combinations in an attempt to correctly match the password. If another password unlock is issued before the 64-bit password check execution window is completed, the command will be ignored. If the wrong address or data is given during password unlock command cycle, the device may enter the write-tobuffer abort state. In order to exit the write-to-abort state, the write-to-buffer-abort-reset command must be given. Otherwise the device will hang.

The Password Unlock function is accomplished by writing Password Unlock command and data to the device to perform the clearing of the PPB Lock Bit to the "unfreeze state". The password is 64 bits long. A1 and A0 are used for matching. Writing the Password Unlock command does not need to be address order specific. An example sequence is starting with the lower address A1-A0 $=00$, followed by $\mathrm{A} 1-\mathrm{A} 0=01, \mathrm{~A} 1-\mathrm{A} 0=10$, and $\mathrm{A} 1-\mathrm{A} 0=11$ if the device is configured to operate in word mode.

Approximately $2 \mu \mathrm{~s}$ is required for unlocking the device after the valid 64-bit password is given to the device. It is the responsibility of the microprocessor to keep track of the entering the portions of the 64-bit password with the Password Unlock command, the order, and when to read the PPB Lock bit to confirm successful password unlock. In order to re-lock the device into the Password Protection Mode, the PPB Lock Bit Set command can be re-issued.

The Password Protection Command Set Exit command must be issued after the execution of the commands listed previously to reset the device to read mode. Otherwise the device will hang.
Note that issuing the Password Protection Command Set Exit command reenables reads and writes for the main memory.

Non-Volatile Sector Protection Command Set Definitions

The Non-Volatile Sector Protection Command Set permits the user to program the Persistent Protection Bits (PPB bits), erase all of the Persistent Protection Bits (PPB bits), and read the logic state of the Persistent Protection Bits (PPB bits).

The Non-Volatile Sector Protection Command Set Entry command sequence must be issued prior to any of the commands listed following to enable proper command execution.
Note that issuing the Non-Volatile Sector Protection Command Set Entry command disables reads and writes for the main memory.

- PPB Program Command

The PPB Program command is used to program, or set, a given PPB bit. Each PPB bit is individually programmed (but is bulk erased with the other PPB bits). The specific sector address (A24-A16 for S29GL512N, A23-A16 for S29GL256N, A22A16 for S29GL128N) is written at the same time as the program command. If the PPB Lock Bit is set to the "freeze state", the PPB Program command will not execute and the command will time-out without programming the PPB bit.

- All PPB Erase Command

The All PPB Erase command is used to erase all PPB bits in bulk. There is no means for individually erasing a specific PPB bit. Unlike the PPB program, no specific sector address is required. However, when the All PPB Erase command is issued, all Sector PPB bits are erased in parallel. If the PPB Lock Bit is set to "freeze state", the ALL PPB Erase command will not execute and the command will time-out without erasing the PPB bits.
The device will preprogram all PPB bits prior to erasing when issuing the All PPB Erase command. Also note that the total number of PPB program/erase cycles has the same endurance as the flash memory array.

- PPB Status Read Command

The programming state of the PPB for a given sector can be verified by writing a PPB Status Read Command to the device. This requires an initial access time latency.

The Non-Volatile Sector Protection Command Set Exit command must be issued after the execution of the commands listed previously to reset the device to read mode.

Note that issuing the Non-Volatile Sector Protection Command Set Exit command re-enables reads and writes for the main memory.

Global Volatile Sector Protection Freeze Command Set

The Global Volatile Sector Protection Freeze Command Set permits the user to set the PPB Lock Bit and reading the logic state of the PPB Lock Bit.
The Global Volatile Sector Protection Freeze Command Set Entry command sequence must be issued prior to any of the commands listed following to enable proper command execution.

Reads and writes from the main memory are not allowed.

■ PPB Lock Bit Set Command
The PPB Lock Bit Set command is used to set the PPB Lock Bit to the "freeze state" if it is cleared either at reset or if the Password Unlock command was successfully executed. There is no PPB Lock Bit Clear command. Once the PPB Lock Bit is set to the "freeze state", it cannot be cleared unless the device is taken through a power-on clear (for Persistent Protection Mode) or the Password Unlock command is executed (for Password Protection Mode). If the Password Protection Mode Lock Bit is programmed, the PPB Lock Bit status is reflected as set to the "freeze state", even after a power-on reset cycle.

■ PPB Lock Bit Status Read Command
The programming state of the PPB Lock Bit can be verified by executing a PPB Lock Bit Status Read command to the device.

The Global Volatile Sector Protection Freeze Command Set Exit command must be issued after the execution of the commands listed previously to reset the device to read mode.

Volatile Sector Protection Command Set

The Volatile Sector Protection Command Set permits the user to set the Dynamic Protection Bit (DYB) to the "protected state", clear the Dynamic Protection Bit (DYB) to the "unprotected state", and read the logic state of the Dynamic Protection Bit (DYB).

The Volatile Sector Protection Command Set Entry command sequence must be issued prior to any of the commands listed following to enable proper command execution.

Note that issuing the Volatile Sector Protection Command Set Entry command disables reads and writes from main memory.

- DYB Set Command
- DYB Clear Command

The DYB Set and DYB Clear commands are used to protect or unprotect a DYB for a given sector. The high order address bits are issued at the same time as the code 00h or 01h on DQ7-DQ0. All other DQ data bus pins are ignored during the data write cycle. The DYB bits are modifiable at any time, regardless of the state of the PPB bit or PPB Lock Bit. The DYB bits are cleared to the "unprotected state" at power-up or hardware reset.

—DYB Status Read Command

The programming state of the DYB bit for a given sector can be verified by writing a DYB Status Read command to the device. This requires an initial access delay.

The Volatile Sector Protection Command Set Exit command must be issued after the execution of the commands listed previously to reset the device to read mode.

Note that issuing the Volatile Sector Protection Command Set Exit command re-enables reads and writes to the main memory.

Secured Silicon Sector Entry Command

The Secured Silicon Sector Entry command allows the following commands to be executed

- Read from Secured Silicon Sector
- Program to Secured Silicon Sector

Once the Secured Silicon Sector Entry Command is issued, the Secured Silicon Sector Exit command has to be issued to exit Secured Silicon Sector Mode.

Secured Silicon Sector Exit Command

The Secured Silicon Sector Exit command may be issued to exit the Secured Silicon Sector Mode.

Command Definitions

Table I2. S29GL5I2N, S29GL256N, S29GLI28N Command Definitions, xl6

Command (Notes)		$\begin{aligned} & y \\ & \frac{y}{u} \\ & \underset{u}{u} \end{aligned}$	Bus Cycles (Notes 2-5)												
		First	Second		Third		Fourth		Fifth		Sixth				
		Addr	Data												
$\begin{aligned} & \text { 으 } \\ & \sum_{n}^{3} \\ & \text { n } \\ & 0 \end{aligned}$	Password Protection Command Set Entry		3	555	AA	2AA	55	555	60						
	Password Program (20)		2	XXX	A0	$\begin{gathered} \text { PWA } \\ \mathrm{x} \end{gathered}$	$\begin{gathered} \text { PWD } \\ \mathrm{x} \end{gathered}$								
	Password Read (19)	4	XXX	$\begin{gathered} \text { PWD } \\ 0 \end{gathered}$	01	$\begin{gathered} \text { PWD } \\ 1 \end{gathered}$	02	$\begin{gathered} \text { PWD } \\ 2 \end{gathered}$	03	$\begin{gathered} \text { PWD } \\ 3 \end{gathered}$					
	Password Unlock (19)	7	00	25	00	03	00	$\begin{gathered} \text { PWD } \\ 0 \end{gathered}$	01	$\begin{gathered} \text { PWD } \\ 1 \end{gathered}$	02	$\begin{gathered} \text { PWD } \\ 2 \end{gathered}$	03	$\begin{gathered} \text { PWD } \\ 3 \end{gathered}$	
			00	29											
	Password Protection Command Set Exit (18, 23)	2	XXX	90	XXX	00									

Non-Volatile Sector Protection Command Set Definitions

Global Non-Volatile Sector Protection Freeze Command Set Definitions

$\begin{aligned} & \stackrel{H}{0} \\ & \stackrel{y}{0} \\ & 0 \\ & 0 \\ & 0 . \end{aligned}$	Global Non-Volatile Sector Protection Freeze Command Set Entry	3	555	AA	2AA	55	555	50						
	PPB Lock Bit Set (25)	2	XXX	A0	XXX	00								
	PPB Lock Status Read (25)	1	XXX	$\begin{aligned} & \text { RD } \\ & \text { (0) } \end{aligned}$										
	Global Non-Volatile Sector Protection Freeze Command Set Exit (18)	2	XXX	90	XXX	00								

Volatile Sector Protection Command Set Definitions

\bigcirc	Volatile Sector Protection Command Set Entry	3	555	AA	2AA	55	555	E0						
	DYB Set (24,25)	2	XXX	A0	SA	00								
	DYB Clear (25)	2	XXX	A0	SA	01								
	DYB Status Read (25)	1	SA	$\begin{aligned} & \text { RD } \\ & \text { (0) } \end{aligned}$										
	Volatile Sector Protection Command Set Exit (18)	2	XXX	90	XXX	00								

Legend:

$X=$ Don't care
$R A=$ Address of the memory to be read.
$R D=$ Data read from location $R A$ during read operation .
$P A=A d d r e s s$ of the memory location to be programmed. Addresses latch on the falling edge of the WE\# or CE\# pulse, whichever happens later.
$P D=$ Data to be programmed at location PA. Data latches on the rising edge of the WE\# or CE\# pulse, whichever happens first.
$S A=$ Address of the sector to be verified (in autoselect mode) or erased. Address bits $A_{\text {max }}-A 16$ uniquely select any sector.
WBL $=$ Write Buffer Location. The address must be within the same write buffer page as PA.
$W C=$ Word Count is the number of write buffer locations to load minus 1.
PWD = Password
$P W D_{x}=$ Password word0, word1, word2, and word3.
DATA = Lock Register Contents: PD(0) = Secured Silicon Sector Protection Bit, PD(1) = Persistent Protection Mode Lock Bit, PD(2) = Password Protection Mode Lock Bit.

Notes:

1. See Table 1 for description of bus operations.
2. All values are in hexadecimal.
3. Except for the read cycle, and the 4th, 5th, and 6th cycle of the autoselect command sequence, all bus cycles are write cycles.
4. Data bits DQ15-DQ8 are don't cares for unlock and command cycles.
5. Address bits $A_{\text {MAX }}: A 16$ are don't cares for unlock and command cycles, unless SA or PA required. ($A_{\text {MAX }}$ is the Highest Address pin.).
6. No unlock or command cycles required when reading array data.
7. The Reset command is required to return to reading array data when device is in the autoselect mode, or if DQ5 goes high (while the device is providing status data).
8. The fourth, fifth, and sixth cycle of the autoselect command sequence is a read cycle.
9. The data is 00 h for an unprotected sector and 01 h for a protected sector. See "Autoselect Command Sequence" for more information. This is same as PPB Status Read except that the protect and unprotect statuses are inverted here.
10. The data value for DQ7 is " 1 " for a serialized and protected OTP region and " 0 " for an unserialized and unprotected Secured Silicon Sector region. See "Secured Silicon Sector Flash Memory Region" for more information. For S29GLxxxNH: XX18h/18h $=$ Not Factory Locked. XX98h/98h $=$ Factory Locked. For S29GLxxxNL: XX08h/08h $=$ Not Factory Locked. $\mathrm{XX88h} / 88 \mathrm{~h}=$ Factory Locked.
11. Command is valid when device is ready to read array data or when device is in autoselect mode.
12. The Unlock-Bypass command is required prior to the Unlock-Bypass-Program command.
13. The Unlock-Bypass-Reset command is required to return to reading array data when the device is in the unlock bypass mode.
14. The system may read and program/program suspend in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend mode. The Erase Suspend command is valid only during a sector erase operation.
15. The Erase Resume/Program Resume command is valid only during the Erase Suspend/Program Suspend modes.
16. Issue this command sequence to return to READ mode after detecting device is in a Write-to-Buffer-Abort state. NOTE: the full command sequence is required if resetting out of ABORT while using Unlock Bypass Mode.
17. S29GL512NH/L = 2223h/23h, 2201h/01h; S29GL256NH/L = 2222h/22h, 2201h/01h; S29GL128NH/L = 2221h/21h, 2201h/ 01h.
18. The Exit command returns the device to reading the array.
19. Note that the password portion can be entered or read in any order as long as the entire 64-bit password is entered or read.
20. For PWDx, only one portion of the password can be programmed per each "AO" command.
21. The All PPB Erase command embeds programming of all PPB bits before erasure.
22. All Lock Register bits are one-time programmable. Note that the program state $=$ " 0 " and the erase state $=" 1$ ". Also note that of both the Persistent Protection Mode Lock Bit and the Password Protection Mode Lock Bit cannot be programmed at the same time or the Lock Register Bits Program operation will abort and return the device to read mode. Lock Register bits that are reserved for future use will default to "1's". The Lock Register is shipped out as "FFFF's" before Lock Register Bit program execution.
23. If any of the Entry command was initiated, an Exit command must be issued to reset the device into read mode. Otherwise the device will hang.
24. If $A C C=V_{H H}$, sector protection will match when $A C C=V_{I H}$
25. Protected State = "OOh", Unprotected State = "01h".

Write Operation Status

The device provides several bits to determine the status of a program or erase operation: DQ2, DQ3, DQ5, DQ6, and DQ7. Table 13 and the following subsections describe the function of these bits. DQ7 and DQ6 each offer a method for determining whether a program or erase operation is complete or in progress. The device also provides a hardware-based output signal, RY/BY\#, to determine whether an Embedded Program or Erase operation is in progress or has been completed.

Note that all Write Operation Status DQ bits are valid only after $4 \mu \mathrm{~s}$ delay.

DQ7: Data\# Polling

The Data\# Polling bit, DQ7, indicates to the host system whether an Embedded Program or Erase algorithm is in progress or completed, or whether the device is in Erase Suspend. Data\# Polling is valid after the rising edge of the final WE\# pulse in the command sequence.

During the Embedded Program algorithm, the device outputs on DQ7 the complement of the datum programmed to DQ7. This DQ7 status also applies to programming during Erase Suspend. When the Embedded Program algorithm is complete, the device outputs the datum programmed to DQ7. The system must provide the program address to read valid status information on DQ7. If a program address falls within a protected sector, Data\# Polling on DQ7 is active for approximately $1 \mu \mathrm{~s}$, then the device returns to the read mode.

During the Embedded Erase algorithm, Data\# Polling produces a "0" on DQ7. When the Embedded Erase algorithm is complete, or if the device enters the Erase Suspend mode, Data\# Polling produces a " 1 " on DQ7. The system must provide an address within any of the sectors selected for erasure to read valid status information on DQ7.

After an erase command sequence is written, if all sectors selected for erasing are protected, Data\# Polling on DQ7 is active for approximately $100 \mu \mathrm{~s}$, then the device returns to the read mode. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected. However, if the system reads DQ7 at an address within a protected sector, the status may not be valid.

Just prior to the completion of an Embedded Program or Erase operation, DQ7 may change asynchronously with DQ0-DQ6 while Output Enable (OE\#) is asserted low. That is, the device may change from providing status information to valid data on DQ7. Depending on when the system samples the DQ7 output, it may read the status or valid data. Even if the device has completed the program or erase operation and DQ7 has valid data, the data outputs on DQ0-DQ6 may be still invalid. Valid data on DQ0-DQ7 will appear on successive read cycles.

Table 13 shows the outputs for Data\# Polling on DQ7. Figure 5 shows the Data\# Polling algorithm. Figure 17 in the AC Characteristics section shows the Data\# Polling timing diagram.

Notes:

1. $V A=$ Valid address for programming. During a sector erase operation, a valid address is any sector address within the sector being erased. During chip erase, a valid address is any non-protected sector address.
2. DQ7 should be rechecked even if $D Q 5=" 1$ " because DQ7 may change simultaneously with DQ5.

Figure 5. Data\# Polling Algorithm

RY/BY\#: Ready/Busy\#

The RY/BY\# is a dedicated, open-drain output pin which indicates whether an Embedded Algorithm is in progress or complete. The RY/BY\# status is valid after the rising edge of the final WE\# pulse in the command sequence. Since RY/BY\# is an open-drain output, several RY/BY\# pins can be tied together in parallel with a pull-up resistor to V_{CC}.

If the output is low (Busy), the device is actively erasing or programming. (This includes programming in the Erase Suspend mode.) If the output is high (Ready), the device is in the read mode, the standby mode, or in the erase-suspend-read mode. Table 13 shows the outputs for RY/BY\#.

DQ6: Toggle Bit I

Toggle Bit I on DQ6 indicates whether an Embedded Program or Erase algorithm is in progress or complete, or whether the device has entered the Erase Suspend mode. Toggle Bit I may be read at any address, and is valid after the rising edge of the final WE\# pulse in the command sequence (prior to the program or erase operation), and during the sector erase time-out.

During an Embedded Program or Erase algorithm operation, successive read cycles to any address cause DQ6 to toggle. The system may use either OE\# or CE\# to control the read cycles. When the operation is complete, DQ6 stops toggling.

After an erase command sequence is written, if all sectors selected for erasing are protected, DQ6 toggles for approximately $100 \mu \mathrm{~s}$, then returns to reading array data. If not all selected sectors are protected, the Embedded Erase algorithm erases the unprotected sectors, and ignores the selected sectors that are protected.

The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or is erase-suspended. When the device is actively erasing (that is, the Embedded Erase algorithm is in progress), DQ6 toggles. When the device enters the Erase Suspend mode, DQ6 stops toggling. However, the system must also use DQ2 to determine which sectors are erasing or erase-suspended. Alternatively, the system can use DQ7 (see the subsection on DQ7: Data\# Polling).
If a program address falls within a protected sector, DQ6 toggles for approximately $1 \mu \mathrm{~s}$ after the program command sequence is written, then returns to reading array data.
DQ6 also toggles during the erase-suspend-program mode, and stops toggling once the Embedded Program algorithm is complete.

Table 13 shows the outputs for Toggle Bit I on DQ6. Figure 6 shows the toggle bit algorithm. Figure 18 in the "AC Characteristics" section shows the toggle bit timing diagrams. Figure 19 shows the differences between DQ2 and DQ6 in graphical form. See also the subsection on DQ2: Toggle Bit II.

Note: The system should recheck the toggle bit even if DQ5 = "1" because the toggle bit may stop toggling as DQ5 changes to "1." See the subsections on DQ6 and DQ2 for more information.

Figure 6. Toggle Bit Algorithm

DQ2: Toggle Bit II

The "Toggle Bit II" on DQ2, when used with DQ6, indicates whether a particular sector is actively erasing (that is, the Embedded Erase algorithm is in progress), or whether that sector is erase-suspended. Toggle Bit II is valid after the rising edge of the final WE\# pulse in the command sequence.
DQ2 toggles when the system reads at addresses within those sectors that have been selected for erasure. (The system may use either OE\# or CE\# to control the
read cycles.) But DQ2 cannot distinguish whether the sector is actively erasing or is erase-suspended. DQ6, by comparison, indicates whether the device is actively erasing, or is in Erase Suspend, but cannot distinguish which sectors are selected for erasure. Thus, both status bits are required for sector and mode information. Refer to Table 13 to compare outputs for DQ2 and DQ6.

Figure 6 shows the toggle bit algorithm in flowchart form, and the section "DQ2: Toggle Bit II" explains the algorithm. See also the RY/BY\#: Ready/Busy\# subsection. Figure 18 shows the toggle bit timing diagram. Figure 19 shows the differences between DQ2 and DQ6 in graphical form.

Reading Toggle Bits DQ6/DQ2

Refer to Figure 6 and Figure 19 for the following discussion. Whenever the system initially begins reading toggle bit status, it must read DQ7-DQ0 at least twice in a row to determine whether a toggle bit is toggling. Typically, the system would note and store the value of the toggle bit after the first read. After the second read, the system would compare the new value of the toggle bit with the first. If the toggle bit is not toggling, the device has completed the program or erase operation. The system can read array data on DQ7-DQ0 on the following read cycle.

However, if after the initial two read cycles, the system determines that the toggle bit is still toggling, the system also should note whether the value of DQ5 is high (see the section on DQ5). If it is, the system should then determine again whether the toggle bit is toggling, since the toggle bit may have stopped toggling just as DQ5 went high. If the toggle bit is no longer toggling, the device has successfully completed the program or erase operation. If it is still toggling, the device did not completed the operation successfully, and the system must write the reset command to return to reading array data.

The remaining scenario is that the system initially determines that the toggle bit is toggling and DQ5 has not gone high. The system may continue to monitor the toggle bit and DQ5 through successive read cycles, determining the status as described in the previous paragraph. Alternatively, it may choose to perform other system tasks. In this case, the system must start at the beginning of the algorithm when it returns to determine the status of the operation (top of Figure 6).

DQ5: Exceeded Timing Limits

DQ5 indicates whether the program, erase, or write-to-buffer time has exceeded a specified internal pulse count limit. Under these conditions DQ5 produces a " 1, " indicating that the program or erase cycle was not successfully completed.

The device may output a " 1 " on DQ5 if the system tries to program a " 1 " to a location that was previously programmed to "0." Only an erase operation can change a " 0 " back to a "1." Under this condition, the device halts the operation, and when the timing limit has been exceeded, DQ5 produces a "1."

In all these cases, the system must write the reset command to return the device to the reading the array (or to erase-suspend-read if the device was previously in the erase-suspend-program mode).

DQ3: Sector Erase Timer

After writing a sector erase command sequence, the system may read DQ3 to determine whether or not erasure has begun. (The sector erase timer does not apply to the chip erase command.) If additional sectors are selected for erasure,
the entire time-out also applies after each additional sector erase command. When the time-out period is complete, DQ3 switches from a " 0 " to a " 1 ." If the time between additional sector erase commands from the system can be assumed to be less than $50 \mu \mathrm{~s}$, the system need not monitor DQ3. See also the Sector Erase Command Sequence section.

After the sector erase command is written, the system should read the status of DQ7 (Data\# Polling) or DQ6 (Toggle Bit I) to ensure that the device has accepted the command sequence, and then read DQ3. If DQ3 is " 1 ," the Embedded Erase algorithm has begun; all further commands (except Erase Suspend) are ignored until the erase operation is complete. If DQ3 is " 0 ," the device will accept additional sector erase commands. To ensure the command has been accepted, the system software should check the status of DQ3 prior to and following each subsequent sector erase command. If DQ3 is high on the second status check, the last command might not have been accepted.

Table 13 shows the status of DQ3 relative to the other status bits.

DQI: Write-to-Buffer Abort

DQ1 indicates whether a Write-to-Buffer operation was aborted. Under these conditions DQ1 produces a " 1 ". The system must issue the Write-to-Buffer-AbortReset command sequence to return the device to reading array data. See Write Buffer section for more details.

Table I3. Write Operation Status

Status			$\begin{gathered} \text { DQ7 } \\ \text { (Note 2) } \end{gathered}$	DQ6	$\begin{array}{\|c\|} \text { DQ5 } \\ \text { (Note 1) } \end{array}$	DQ3	$\begin{gathered} \text { DQ2 } \\ \text { (Note 2) } \end{gathered}$	DQ1	$\begin{aligned} & \text { RY/ } \\ & \text { BY\# } \end{aligned}$
Standard Mode	Embedded Program Algorithm		DQ7\#	Toggle	0	N/A	No toggle	0	0
	Embedded Erase Algorithm		0	Toggle	0	1	Toggle	N/A	0
Program Suspend Mode	ProgramSuspend Read	Program-Suspended Sector	Invalid (not allowed)						1
		Non-Program Suspended Sector	Data						1
Erase Suspend Mode	EraseSuspend Read	Erase-Suspended Sector	1	No toggle	0	N/A	Toggle	N/A	1
		Non-Erase Suspended Sector	Data						1
	Erase-Suspend-Program (Embedded Program)		DQ7\#	Toggle	0	N/A	N/A	N/A	0
Write-toBuffer	Busy (Note 3)		DQ7\#	Toggle	0	N/A	N/A	0	0
	Abort (Note 4)		DQ7\#	Toggle	0	N/A	N/A	1	0

Notes:

1. DQ5 switches to '1' when an Embedded Program, Embedded Erase, or Write-to-Buffer operation has exceeded the maximum timing limits. Refer to the section on DQ5 for more information.
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.
3. The Data\# Polling algorithm should be used to monitor the last loaded write-buffer address location.
4. DQ1 switches to ' 1 ' when the device has aborted the write-to-buffer operation.

Advancelnformation

Absolute Maximum Ratings

Storage Temperature, Plastic Packages $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Voltage with Respect to Ground:

Notes:

1. Minimum DC voltage on input or I/Os is -0.5 V . During voltage transitions, inputs or I/Os may overshoot $V_{S S}$ to -2.0 V for periods of up to 20 ns . See Figure 7. Maximum DC voltage on input or $I / O s$ is $V_{C C}+0.5 \mathrm{~V}$. During voltage transitions, input or I/O pins may overshoot to $V_{C C}+2.0$ V for periods up to 20 ns. See Figure 8.
2. Minimum DC input voltage on pins A9, OE\#, and ACC is -0.5 V . During voltage transitions, A9, OE\#, and ACC may overshoot $V_{S S}$ to $-2.0 V$ for periods of up to 20 ns. See Figure 7. Maximum DC input voltage on pin A9, OE\#, and ACC is +12.5 V which may overshoot to +14.0 V for periods up to 20 ns .
3. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one second.
4. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 7. Maximum Negative
Overshoot Waveform

Figure 8. Maximum Positive Overshoot Waveform

Operating Ranges

Industrial (I) Devices

Ambient Temperature (T_{A}) . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltages
VCC . +2.7 V to +3.6 V or +3.0 V to 3.6 V
VIO (Note 2) . +1.65 V to 1.95 V or VCC

Notes:

1. Operating ranges define those limits between which the functionality of the device is guaranteed.
2. See "Product Selector Guide" section on page 20.

DC Characteristics

CMOS Compatible-S29GLI28N, S29GL256N, S29GL5I2N

Parameter Symbol	Parameter Description (Notes)	Test Conditions	Min	Tур	Max	Unit
I_{LI}	Input Load Current (1)	$\begin{aligned} & V_{I N}=V_{S S} \text { to } V_{C C} \\ & V_{C C}=V_{C C ~ m a x ~} \end{aligned}$			WP/ACC: ± 2.0	$\mu \mathrm{A}$
					Others: ± 1.0	
$\mathrm{I}_{\text {LIT }}$	A9 Input Load Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC} \text { max }} ; \mathrm{A} 9=12.5 \mathrm{~V}$			35	$\mu \mathrm{A}$
$\mathrm{I}_{\text {LO }}$	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC} \max } \end{aligned}$			± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCI }}$	$\mathrm{V}_{\text {CC }}$ Active Read Current (1)	$\begin{aligned} & \mathrm{CE} \#=\mathrm{V}_{\mathrm{IL}}, \mathrm{OE} \#=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCmax}}, \\ & f=5 \mathrm{MHz} \end{aligned}$		30	50	mA
		$\begin{aligned} & \mathrm{CE} \#=\mathrm{V}_{1 \mathrm{~L}}, \mathrm{OE} \#=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCmax}} \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$		60	90	
$\mathrm{I}_{\text {CC2 }}$	V ${ }_{\text {CC }}$ Intra-Page Read Current (1)	$\begin{aligned} & \mathrm{CE} \#=\mathrm{V}_{\mathrm{IL},}, \mathrm{OE} \#=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCmax}} \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$		1	10	mA
		$\begin{aligned} & C E \#=V_{I L}, O E \#=V_{I H}, V_{C C}=V_{C C \max }, \\ & f=33 \mathrm{MHz} \end{aligned}$		5	20	
$\mathrm{I}_{\text {CC3 }}$	$\mathrm{V}_{\text {CC }}$ Active Erase/Program Current (2,3)	$C E \#=V_{I L}, O E \#=V_{I H}, V_{C C}=V_{C C m a x}$		50	80	mA
$\mathrm{I}_{\text {CC4 }}$	$\mathrm{V}_{\text {CC }}$ Standby Current	CE\#, RESET\# $=\mathrm{V}_{\mathrm{SS}} \pm 0.3 \mathrm{~V}$, OE\# $=$ $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCmax}} \mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}}+0.3 \mathrm{~V} /-$ 0.1 V		1	5	mA
$\mathrm{I}_{\text {CC5 }}$	$\mathrm{V}_{\text {CC }}$ Reset Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCmax}} ; \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}}+0.3 \mathrm{~V} /-0.1 \mathrm{~V}, \\ & \text { RESET\# }=\mathrm{V}_{\mathrm{SS}} \pm 0.3 \mathrm{~V} \end{aligned}$		1	5	$\mu \mathrm{A}$
${ }^{\text {CC6 } 6}$	Automatic Sleep Mode (4)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{SS}}+0.3 \mathrm{~V} /-0.1 \mathrm{~V} \\ & \mathrm{WP} \# / \mathrm{A}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$		1	5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {ACC }}$	ACC Accelerated Program Current	$\begin{aligned} & \mathrm{CE} \#=\mathrm{V}_{\mathrm{IL}}, \mathrm{OE} \#=\mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCmax}} \\ & \mathrm{WP} \# / \mathrm{ACC} \end{aligned}$	WP\#/ACC pin	10	20	mA
			$\mathrm{V}_{\text {CC }} \mathrm{pin}$	50	80	
$\mathrm{V}_{\text {IL }}$	Input Low Voltage (5)		-0.1		$0.3 \times \mathrm{V}_{10}$	V
$\mathrm{V}_{\text {IH }}$	Input High Voltage (5)		$0.7 \times \mathrm{V}_{10}$		$\mathrm{V}_{10}+0.3$	V
V_{HH}	Voltage for ACC Erase/Program Acceleration	$\mathrm{V}_{\mathrm{CC}}=2.7-3.6 \mathrm{~V}$	11.5		12.5	V
$V_{\text {ID }}$	Voltage for Autoselect and Temporary Sector Unprotect	$\mathrm{V}_{\mathrm{CC}}=2.7-3.6 \mathrm{~V}$	11.5		12.5	V
V_{OL}	Output Low Voltage (5)	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$			$0.15 \times \mathrm{V}_{10}$	V
V_{OH}	Output High Voltage (5)	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$0.85 \times \mathrm{V}_{10}$			V
$\mathrm{V}_{\text {LKO }}$	Low $\mathrm{V}_{\text {CC }}$ Lock-Out Voltage (3)		2.3		2.5	V

Notes:

1. The $I_{C C}$ current listed is typically less than $2 \mathrm{~mA} / \mathrm{MHz}$, with $O E \#$ at $V_{I H}$.
2. I $I_{C C}$ active while Embedded Erase or Embedded Program or Write Buffer Programming is in progress.
3. Not 100% tested.
4. Automatic sleep mode enables the lower power mode when addresses remain stable tor $t_{\text {ACC }}+30 \mathrm{~ns}$.
5. $V_{I O}=1.65-1.95 \mathrm{~V}$ or $2.7-3.6 \mathrm{~V}$
6. $V_{C C}=3 \mathrm{~V}$ and $V_{I O}=3 \mathrm{~V}$ or 1.8 V . When $V_{I O}$ is at $1.8 \mathrm{~V}, I / O$ pins cannot operate at 3 V .

Advancelnformation

Test Conditions

Note: Diodes are IN3064 or equivalent.

Table 14. Test Specifications

Test Condition	All Speeds	Unit
Output Load	1 TL gate	
Output Load Capacitance, C_{L} (including jig capacitance)	30	pF
Input Rise and Fall Times	5	ns
Input Pulse Levels	$0.0-\mathrm{V}_{\mathrm{IO}}$	V
Input timing measurement reference levels (See Note)	$0.5 \mathrm{~V}_{1 \mathrm{O}}$	V
Output timing measurement reference levels	$0.5 \mathrm{~V}_{1 \mathrm{O}}$	V

Figure 9. Test Setup

Note: If $V_{I O}<V_{C C}$, the reference level is $0.5 V_{I O}$.
Key to Switching Waveforms

Waveform	Inputs	Outputs
	Steady	
$\square \square$	Changing from H to L	
171	Changing from L to H	
$\triangle X X X X$	Don't Care, Any Change Permitted	Changing, State Unknown
$\triangleq \pi$	Does Not Apply	Center Line is High Impedance State (High Z)

Note: If $V_{\text {IO }}<V_{C C}$ the input measurement reference level is $0.5 V_{I O}$.
Figure 10. Input Waveforms and Measurement Levels

AC Characteristics

Read-Only Operations-S29GLI28N, S29GL256N, S29GL5I2N

Parameter		Description		Test Setup		Speed Options				Unit		
JEDEC	Std.			90	100	110	110					
$\mathrm{t}_{\text {AVAV }}$	$t_{\text {RC }}$	Read Cycle Time				$\mathrm{V}_{10}=\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	Min	90	100	110		ns
				$\mathrm{V}_{10}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}$					110			
$\mathrm{t}_{\text {AVQV }}$	$\mathrm{t}_{\text {ACC }}$	Address to Output Delay (Note 2)		$\mathrm{V}_{10}=\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	Max	90	100	110		ns		
				$\mathrm{V}_{1 \mathrm{O}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}$					110			
$\mathrm{t}_{\text {ELQV }}$	${ }^{\text {t }}$ CE	Chip Enable to Output Delay (Note 3)		$\mathrm{V}_{10}=\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	Max	90	100	110		ns		
				$\mathrm{V}_{1 \mathrm{O}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3 \mathrm{~V}$					110			
	$t_{\text {PACC }}$	Page Access Time			Max	25	25	25	30	ns		
$\mathrm{t}_{\text {GLQV }}$	t_{OE}	Output Enable to Output Delay			Max	25	25	35	35	ns		
$\mathrm{t}_{\text {EHQZ }}$	$t_{\text {DF }}$	Chip Enable to Output High Z (Note 1)			Max	20				ns		
$\mathrm{t}_{\text {GHQZ }}$	$t_{\text {DF }}$	Output Enable to Output High Z (Note 1)			Max	20				ns		
$\mathrm{t}_{\mathrm{AXQX}}$	t_{OH}	Output Hold Time From Addresses, CE\# or OE\#, Whichever Occurs First			Min	0				ns		
	$\mathrm{t}_{\text {OEH }}$	Output Enable Hold Time (Note 1)	Read		Min	0				ns		
			Toggle and Data\# Polling		Min	10				ns		
	$\mathrm{t}_{\text {CEH }}$	Chip Enable Hold Time	Read		Min		3			ns		

Notes:

1. Not 100% tested.
2. CE\#, OE\# $=V_{I L}$
3. $O E \#=V_{I L}$
4. See Figure 9 and Table 14 for test specifications.
5. Unless otherwise indicated, $A C$ specifications for $90 \mathrm{~ns}, 100 \mathrm{~ns}$, and 110 ns speed options are tested with $V_{I O}=V_{C C}=3 \mathrm{~V}$. AC specifications for 110 ns speed options are tested with $V_{I O}=1.8 \mathrm{~V}$ and $V_{C C}=3.0 \mathrm{~V}$.

AC Characteristics

Figure II. Read Operation Timings

Notes:

1. Figure shows word mode.

Figure I2. Page Read Timings

AC Characteristics

Hardware Reset (RESET\#)

Parameter					
JEDEC	Std.		Speed (Note 2)	Unit	
	$\mathrm{t}_{\text {Ready }}$	RESET\# Pin Low (During Embedded Algorithms) to Read Mode (See Note)	Max	20	ns
	$\mathrm{t}_{\text {Ready }}$	RESET\# Pin Low (NOT During Embedded Algorithms) to Read Mode (See Note)	Max	500	ns
	$\mathrm{t}_{\text {RP }}$	RESET\# Pulse Width	Min	500	ns
	$\mathrm{t}_{\text {RH }}$	Reset High Time Before Read (See Note)	Min	50	ns
	$\mathrm{t}_{\text {RPD }}$	RESET\# Low to Standby Mode	Min	20	ns
	$\mathrm{t}_{\text {RB }}$	RY/BY\# Recovery Time	Min	0	

Notes:

1. Not 100% tested. If ramp rate is equal to or faster than $1 \mathrm{~V} / 100 \mu \mathrm{~s}$ with a falling edge of the RESET\# pin initiated, the RESET\# pin needs to be held low only for 100μ s for power-up.
2. Next generation devices may have different reset speeds.

Figure I3. Reset Timings

Advancelnformation

AC Characteristics

Erase and Program Operations-S29GLI28N, S29GL256N, S29GL5I2N

Parameter		Description			Speed Options				Unit
JEDEC	Std.				90	100	110	110	
$\mathrm{t}_{\text {AVAV }}$	$\mathrm{t}_{\text {WC }}$	Write Cycle Time ((ote 1)		Min	90	100	110	110	ns
$\mathrm{t}_{\text {AVWL }}$	t_{AS}	Address Setup Time		Min	0				ns
	$\mathrm{t}_{\text {ASO }}$	Address Setup Time to OE\# low during toggle bit polling		Min	15				ns
$\mathrm{t}_{\text {WLAX }}$	t_{AH}	Address Hold Time		Min	45				ns
	$\mathrm{t}_{\text {AHT }}$	Address Hold Time From CE\# or OE\# high during toggle bit polling		Min	0				ns
$\mathrm{t}_{\text {DVWH }}$	t_{DS}	Data Setup Time		Min	45				ns
$\mathrm{t}_{\text {WHDX }}$	t_{DH}	Data Hold Time		Min	0				ns
	$\mathrm{t}_{\text {CEPH }}$	CE\# High during toggle bit polling		Min	20				
	$\mathrm{t}_{\text {OEPH }}$	Output Enable High during toggle bit polling		Min	20				ns
$\mathrm{t}_{\text {GHWL }}$	$\mathrm{t}_{\text {GHWL }}$	Read Recovery Time Before Write (OE\# High to WE\# Low)		Min	0				ns
$\mathrm{t}_{\text {ELWL }}$	t_{CS}	CE\# Setup Time		Min	0				ns
$\mathrm{t}_{\text {WHEH }}$	t_{CH}	CE\# Hold Time		Min	0				ns
$\mathrm{t}_{\text {WLWH }}$	$\mathrm{t}_{\text {WP }}$	Write Pulse Width		Min	35				ns
$\mathrm{t}_{\text {WHDL }}$	$\mathrm{t}_{\text {WPH }}$	Write Pulse Width High		Min	30				ns
$\mathrm{t}_{\text {WHWH1 }}$	$\mathrm{t}_{\text {WHWH }}$	Write Buffer Program Operation (Notes 2, 3)		Typ	240				$\mu \mathrm{s}$
		Effective Write Buffer Program Operation (Notes 2, 4)	Per Word	Typ	15				$\mu \mathrm{s}$
		Accelerated Effective Write Buffer Program Operation (Notes 2, 4)	Per Word	Typ	13.5				$\mu \mathrm{s}$
		Program Operation (Note 2)	Word	Typ	60				$\mu \mathrm{s}$
		Accelerated Programming Operation (Note 2)	Word	Typ	54				$\mu \mathrm{s}$
$\mathrm{t}_{\text {WHWH2 }}$	$\mathrm{t}_{\text {WHWH2 }}$	Sector Erase Operation (Note 2)		Typ	0.5				sec
	$\mathrm{t}_{\text {VHH }}$	V_{HH} Rise and Fall Time (Note 1)		Min	250				ns
	$\mathrm{t}_{\mathrm{VCS}}$	V_{CC} Setup Time (Note 1)		Min	50				$\mu \mathrm{s}$
	$\mathrm{t}_{\text {BUSY }}$	Erase/Program Valid to RY/BY\# Delay		Min	90				ns

Notes:

1. Not 100% tested.
2. See the "Erase and Programming Performance" section for more information.
3. For 1-16 words/1-32 bytes programmed.
4. Effective write buffer specification is based upon a 16-word/32-byte write buffer operation.
5. Unless otherwise indicated, AC specifications for $90 \mathrm{~ns}, 100 \mathrm{~ns}$, and 110 ns speed options are tested with $V_{I O}=V_{C C}$ $=3 \mathrm{~V} . A C$ specifications for 110 ns speed options are tested with $V_{I O}=1.8 \mathrm{~V}$ and $V_{C C}=3.0 \mathrm{~V}$.

AC Characteristics

Notes:

1. $P A=$ program address, $P D=$ program data, $D_{O U T}$ is the true data at the program address.
2. Illustration shows device in word mode.

Figure 14. Program Operation Timings

Figure 15. Accelerated Program Timing Diagram

Notes:

1. Not 100% tested.
2. CE\#, OE\# $=V_{I L}$
3. $O E \#=V_{I L}$
4. See Figure 9 and Table 14 for test specifications.

AC Characteristics

Notes:

1. $S A=$ sector address (for Sector Erase), VA = Valid Address for reading status data (see "Write Operation Status".
2. These waveforms are for the word mode.

Figure 16. Chip/Sector Erase Operation Timings

AC Characteristics

Note:

1. $V A=$ Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data read cycle.
2. $t_{O E}$ for data polling is 45 ns when $V_{I O}=1.65$ to 2.7 V and is 35 ns when $V_{I O}=2.7$ to 3.6 V

Figure 17. Data\# Polling Timings (During Embedded Algorithms)

Advancelnformation

AC Characteristics

Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status read cycle, and array data read cycle

Figure 18. Toggle Bit Timings (During Embedded Algorithms)

Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE\# or CE\# to toggle DQ2 and DQ6.

Figure 19. DQ2 vs. DQ6

AC Characteristics

Alternate CE\# Controlled Erase and Program OperationsS29GLI28N, S29GL256N, S29GL5I2N

Parameter		Description			Speed Options				Unit
JEDEC	Std.				90	100	110	110	
$\mathrm{t}_{\text {AVAV }}$	${ }^{\text {tw }}$	Write Cycle Time (Note 1)		Min	90	100	110	110	ns
$\mathrm{t}_{\text {AVWL }}$	$\mathrm{t}_{\text {AS }}$	Address Setup Time		Min	0				ns
	$\mathrm{T}_{\text {ASO }}$	Address Setup Time to OE\# low during toggle bit polling		Min	15				ns
$\mathrm{t}_{\text {ELAX }}$	$\mathrm{t}_{\text {AH }}$	Address Hold Time		Min	45				ns
	$\mathrm{t}_{\text {AHT }}$	Address Hold Time From CE\# or OE\# high during toggle bit polling		Min	0				ns
$t_{\text {DVEH }}$	$t_{\text {DS }}$	Data Setup Time		Min	45				ns
$\mathrm{t}_{\text {EHDX }}$	$t_{\text {DH }}$	Data Hold Time		Min	0				ns
	$\mathrm{t}_{\text {CEPH }}$	CE\# High during toggle bit polling		Min	20				ns
	$\mathrm{t}_{\text {OEPH }}$	OE\# High during toggle bit polling		Min	20				ns
$\mathrm{t}_{\text {GHEL }}$	$\mathrm{t}_{\text {GHEL }}$	Read Recovery Time Before Write (OE\# High to WE\# Low)		Min	0				ns
$t_{\text {WLEL }}$	$\mathrm{t}_{\text {ws }}$	WE\# Setup Time		Min	0				ns
$\mathrm{t}_{\text {EHWH }}$	$t_{\text {WH }}$	WE\# Hold Time		Min	0				ns
$\mathrm{t}_{\text {ELEH }}$	t_{CP}	CE\# Pulse Width		Min	35				ns
$\mathrm{t}_{\text {EHEL }}$	$\mathrm{t}_{\text {CPH }}$	CE\# Pulse Width High		Min	30				ns
$\mathrm{t}_{\text {WHWH1 }}$	$\mathrm{t}_{\text {WHWH1 }}$	Write Buffer Program Operation (Notes 2, 3)		Typ	240				$\mu \mathrm{s}$
		Effective Write Buffer Program Operation (Notes 2, 4)	Per Word	Typ	15				$\mu \mathrm{s}$
		Effective Accelerated Write Buffer Program Operation (Notes 2, 4)	Per Word	Typ	13.5				$\mu \mathrm{s}$
		Program Operation (Note 2)	Word	Typ	60				$\mu \mathrm{s}$
		Accelerated Programming Operation (Note 2)	Word	Typ	54				$\mu \mathrm{s}$
$\mathrm{t}_{\text {WHWH2 }}$	$\mathrm{t}_{\text {WHWH2 }}$	Sector Erase Operation (Note 2)		Typ	0.5				sec

Notes:

1. Not 100% tested.
2. See the "AC Characteristics" section for more information.
3. For 1-16 words/1-32 bytes programmed.
4. Effective write buffer specification is based upon a 16-word/32-byte write buffer operation.
5. Unless otherwise indicated, $A C$ specifications for $90 \mathrm{~ns}, 100 \mathrm{~ns}$, and 110 ns speed options are tested with $V_{I O}=V_{C C}$ $=3 \mathrm{~V} . A C$ specifications for 110 ns speed options are tested with $V_{I O}=1.8 \mathrm{~V}$ and $V_{C C}=3.0 \mathrm{~V}$.

AC Characteristics

Notes:

1. Figure indicates last two bus cycles of a program or erase operation.
2. $P A=$ program address, $S A=$ sector address, $P D=$ program data.
3. $D Q 7 \#$ is the complement of the data written to the device. $D_{O U T}$ is the data written to the device.
4. Waveforms are for the word mode.

Figure 20. Alternate CE\# Controlled Write (Erase/Program) Operation Timings

Erase And Programming Performance

Parameter		Typ (Note 1)	Max (Note 2)	Unit	Comments
Sector Erase Time		0.5	3.5	sec	Excludes 00h programming prior to erasure (Note 5)
Chip Erase Time	S29GL128N	64	256	sec	
	S29GL256N	128	512		
	S29GL512N	256	1024		
Total Write Buffer Programming Time (Note 3)		240		$\mu \mathrm{s}$	Excludes system level overhead (Note 6)
Total Accelerated Effective Write Buffer Programming Time (Note 3)		200		$\mu \mathrm{s}$	
Chip Program Time	S29GL128N	123		sec	
	S29GL256N	246			
	S29GL512N	492			

Notes:

1. Typical program and erase times assume the following conditions: $25^{\circ} \mathrm{C}, 3.0 \mathrm{~V} V_{C C}, 10,000$ cycles, checkerboard pattern.
2. Under worst case conditions of $90^{\circ} \mathrm{C}, V_{C C}=3.0 \mathrm{~V}, 100,000 \mathrm{cycles}$.
3. Effective write buffer specification is based upon a 16-word write buffer operation.
4. The typical chip programming time is considerably less than the maximum chip programming time listed, since most words program faster than the maximum program times listed.
5. In the pre-programming step of the Embedded Erase algorithm, all bits are programmed to 00h before erasure.
6. System-level overhead is the time required to execute the two-or four-bus-cycle sequence for the program command. See Table 12 for further information on command definitions.

TSOP Pin and BGA Package Capacitance

Parameter Symbol	Parameter Description	Test Setup		Typ	Max	Unit
$\mathrm{CIN}_{\text {I }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=0$	TSOP	6	7.5	pF
			BGA	4.2	5.0	pF
Cout	Output Capacitance	$\mathrm{V}_{\text {OUT }}=0$	TSOP	8.5	12	pF
			BGA	5.4	6.5	pF
$\mathrm{ClN2}^{\text {a }}$	Control Pin Capacitance	$V_{\text {IN }}=0$	TSOP	7.5	9	pF
			BGA	3.9	4.7	pF

Notes:

1. Sampled, not 100% tested.
2. Test conditions $T_{A}=25^{\circ} \mathrm{C}, f=1.0 \mathrm{MHz}$.

pSRAM Type 7

16Mb (IM word x l6-bit)

32Mb (2M word x 16-bit)
64Mb (4M word x l6-bit)

CMOS IM/2M/4M-Word x l6-bit Fast Cycle Random Access Memory with Low Power SRAM Interface

Features

- Asynchronous SRAM Interface
- Fast Access Time
$-\mathrm{tCE}=\mathrm{tAA}=60 \mathrm{~ns} \max (16 \mathrm{M})$
$-\mathrm{tCE}=\mathrm{tAA}=65 \mathrm{~ns} \max (32 \mathrm{M} / 64 \mathrm{M})$
- 8 words Page Access Capability
- tPAA $=20 n s \max (32 \mathrm{M} / 64 \mathrm{M})$
- Low Voltage Operating Condition
$-\mathrm{VDD}=+2.7 \mathrm{~V}$ to +3.1 V
- Wide Operating Temperature
$-\mathrm{TA}=-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Byte Control by LB and UB
- Various Power Down modes
- Sleep (16M)
- Sleep, 4M-bit Partial, or 8M-bit Partial (32M)
- Sleep, 8M-bit Partial, or 16M-bit Partial (64M)

Pin Description

Pin Name	Description
A_{21} to A_{0}	Address Input: A_{19} to A_{0} for $16 \mathrm{M}, \mathrm{A}_{20}$ to A_{0} for $32 \mathrm{M}, \mathrm{A}_{21}$ to A_{0} for 64 M
CE1\#	Chip Enable (Low Active)
CE2\#	Chip Enable (High Active)
WE\#	Write Enable (Low Active)
OE\#	Output Enable (Low Active)
UB\#	Upper Byte Control (Low Active)
LB\#	Lower Byte Control (Low Active)
$\mathrm{DQ}_{16^{-} 9}$	Upper Byte Data Input/Output
$\mathrm{DQ}_{8^{-} 1}$	Lower Byte Data Input/Output
V_{DD}	Power Supply
V_{SS}	Ground

Functional Description

Mode	CE2\#	CE1\#	WE\#	OE\#	LB\#	UB\#	A_{21-0}	DQ8-1	DQ ${ }_{16-9}$
Standby (Deselect)	H	H	X	X	X	X	X	High-Z	High-Z
Output Disable (Note 1)	H	L	H	H	X	X	Note 3	High-Z	High-Z
Output Disable (No Read)			H	L	H	H	Valid	High-Z	High-Z
Read (Upper Byte)					H	L	Valid	High-Z	Output Valid
Read (Lower Byte)					L	H	Valid	Output Valid	High-Z
Read (Word)					L	L	Valid	Output Valid	Output Valid
No Write			L	H	H	H	Valid	Invalid	Invalid
Write (Upper Byte)					H	L	Valid	Invalid	Input Valid
Write (Lower Byte)					L	H	Valid	Input Valid	Invalid
Write (Word)					L	L	Valid	Input Valid	Input Valid
Power Down	L	X	X	X	X	X	X	High-Z	High-Z

Legend: $L=V_{I L}, H=V_{I H}, X$ can be either $V_{I L}$ or $V_{I H}$, High- $Z=$ High Impedance.

Notes:

1. Should not be kept this logic condition longer than 1 ms . Please contact local Spansion representative for the relaxation of 1 ms limitation.
2. Power Down mode can be entered from Standby state and all $D Q$ pins are in High-Z state. Data retention depends on the selection of the Power-Down Program, 16M has data retention in all modes except Power Down. Refer to Power Down for details.
3. Can be either $V_{I L}$ or $V_{I H}$ but must be valid before Read or Write.

Power Down (for 32M, 64M Only)

Power Down

The Power Down is a low-power idle state controlled by CE2. CE2 Low drives the device in power-down mode and maintains the low-power idle state as long as CE2 is kept Low. CE2 High resumes the device from power-down mode. These devices have three power-down modes. These can be programmed by series of read/write operation. Each mode has following features.

32M			64M		
Mode	Retention Data	Retention Address	Mode	Retention Data	Retention Address
Sleep (default)	No	N/A	Sleep (default)	No	N/A
4M Partial	4 M bit	00000 h to 3FFFFh	8 M Partial	8 M bit	00000 h to 7FFFFh
8M Partial	8M bit	00000 h to 7FFFFh	16 M Partial	16M bit	00000 h to FFFFFh

The default state is Sleep and it is the lowest power consumption but all data is lost once CE2 is brought to Low for Power Down. It is not required to program to Sleep mode after power-up.

Advancelnformation

Power Down Program Sequence

The program requires 6 read/write operations with a unique address. Between each read/write operation requires that device be in standby mode. The following table shows the detail sequence.

Cycle \#	Operation	Address	Data
1st	Read	3FFFFFh (MSB)	Read Data (RDa)
2nd	Write	3FFFFFh	RDa
3rd	Write	3FFFFFh	RDa
4th	Write	3FFFFFh	Don't Care (X)
5th	Write	3FFFFFh	X
6th	Read	Address Key	Read Data (RDb)

The first cycle reads from the most significant address (MSB).
The second and third cycle are to write back the data (RDa) read by first cycle. If the second or third cycle is written into the different address, the program is cancelled, and the data written by the second or third cycle is valid as a normal write operation.

The fourth and fifth cycles write to MSB. The data from the fourth and fifth cycles is "don't care." If the fourth or fifth cycles are written into different address, the program is also cancelled but write data might not be written as normal write operation.
The last cycle is to read from specific address key for mode selection.
Once this program sequence is performed from a Partial mode to the other Partial mode, the written data stored in memory cell array can be lost. So, it should perform this program prior to regular read/write operation if Partial mode is used.

Address Key

The address key has following format.

Mode		Address				
32M	64M	A2I	A20	A19	A18 - A0	Binary
Sleep (default)	Sleep (default)	1	1	1	1	$3 F F F F F h$
4M Partial	N/A	1	1	0	1	$37 F F F F h$
8M Partial	8M Partial	1	0	1	1	$2 F F F F F h$
N/A	16M Partial	1	0	0	1	$27 F F F F h$

Absolute Maximum Ratings

Item	Symbol	Value	Unit
Voltage of V_{DD} Supply Relative to V_{SS}	V_{DD}	-0.5 to +3.6	V
Voltage at Any Pin Relative to V_{SS}	$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$	-0.5 to +3.6	V
Short Circuit Output Current	$\mathrm{I}_{\text {OUT }}$	± 50	mA
Storage temperature	$\mathrm{T}_{\text {STG }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

(See Warning Below)

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V_{DD}	2.7	3.1	V
	$\mathrm{~V}_{\mathrm{SS}}$	0	0	V
High Level Input Voltage (Note 1)	V_{IH}	$\mathrm{V}_{\mathrm{DD}} 0.8$	$\mathrm{~V}_{\mathrm{DD}}+0.2$	V
High Level Input Voltage (Note 1)	V_{IL}	-0.3	$\mathrm{~V}_{\mathrm{DD}} 0.2$	V
Ambient Temperature	T_{A}	-30	85	${ }^{\circ} \mathrm{C}$

Notes:

1. Maximum DC voltage on input and I / O pins is $V_{D D}+0.2 V$. During voltage transitions, inputs can positive overshoot to $V_{D D}+1.0 \mathrm{~V}$ for periods of up to 5 ns .
2. Minimum DC voltage on input or I/O pins is -0.3 V . During voltage transitions, inputs can negative overshoot $V_{\text {SS }}$ to -1.0 V for periods of up to 5ns.
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges can adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

Package Capacitance

Test conditions: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

Symbol	Description	Test Setup	Typ	Max	Unit
$C_{I N 1}$	Address Input Capacitance	$\mathrm{V}_{I N}=0 \mathrm{~V}$	-	5	pF
$C_{I N 2}$	Control Input Capacitance	$\mathrm{V}_{I N}=0 \mathrm{~V}$	-	5	pF
$C_{I O}$	Data Input/Output Capacitance	$\mathrm{V}_{I \mathrm{O}}=0 \mathrm{~V}$	-	8	pF

DC Characteristics

(Under Recommended Conditions Unless Otherwise Noted)

Parameter	Symbol	Test Conditions		16M		32M		64M		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
Input Leakage Current	$\mathrm{I}_{\text {LI }}$	$V_{I N}=V_{S S}$ to $V_{\text {DD }}$		-1.0	+1.0	-1.0	+1.0	-1.0	+1.0	$\mu \mathrm{A}$
Output Leakage Current	$I_{\text {LO }}$	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {DD }}$, Output Disable		-1.0	+1.0	-1.0	+1.0	-1.0	+1.0	$\mu \mathrm{A}$
Output High Voltage Level	V_{OH}	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DD}}(\mathrm{min}), \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$		2.2	-	2.4	-	2.4	-	V
Output Low Voltage Level	$\mathrm{V}_{\text {OL }}$	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$		-	0.4	-	0.4	-	0.4	V
$V_{D D}$ Power Down Current	$I_{\text {DDPS }}$	$\begin{aligned} & V_{D D}=V_{D D} \max ., \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & C E 2 \leq 0.2 \mathrm{~V} \end{aligned}$	SLEEP		10	-	10	-	10	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {DDP4 }}$		4M Partial	N/A		-	40	N/A		$\mu \mathrm{A}$
	$\mathrm{I}_{\text {DDP8 }}$		8M Partial	N/A		-	50	-	80	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {DDP16 }}$		16M Partial	N/A		N/A		-	100	$\mu \mathrm{A}$
$V_{D D}$ Standby Current	$I_{\text {DDS }}$	$\begin{aligned} & V_{D D}=V_{D D} \max ., \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & C E 1=C E 2=V_{I H} \end{aligned}$		-	1	-	1.5	-	1.5	mA
	$I_{\text {DDS } 1}$	$\begin{aligned} & V_{D D}=V_{D D} \max _{.,} \\ & V_{I N} \leq 0.2 \mathrm{~V} \text { or } \mathrm{V}_{I N} \geq \mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}, \\ & \mathrm{CE} 1=\mathrm{CE} 2 \geq \mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V} \end{aligned}$	TA $<+85^{\circ} \mathrm{C}$	-	100	-	80	-	170	$\mu \mathrm{A}$
			TA $<+40^{\circ} \mathrm{C}$						90	$\mu \mathrm{A}$
$V_{D D}$ Active Current	$\mathrm{I}_{\text {DDA1 }}$	$\begin{aligned} & V_{D D}=V_{D D} \text { max., } \\ & V_{I N}=V_{I H} \text { or } V_{I L} \\ & \frac{C E 1}{}=V_{I L} \text { and } C E 2=V_{I H}, \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	$t_{R C} / t_{W C}=\min$.	-	20	-	30	-	40	mA
	I DDA2		$\mathrm{t}_{\mathrm{RC}} / \mathrm{t}_{\mathrm{WC}}=1 \mu \mathrm{~s}$	-	3	-	3	-	5	mA
$V_{D D}$ Page Read Current	$I_{\text {DDA3 }}$	$\begin{aligned} & V_{D D}=V_{D D} \text { max., } V_{I N}=V_{I H} \text { or } V_{I L}, \\ & \overline{C E 1}=V_{I L} \text { and } C E 2=V_{I H}, \\ & I_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{t}_{P R C}=m i n . \end{aligned}$		N/A		-	10	-	10	mA

Notes:

1. All voltages are referenced to $V_{S S}$.
2. DC Characteristics are measured after following POWER-UP timing.
3. I IOUT depends on the output load conditions.

AC Characteristics

(Under Recommended Operating Conditions Unless Otherwise Noted)

Read Operation

Parameter	Symbol	16M		32M		64M		Unit	Notes
		Min.	Max.	Min.	Max.	Min.	Max.		
Read Cycle Time	t_{RC}	70	1000	65	1000	65	1000	ns	1, 2
CE1\# Access Time	${ }^{\text {cte }}$	-	60	-	65	-	65	ns	3
OE\# Access Time	$\mathrm{t}_{\text {OE }}$	-	40	-	40	-	40	ns	3
Address Access Time	$\mathrm{t}_{\text {AA }}$	-	60	-	65	-	65	ns	3, 5
LB\# / UB\# Access Time	$\mathrm{t}_{\text {BA }}$	-	30	-	30	-	30	ns	3
Page Address Access Time	$t_{\text {PAA }}$	N/A		-	20	-	20	ns	3,6
Page Read Cycle Time	$\mathrm{t}_{\text {PRC }}$	N/A		20	1000	20	1000	ns	1, 6, 7
Output Data Hold Time	t_{OH}	5	-	5	-	5	-	ns	3
CE1\# Low to Output Low-Z	${ }^{\text {chL }}$	5	-	5	-	5	-	ns	4
OE\# Low to Output Low-Z	$\mathrm{t}_{\mathrm{OLZ}}$	0	-	0	-	0	-	ns	4
LB\# / UB\# Low to Output Low-Z	$t_{B L Z}$	0	-	0	-	0	-	ns	4
CE1\# High to Output High-Z	${ }^{\text {cha }}$	-	20	-	20	-	20	ns	3
OE\# High to Output High-Z	$\mathrm{t}_{\mathrm{OHZ}}$	-	20	-	14	-	14	ns	3
LB\# / UB\# High to Output High-Z	$t_{\text {BHZ }}$	-	20	-	20	-	20	ns	3
Address Setup Time to CE1\# Low	$\mathrm{t}_{\text {ASC }}$	-6	-	-6	-	-6	-	ns	
Address Setup Time to OE\# Low	$\mathrm{t}_{\text {ASO }}$	10	-	10	-	10	-	ns	
Address Invalid Time	$\mathrm{t}_{\text {AX }}$	-	10	-	10	-	10	ns	5, 8
Address Hold Time from CE1\# High	${ }^{\text {chah }}$	-6	-	-6	-	-6	-	ns	9
Address Hold Time from OE\# High	$\mathrm{t}_{\text {OHAH }}$	-6	-	-6	-	-6	-	ns	
WE\# High to OE\# Low Time for Read	$\mathrm{t}_{\text {WHOL }}$	10	1000	12	-	25	-	ns	10
CE1\# High Pulse Width	${ }^{\text {t }}$ CP	10	-	12	-	12	-	ns	

Notes:

1. Maximum value is applicable if CE\# 1 is kept at Low without change of address input of $A 3$ to A21. If needed by system operation, please contact local Spansion representative for the relaxation of $1 \mu \mathrm{~s}$ limitation.
2. Address should not be changed within minimum $t_{R C}$.
3. The output load 50 pF with 50 ohm termination to $V_{D D} \times 0.5$ (16M), The output load 50 pF (32M and 64 M).
4. The output load 5pF.
5. Applicable to A3 to A21 (32M and 64M) when CE1\# is kept at Low.
6. Applicable only to A0, A1 and A2 (32M and 64M) when CE1\# is kept at Low for the page address access.
7. In case Page Read Cycle is continued with keeping CE1\# stays Low, CE1\# must be brought to High within $4 \mu \mathrm{~s}$. In other words, Page Read Cycle must be closed within $4 \mu \mathrm{~s}$.
8. Applicable when at least two of address inputs among applicable are switched from previous state.
9. $t_{R C}$ (min) and $t_{P R C}$ (min) must be satisfied.
10. If actual value of $t_{W H O L}$ is shorter than specified minimum values, the actual $t_{A A}$ of following Read can become longer by the amount of subtracting the actual value from the specified minimum value.

Advancelnformation

AC Characteristics

Write Operation

Parameter	Symbol	16M		32M		64M		Unit	Notes
		Min.	Max.	Min.	Max.	Min.	Max.		
Write Cycle Time	$\mathrm{t}_{\text {WC }}$	70	1000	65	1000	65	1000	ns	1,2
Address Setup Time	$\mathrm{t}_{\text {AS }}$	0	-	0	-	0	-	ns	3
CE1\# Write Pulse Width	t_{CW}	45	-	40	-	40	-	ns	3
WE\# Write Pulse Width	$t_{\text {WP }}$	45	-	40	-	40	-	ns	3
LB\#/UB\# Write Pulse Width	t_{BW}	45	-	40	-	40	-	ns	3
LB\#/UB\# Byte Mask Setup Time	$t_{B S}$	-5	-	-5	-	-5	-	ns	4
LB\#/UB\# Byte Mask Hold Time	$t_{B H}$	-5	-	-5	-	-5	-	ns	5
Write Recovery Time	$t_{W R}$	0	-	0	-	0	-	ns	6
CE1\# High Pulse Width	t_{CP}	10	-	12	-	12	-	ns	
WE\# High Pulse Width	${ }^{\text {W WHP }}$	7.5	1000	7.5	1000	7.5	1000	ns	7
LB\#/UB\# High Pulse Width	$\mathrm{t}_{\text {BHP }}$	10	1000	12	1000	12	1000	ns	
Data Setup Time	$t_{\text {DS }}$	15	-	12	-	12	-	ns	
Data Hold Time	$t_{\text {DH }}$	0	-	0	-	0	-	ns	
OE\# High to CE1\# Low Setup Time for Write	$\mathrm{t}_{\mathrm{OHCL}}$	-5	-	-5	-	-5	-	ns	8
OE\# High to Address Setup Time for Write	$\mathrm{t}_{\text {OES }}$	0	-	0	-	0	-	ns	9
LB\# and UB\# Write Pulse Overlap	$\mathrm{t}_{\text {BWO }}$	30	-	30	-	30	-	ns	

Notes:

1. Maximum value is applicable if CE1\# is kept at Low without any address change. If the relaxation is needed by system operation, please contact local Spansion representative for the relaxation of $1 \mu \mathrm{~s}$ limitation.
2. Minimum value must be equal or greater than the sum of write pulse ($t_{C W}, t_{W P}$ or $t_{B W}$) and write recovery time ($t_{W R}$).
3. Write pulse is defined from High to Low transition of CE1\#, WE\#, or LB\#/UB\#, whichever occurs last.
4. Applicable for byte mask only. Byte mask setup time is defined to the High to Low transition of CE1\# or WE\# whichever occurs last.
5. Applicable for byte mask only. Byte mask hold time is defined from the Low to High transition of CE1\# or WE\# whichever occurs first.
6. Write recovery is defined from Low to High transition of CE1\#, WE\#, or LB\#/UB\#, whichever occurs first.
7. $t_{\text {WPH }}$ minimum is absolute minimum value for device to detect High level. And it is defined at minimum $V_{I H}$ level.
8. If OE\# is Low after minimum $t_{O H C L}$, read cycle is initiated. In other words, OE\# must be brought to High within $5 n s$ after CE1\# is brought to Low. Once read cycle is initiated, new write pulse should be input after minimum $t_{R C}$ is met.
9. If OE\# is Low after new address input, read cycle is initiated. In other word, OE\# must be brought to High at the same time or before new address valid. Once read cycle is initiated, new write pulse should be input after minimum $t_{R C}$ is met and data bus is in High-Z.

AC Characteristics

Power Down Parameters

Parameter	Symbol	16M		32M		64M		Unit	Note
		Min.	Max.	Min.	Max.	Min.	Max.		
CE2 Low Setup Time for Power Down Entry	$\mathrm{t}_{\text {CSP }}$	10	-	10	-	10	-	ns	
CE2 Low Hold Time after Power Down Entry	$\mathrm{t}_{\mathrm{C} 2 \mathrm{LP}}$	80	-	65	-	65	-	ns	
CE1\# High Hold Time following CE2 High after Power Down Exit [SLEEP mode only]	$\mathrm{t}_{\mathrm{CHH}}$	300	-	300	-	300	-	$\mu \mathrm{S}$	1
CE1\# High Hold Time following CE2 High after Power Down Exit [not in SLEEP mode]	$\mathrm{t}_{\text {CHHP }}$	N/A		1	-	1	-	$\mu \mathrm{S}$	2
CE1\# High Setup Time following CE2 High after Power Down Exit	${ }^{\text {t }}$ CHS	0	-	0	-	0	-	ns	1

Notes:

1. Applicable also to power-up.
2. Applicable when $4 M b$ and $8 M b$ Partial modes are programmed.

Other Timing Parameters

Parameter	Symbol	16M		32M		64M		Unit	Note
		Min.	Max.	Min.	Max.	Min.	Max.		
CE1\# High to OE\# Invalid Time for Standby Entry	$\mathrm{t}_{\text {CHOX }}$	10	-	10	-	10	-	ns	
CE1\# High to WE\# Invalid Time for Standby Entry	$\mathrm{t}_{\text {CHWX }}$	10	-	10	-	10	-	ns	1
CE2 Low Hold Time after Power-up	$\mathrm{t}_{\mathrm{C} 2 \mathrm{LH}}$	50	-	50	-	50	-	$\mu \mathrm{s}$	
CE1\# High Hold Time following CE2 High after Power-up	$\mathrm{t}_{\mathrm{CHH}}$	300	-	300	-	300	-	$\mu \mathrm{s}$	
Input Transition Time	$\mathrm{t}_{\text {T }}$	1	25	1	25	1	25	ns	2

Notes:

1. Some data might be written into any address location if $t_{C H W X}(\mathrm{~min})$ is not satisfied.
2. The Input Transition Time (t_{T}) at AC testing is $5 n s$ as shown in below. If actual $t T$ is longer than $5 n s$, it can violate the $A C$ specification of some of the timing parameters.

Advancelnformation

AC Characteristics

AC Test Conditions

Symbol	Description	Test Setup	Value	Unit	Note
V_{IH}	Input High Level		$\mathrm{V}_{\mathrm{DD}} * 0.8$	V	
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Level		$\mathrm{V}_{\mathrm{DD}} * 0.2$	V	
$\mathrm{~V}_{\mathrm{REF}}$	Input Timing Measurement Level		$\mathrm{V}_{\mathrm{DD}} * 0.5$	V	
t_{T}	Input Transition Time	Between V_{IL} and V_{IH}	5	ns	

AC Measurement Output Load Circuits

Figure 2I. AC Output Load Circuit - 16 Mb

Figure 22. AC Output Load Circuit - 32 Mb and 64 Mb

Timing Diagrams

Read Timings

Note: This timing diagram assumes CE2=H and WE\#=H.
Figure 23. Read Timing \#I (Basic Timing)

Note: This timing diagram assumes CE2=H and WE\#=H.
Figure 24. Read Timing \#2 (OE\# Address Access

Advancelnformation

Note: This timing diagram assumes CE2=H and WE\#=H.
Figure 25. Read Timing \#3 (LB\#/UB\# Byte Access)

Note: This timing diagram assumes CE2=H and WE\#=H.
Figure 26. Read Timing \#4 (Page Address Access after CEl\# Control Access for 32M and 64M Only)

Notes:

1. This timing diagram assumes CE2=H and WE\# = H.
2. Either or both LB\# and UB\# must be Low when both CE1\# and OE\# are Low.

Figure 27. Read Timing \#5 (Random and Page Address Access for 32M and 64M Only)

Write Timings

Note: This timing diagram assumes CE2=H.
Figure 28. Write Timing \#I (Basic Timing)

Advancelnformation

Note:This timing diagram assumes CE2=H.
Figure 29. Write Timing \#2 (WE\# Control)

Note: This timing diagram assumes CE2=H and OE\#=H.
Figure 30. Write Timing \#3-I(WE\#/LB\#/UB\# Byte Write Control)

Note: This timing diagram assumes CE2=H and OE\#=H.
Figure 31. Write Timing \#3-3 (WE\#/LB\#/UB\# Byte Write Control)

Note: This timing diagram assumes CE2=H and OE\#=H.
Figure 32. Write Timing \#3-4 (WE\#/LB\#/UB\# Byte Write Control)

Read/Write Timings

Notes:

1. This timing diagram assumes CE2=H.
2. Write address is valid from either CE1\# or WE\# of last falling edge.

Figure 33. Read/Write Timing \#I-I (CEI\# Control)

Notes:

1. This timing diagram assumes CE2=H.
2. OE\# can be fixed Low during write operation if it is CE1\# controlled write at Read-Write-Read sequence.

Figure 34. Read / Write Timing \#I-2 (CEI\#/WE\#/OE\# Control)

Notes:

1. This timing diagram assumes CE2=H.
2. CE1\# can be tied to Low for WE\# and OE\# controlled operation.

Figure 35. Read / Write Timing \#2 (OE\#, WE\# Control)

Notes:

1. This timing diagram assumes CE2=H.
2. CE1\# can be tied to Low for WE\# and OE\# controlled operation.

Figure 36. Read / Write Timing \#3 (OE\#, WE\#, LB\#, UB\# Control)

Note: $T h e t_{C 2 L H}$ specifies after $V_{D D}$ reaches specified minimum level.
Figure 37. Power-up Timing \#I

Note: The $t_{C H H}$ specifies after $V_{D D}$ reaches specified minimum level and applicable to both CE1\# and CE2.
Figure 38. Power-up Timing \#2

Note: This Power Down mode can be also used as a reset timing if POWER-UP timing above could not be satisfied and Power-Down program was not performed prior to this reset.

Figure 39. Power Down Entry and Exit Timing

Note: Both $t_{C H O X}$ and $t_{C H W X}$ define the earliest entry timing for Standby mode. If either of timing is not satisfied, it takes $t_{R C}(\mathrm{~min})$ period for Standby mode from CE1\# Low to High transition.

Figure 40. Standby Entry Timing after Read or Write

Notes:

1. The all address inputs must be High from Cycle \#1 to \#5.
2. The address key must confirm the format specified in page 106. If not, the operation and data are not guaranteed.
3. After $t_{C P}$ following Cycle \#6, the Power Down Program is completed and returned to the normal operation.

Figure 4I. Power Down Program Timing (for 32M/64M Only)

Revision Summary
 Revision A (December 17, 2004)

Initial release.

Colophon

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (I) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be required for export of those products.

Trademarks and Notice

The contents of this document are subject to change without notice. This document may contain information on a Spansion product under development by Spansion LLC. Spansion LLC reserves the right to change or discontinue work on any product without notice. The information in this document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose, merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion LLC assumes no liability for any damages of any kind arising out of the use of the information in this document.
Copyright © 2004 Spansion LLC. All rights reserved. Spansion, the Spansion logo, MirrorBit, combinations thereof, and ExpressFlash are trademarks of Spansion LLC. Other company and product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

