Product Specification

OC-48 IR-1/STM S-16.1 Multirate 2x10 SFF Transceiver FTLF1421S1xCL

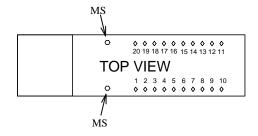
PRODUCT FEATURES

- Up to 2.67Gb/s bi-directional data links
- Standard 2x10 pin SFF footprint (MSA compliant)
- Analog diagnostics functions
- Uncooled 1310nm DFB laser transmitter
- Duplex LC connector
- Very low jitter
- Metal enclosure, for lower EMI
- Single 3.3V power supply
- Low power dissipation <700 mW typical
- Extended operating temperature range: -10°C to 70°C

APPLICATIONS

- SONET OC-48 IR-1 / SDH STM S-16.1
- SONET OC-12 IR-1 / SDH STM S-4.1
- SONET OC-3 IR-1/SDH STM S-1.1
- Gigabit Ethernet / 1x/2x Fibre Channel

Finisar's FTLF1421S1xCL Small Form Factor (SFF) transceivers are compatible with the Small Form Factor Multi-Sourcing Agreement (MSA)¹. They comply with SONET OC-48 IR-1 (SDH STM S-16.1) standards², and are compatible with Gigabit Ethernet as specified in IEEE Std 802.3³, Fibre Channel FC-PI 13.0⁴, SONET OC-12 and SONET OC-3 standards². The transceivers are RoHS compliant and lead-free per Directive 2002/95/EC⁵ and Finisar Application Note AN-2038⁶.


PRODUCT SELECTION

FTLF1421S1xCL

X	G	2 Grounding Pins, Short EMI shield
	М	6 Grounding Pins, Short EMI shield
	K	2 Grounding Pins, Long EMI shield
	Н	6 Grounding Pins, Long EMI shield

I. Pin Descriptions

Pin	Symbol	Name/Description	Logic Family
MS	MS	Mounting Studs for mechanical attachment. Chassis	NA
		ground is internally isolated from circuit ground.	
		Connection to chassis ground is recommended.	
1	PD	Receiver Power Monitor. This pin must be connected to a	Analog
		positive voltage supply (Vcc), preferably via a small	Current
		resistor. Supplies photocurrent and may be used to	
		monitor received power.	
2,3,6	V_{EER}	Receiver Ground (Common with Transmitter Ground)	NA
4,5	NC	Not Connected.	
7	V_{CCR}	Receiver Power Supply	NA
8	SD	Signal Detect. Logic 1 indicates normal operation.	LVTTL
9	RD-	Receiver Inverted DATA out. AC Coupled	CML
10	RD+	Receiver Non-inverted DATA out. AC Coupled	CML
11	V_{CCT}	Transmitter Power Supply	NA
12,16	V_{EET}	Transmitter Ground (Common with Receiver Ground)	NA
13	$T_{ m DIS}$	Transmitter Disable	LVTTL
14	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	CML
			ECL
15	TD-	Transmitter Inverted DATA in. AC Coupled.	CML
			ECL
17	Bmon-	Laser Bias Monitoring (-).	Analog
			Voltage
18	Bmon+	Laser Bias Monitoring (+)	Analog
		$.(Bmon+ - Bmon-) = 10\Omega x laser bias current.$	Voltage
19	Pmon-	Laser Power Monitoring (-). Current implementation	Analog
		connects this pin to ground	Voltage
20	Pmon+	Laser Power Monitoring (+)	Analog
		.(Pmon+ - Pmon-) = 200Ω x mon. photodiode current.	Voltage

II. Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		4.5	V	
Storage Temperature	T_{S}	-40		85	°C	
Case Operating Temperature	T_{OP}	-10		70	°C	
Relative Humidity	RH	0		85	%	1
Lead Soldering Temperature/Time				260/10	°C/s	

III. Electrical Characteristics ($T_{OP} = -10$ to 70 °C, $V_{CC} = 3.00$ to 3.60 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.	
Supply Voltage	Vcc	3.00		3.60	V		
Supply Current	Icc		200	300	mA		
Transmitter							
Input differential impedance	R _{in}		100		Ω	2	
Single ended data input swing	Vin,pp	250		1200	mV		
Transmit Disable Voltage	V_{D}	Vcc – 1.3		Vcc	V		
Transmit Enable Voltage	V_{EN}	Vee		Vee+ 0.8	V	3	
Transmit Disable Assert Time				10	us		
Receiver							
Single ended data output swing	Vout,pp	300	400	800	mV	4	
Data output rise time	$t_{\rm r}$		100	175	ps	5	
Data output fall time	t_{f}		100	175	ps	5	
SD Assert	V _{SD assert}	Vcc - 0.5		Vcc	V	6	
SD De-Assert	V _{SD deassert}	Vee		Vee+0.5	V	6	
Power Supply Rejection	PSR	100			mVpp	7	
Total Generated Receiver Jitter	J _{RX} p-p			0.07	UI		
(peak to peak)							
Total Generated Receiver Jitter	$J_{RX}rms$			0.007	UI		
(rms)							

Notes:

- 1. Non condensing.
- 2. AC coupled.
- 3. Or open circuit.
- 4. Into 100 ohm differential termination.
- 5. 20 80 %
- 6. Signal Detect is LVTTL. Logic 1 indicates normal operation; logic 0 indicates no signal detected.
- 7. All transceiver specifications are compliant with a power supply sinusoidal modulation of 20 Hz to 1.5 MHz up to specified value applied through the power supply filtering network shown on page 23 of the Small Form-factor Pluggable (SFP) Transceiver MultiSource Agreement (MSA), September 14, 2000.

Optical Characteristics ($T_{OP} = -10$ to 70 °C, $V_{CC} = 3.00$ to 3.60 Volts) IV.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.		
Transmitter								
Output Opt. Pwr: 9/125 SMF	P _{OUT}	-5		0	dBm	1		
Optical Wavelength	λ	1270		1360	nm			
Spectral Width –20dB	σ			1	nm			
Optical Extinction Ratio	ER	8.2			dB			
Sidemode Supression ratio	SSR_{min}	30			dB			
Optical Rise/Fall Time	t_r / t_f			180	ps	2		
Relative Intensity Noise	RIN			-120	dB/Hz			
Total Generated Transmitter Jitter	J _{TX} p-p			0.07	UI			
(peak to peak)								
Total Generated Transmitter Jitter	$J_{TX}rms$			0.007	UI			
(rms)								
Receiver								
Average Rx Sensitivity @ 2.67Gb/s	R _{SENS1}	0		-18	dBm	3		
Average Rx Sensitivity @ OC-48	R_{SENS1}	0		-18	dBm	3		
Average Rx Sensitivity @ 2X Fibre	R_{SENS2}	0		-21	dBm	4		
Channel								
Average Rx Sensitivity @ Gigabit	R_{SENS3}	0		-22	dBm	4		
Ethernet								
Average Rx Sensitivity @ OC-12	R _{SENS4}	0		-22	dBm	5		
Average Rx Sensitivity @ OC-3	R _{SENS5}	-10		-23	dBm	5		
Optical Center (Input) Wavelength	$\lambda_{ m C}$	1270		1600	nm			
Receiver Reflectance	R_{Rx}			-27	dB			
SD Assert	SD_A			-19	dBm			
SD De-Assert	SD_D	-30			dBm			
SD Hysteresis		0.5			dB			

Notes:

- 1. Class 1 Laser Safety per FDA/CDRH and EN (IEC) 60825 regulations.
- 2. Unfiltered, 20 80%
- 3. With worst-case extinction ratio. Measured with a PRBS 2³¹-1 test pattern interspersed with 72 consecutive ones and 72 consecutive zeros.
- With worst-case extinction ratio. Measured with a PRBS 2⁷-1 test pattern.
 With worst-case extinction ratio. Measured with a PRBS 2²³-1 test pattern.

V. General Specifications

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Data Rate	BR	155		2667	Mb/sec	1
Bit Error Rate @ OC-48	BER			10 ⁻¹²		2
Max. Supported Link Length on	L_{MAX1}		20		km	3
9/125μm SMF @ OC-48						
Max. Supported Link Length on	L_{MAX2}		30		km	3
9/125µm SMF @ 2X Fibre Channel						
Max. Supported Link Length on	L_{MAX3}		30		km	3
9/125µm SMF @ Gigabit Ethernet						
Max. Supported Link Length on	L_{MAX4}		30		km	3
9/125μm SMF @ OC-12						
Max. Supported Link Length on	L_{MAX5}		30		km	3
9/125μm SMF @ OC-3						

Notes:

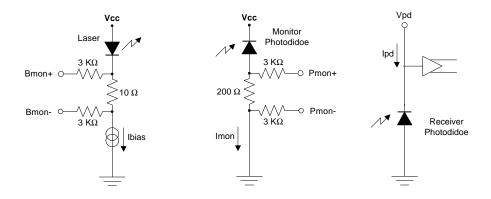
- 1. SONET OC-48 IR-1/SDH STM S-16.1 compliant. Compatible with Gigabit Ethernet, 1x/2x Fibre Channel, SONET OC-12 and OC-3. Supports FEC at 2.67Gb/s.
- 2. Tested with a PRBS 2^{31} -1 test pattern interspersed with 72 consecutive ones and 72 consecutive zeros.
- Attenuation of 0.55 dB/km is used for the link length calculations (per GR-253 CORE). <u>Distances are indicative only.</u> A 2dB penalty is included for dispersion on >2db data rates. Please refer to the Optical Specifications in Table IV to calculate a more accurate link budget based on specific conditions in your application.

VI. Environmental Specifications

Finisar 1310nm SFP transceivers have an extended operating temperature range from -10° C to $+70^{\circ}$ C case temperature.

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Case Operating Temperature	T_{op}	-10		70	°C	
Storage Temperature	T_{sto}	-40		85	°C	

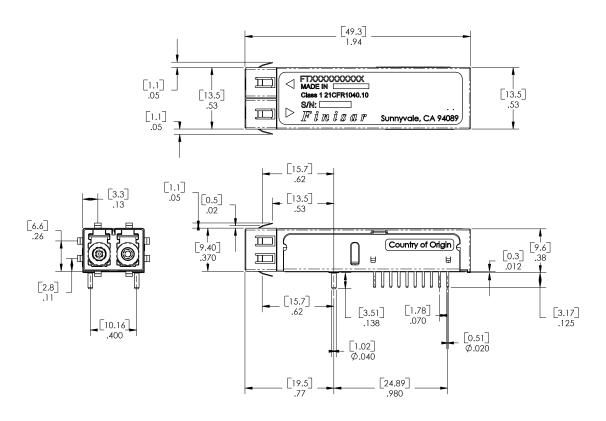
VII. Regulatory Compliance

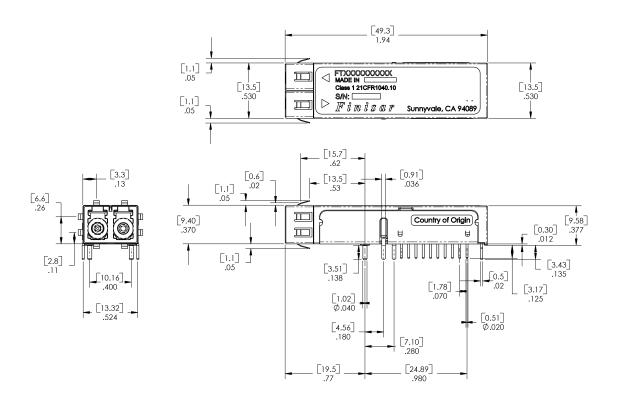

Finisar transceivers are Class 1 Laser Products and comply with US FDA regulations. These products are certified by TÜV and CSA to meet the Class 1 eye safety requirements of EN (IEC) 60825 and the electrical safety requirements of EN (IEC) 60950. Copies of certificates are available at Finisar Corporation upon request.

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter						
Monitor photodiode current monitor	Pmon+,	0		Vcc	V	1
	Pmon-					
Laser bias current monitor	Bmon+,	0		Vcc	V	2
	Bmon-					
Receiver	Receiver					
Received photocurrent	Rpd	0		1	mA	3
Photodiode responsivity	R	0.5	0.9	1.0	A/W	
Applied voltage at PD pin	Vpd	2.4		Vcc	V	3

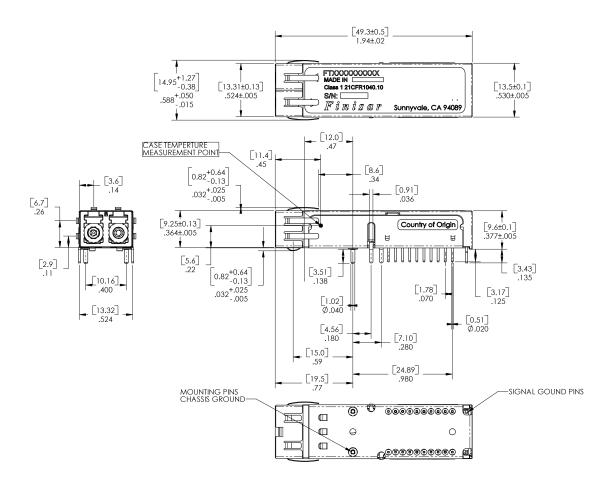
VIII. Analog Diagnostics Functions ($T_{op} = -10 \text{ to } 70 \text{ °C}$, $V_{CC} = 3.00 \text{ to } 3.60 \text{ Volts}$)

Notes:

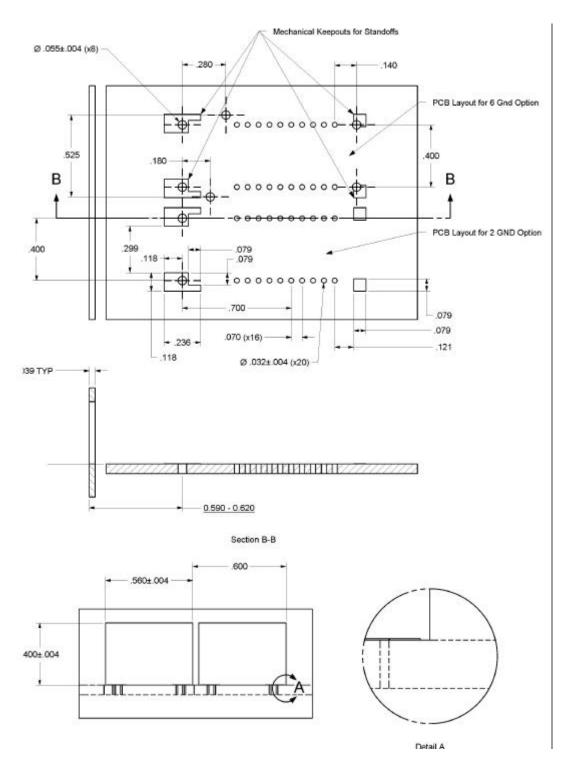

- 1. Pins 19 and 20 provide an analog voltage output proportional to the monitor photodiode current, per the following formula: $I_{BIAS} = .V(Pmon+ Pmon-) / 200\Omega$. The figure below shows the equivalent circuit.
- 2. Pins 17 and 18 provide an analog voltage output proportional to the laser bias current, per the following formula: $I_{BIAS} = .V(Bmon+ Bmon-) / 10\Omega$. The figure below shows the equivalent circuit.
- 3. Pin 1 is used to monitor the received photocurrent. It must be connected to a positive voltage within the range specified above. The current that flows into this pin is the received photocurrent. The received power is given by the photocurrent multiplied by the photodiode responsivity.


Analog monitoring function connections.

IX. Mechanical Specifications


Finisar's OC-48/STM-16 Small Form Factor (SFF) transceivers comply with the standard dimensions defined by the Small Form Factor Multi-Sourcing Agreement (MSA).

FTLF1421S1GCL (dimensions are in inches) – 2 pin version



FTLF1421S1HCL (dimensions are in inches) – 6 pin version

FTLF1421S1HCL – 6 pin version (Long EMI Shield)

X. PCB Layout and Bezel Recommendations

Minimum Recommended Pitch is 0.600"

XI. References

- 1. Small Form Factor (SFF) Transceiver Multi-Source Agreement (MSA). January 1998. Documentation is available from Finisar upon request.
- 2. Bellcore GR-253 and ITU-T G.957 Specifications (Transmitter Optical Output Power complies with SONET OC-48 requirements only).
- 3. IEEE Std 802.3, 2002 Edition, Clause 38, PMD Type 1000BASE-LX. IEEE Standards Department, 2002. (Transmit Optical Output has a minimum Extinction Ratio of 8.2 dB only).
- 4. "Fibre Channel Draft Physical Interface Specification (FC-PI 13.0)". American National Standard for Information Systems. (*)
- 5. Directive 2002/95/EC of the European Council Parliament and of the Council. "On the restriction of the use of certain hazardous substances in electrical and electronic equipment". January 27, 2003.
- 6. "Application Note AN-2038: Finisar Implementation of RoHS Compliant Transceivers: Finisar Corporation, January 21, 2005.
- (*) Neither IEEE 802.3 nor FC-PI 13.0 specifies a 1310nm DFB single mode interface. The FTLF1421S1XCL complies with these standards except for receiver sensitivity, and transmit output power. See Section IV for details.

XII. For More Information

Finisar Corporation 1308 Moffett Park Drive Sunnyvale, CA 94089-1133 Tel. 1-408-548-1000 Fax 1-408-541-6138 sales@finisar.com www.finisar.com