

LM118JAN Operational Amplifier

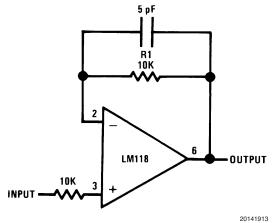
General Description

The LM118 is a precision high speed operational amplifier designed for applications requiring wide bandwidth and high slew rate. It features a factor of ten increase in speed over general purpose devices without sacrificing DC performance.

The LM118 has internal unity gain frequency compensation. This considerably simplifies its application since no external components are necessary for operation. However, unlike most internally compensated amplifiers, external frequency compensation may be added for optimum performance. For inverting applications, feed forward compensation will boost the slew rate to over 150V/µs and almost double the bandwidth. Overcompensation can be used with the amplifier for greater stability when maximum bandwidth is not needed. Further, a single capacitor can be added to reduce the 0.1% settling time to under 1 µs.

The high speed and fast settling time of this op amp makes it useful in A/D converters, oscillators, active filters, sample and hold circuits, or general purpose amplifiers. This device is easy to apply and offers an order of magnitude better AC performance than industry standards such as the LM709.

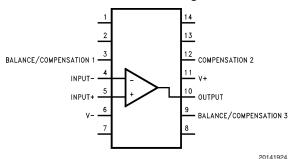
Features


- 15 MHz small signal bandwidth
- Guaranteed 50V/µs slew rate
- Maximum bias current of 250 nA
- Operates from supplies of ±5V to ±20V
- Internal frequency compensation
- Input and output overload protected
- Pin compatible with general purpose op amps

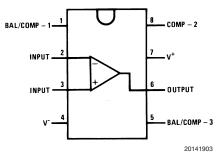
Ordering Information

NS Part Number	JAN Part Number	NS Package Number	Package Description
JL118BGA	JM38510/10107BGA	H08C	8LD TO-99 Metal Can
JL118BPA	JM38510/10107BPA	J08A	8LD CERDIP
JL118BCA	JM38510/10107BCA	J14A	14LD CERDIP
JL118BHA	JM38510/10107BHA	W10A	10LD CERPACK
JL118SGA	JM38510/10107SGA	H08C	8LD TO-99 Metal Can
JL118SPA	JM38510/10107SPA	J08A	8LD CERDIP
JL118SHA	JM38510/10107SHA	W10A	10LD CERPACK

Fast Voltage Follower

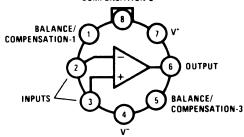

(Note 1)

Note 1: Do not hard-wire as voltage follower (R1 \geq 5 k Ω)


Connection Diagram

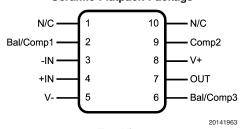
Dual-In-Line Package

Top View See NS Package Number J14A


Dual-In-Line Package

Top View See NS Package Number J08A

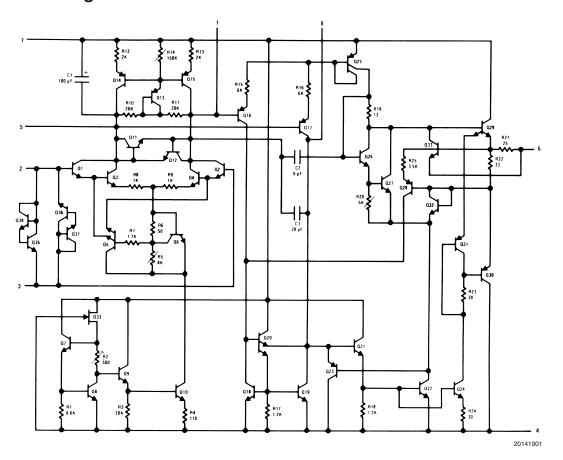
Metal Can Package (Note 2)


COMPENSATION-2

Top View See NS Package Number H08C

20141902

Ceramic Flatpack Package



Top View See NS Package Number W10A

Note 2: Pin connections shown on schematic diagram and typical applications are for TO-5 package.

2

Schematic Diagram

Absolute Maximum Ratings (Note 3)

Supply Voltage ±20V

Power Dissipation (Note 4)

8 LD Metal Can 750mW

 8LD CERDIP
 1000mW

 14LD CERDIP
 1250mW

 10LD CERPACK
 600mW

 Differential Input Current (Note 5)
 ±10 mA

 Input Voltage (Note 6)
 ±15V

 Output Short-Circuit Duration
 Continuous

Operating Temperature Range $-55^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C}$

Thermal Resistance

 θ_{JA}

8 LD Metal Can (Still Air @ 0.5W) 160°C/W 8 LD Metal Can (500LF / Min Air flow @ 0.5W) 86°C/W 8LD CERDIP (Still Air @ 0.5W) 120°C/W 8LD CERDIP (500LF / Min Air flow @ 0.5W) 66°C/W 14LD CERDIP (Still Air @ 0.5W) 87°C/W 14LD CERDIP (500LF / Min Air flow @ 0.5W) 51°C/W 10LD CERPACK (Still Air @ 0.5W) 198°C/W 10LD CERPACK (500LF / Min Air flow @ 0.5W) 124°C/W

 θ_{JC}

 8 LD Metal Can
 48°C/W

 8LD CERDIP
 17°C/W

 14LD CERDIP
 17°C/W

 10LD CERPACK
 22°C/W

Storage Temperature Range $-65^{\circ}\text{C} \le \text{T}_{\text{A}} \le +150^{\circ}\text{C}$

Lead Temperature (Soldering, 10 seconds) 300°C
ESD Tolerance (Note 7) 2000V

Quality Conformance Inspection

Mil-Std-883, Method 5005; Group A

Subgroup	Description	Temp°C
1	Static tests at	25
2	Static tests at	125
3	Static tests at	-55
4	Dynamic tests at	25
5	Dynamic tests at	125
6	Dynamic tests at	-55
7	Functional tests at	25
8A	Functional tests at	125
8B	Functional tests at	-55
9	Switching tests at	25
10	Switching tests at	125
11	Switching tests at	-55
12	Settling time at	25
13	Settling time at	125
14	Settling time at	-55

LM118 JAN Electrical Characteristics

DC Parameters

The following conditions apply to all the following parameters, unless otherwise specified.

DC: $V_{CC} = \pm 20V$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
V _{IO}	Input Offset Voltage	$+V_{CC} = 35V, -V_{CC} = -5V,$		-4.0	4.0	mV	1
		V _{CM} = -15V		-6.0	6.0	mV	2, 3
		$+V_{CC} = 5V, -V_{CC} = -35V,$		-4.0	4.0	mV	1
		V _{CM} = 15V		-6.0	6.0	mV	2, 3
		$V_{CM} = 0V$		-4.0	4.0	mV	1
				-6.0	6.0	mV	2, 3
		$+V_{CC} = 5V, -V_{CC} = -5V,$		-4.0	4.0	mV	1
		$V_{CM} = 0V$		-6.0	6.0	mV	2, 3
Ю	Input Offset Current	$+V_{CC} = 35V, -V_{CC} = -5V,$	(Note 11)	-40	40	nA	1
		$V_{CM} = -15V, R_S = 100K\Omega$	(Note 11)	-80	80	nA	2, 3
		$+V_{CC} = 5V, -V_{CC} = -35V,$	(Note 11)	-40	40	nA	1
		$V_{CM} = 15V, R_S = 100K\Omega$	(Note 11)	-80	80	nA	2, 3
		$V_{CM} = 0V, R_S = 100K\Omega$	(Note 11)	-40	40	nA	1
			(Note 11)	-80	80	nA	2, 3
		$+V_{CC} = 5V, -V_{CC} = -5V,$	(Note 11)	-40	40	nA	1
		$V_{CM} = 0V, R_S = 100K\Omega$	(Note 11)	-80	80	nA	2, 3
:I _{IB}	Input Bias Current	$+V_{CC} = 35V, -V_{CC} = -5V,$	(Note 11)	1.0	250	nA	1, 2
		$V_{CM} = -15V, R_S = 100K\Omega$	(Note 11)	1.0	400	nA	3
		$+V_{CC} = 5V, -V_{CC} = -35V,$	(Note 11)	1.0	250	nA	1, 2
		$V_{CM} = 15V, R_S = 100K\Omega$	(Note 11)	1.0	400	nA	3
		$V_{CM} = 0V, R_S = 100K\Omega$	(Note 11)	1.0	250	nA	1, 2
			(Note 11)	1.0	400	nA	3
		$+V_{CC} = 5V, -V_{CC} = -5V,$	(Note 11)	1.0	250	nA	1, 2
		$V_{CM} = 0V, R_S = 100K\Omega$	(Note 11)	1.0	400	nA	3
+PSRR	Power Supply Rejection Ratio	$+V_{CC} = 10V, -V_{CC} = -20V$		-100	100	μV/V	1
				-150	150	μV/V	2, 3
-PSRR	Power Supply Rejection Ratio	$+V_{CC} = 20V, -V_{CC} = -10V$		-100	100	μV/V	1
				-150	150	μV/V	2, 3
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 15V$, $V_{CC} = \pm 35V$ to $\pm 5V$		80		dB	1, 2, 3
-V _{IO} adj.	Offset Null			7.0		mV	1, 2, 3
V _{IO} adj.	Offset Null				-7.0	mV	1, 2, 3
Delta V _{IO} /	Temperature Coefficient of	25°C ≤ T _A ≤ 125°C	(Note 9)	-50	50	μV/°C	2
Delta T	Input Offset Voltage	-55°C ≤ T _A ≤ 25°C	(Note 9)	-50	50	μV/°C	3
Delta I _{IO} /	Temperature Coefficient of	25°C ≤ T _A ≤ 125°C	(Note 9)	-1000	1000	pA/°C	2
Delta T	Input Offset Current	-55°C ≤ T _A ≤ 25°C	(Note 9)	-1000	1000	pA/°C	3
·l _{os}	Short Circuit Current	$+V_{CC} = 15V, -V_{CC} = -15V,$ $t \le 25mS, V_{CM} = -15V$		-65		mA	1, 2, 3
los	Short Circuit Current	$+V_{CC} = 15V, -V_{CC} = -15V,$			65	mA	1, 2
-l _{os}	S.I.S.Y SHOUL SUITOIN	$t \le 25 \text{mS}, V_{CM} = 15 \text{V}$			80	mA	3
I _{CC}	Power Supply Current	$+V_{CC} = 15V, -V_{CC} = -15V$			8.0	mA	1
UC	. Shor Supply Surroit	CC = 10 v, VCC = 10 v			7.0	mA	2
					9.0	mA	3
V	Output Voltage Swing	P = 10KO V = 20V		17	9.0	V	
$-V_{Opp}$	Output voltage Swifig	$R_L = 10K\Omega$, $V_{CM} = -20V$		17			4, 5, 6
		$R_L = 2K\Omega$, $V_{CM} = -20V$		16		V	4, 5, 6

LM118 JAN Electrical Characteristics (Continued)

DC Parameters (Continued)

The following conditions apply to all the following parameters, unless otherwise specified.

DC: $V_{CC} = \pm 20V$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
-V _{Opp}	Output Voltage Swing	$R_L = 10K\Omega$, $V_{CM} = 20V$			-17	V	4, 5, 6
		$R_L = 2K\Omega$, $V_{CM} = 20V$			-16	V	4, 5, 6
+A _{VS}	Open Loop Voltage Gain	$V_O = 15V, R_L = 2K\Omega$	(Note 8)	50		V/mV	4
			(Note 8)	32		V/mV	5, 6
		$V_O = 15V$, $R_L = 10K\Omega$	(Note 8)	50		V/mV	4
			(Note 8)	32		V/mV	5, 6
-A _{VS}	Open Loop Voltage Gain	$V_O = -15V, R_L = 2K\Omega$	(Note 8)	50		V/mV	4
			(Note 8)	32		V/mV	5, 6
		$V_O = -15V$, $R_L = 10K\Omega$	(Note 8)	50		V/mV	4
			(Note 8)	32		V/mV	5, 6
A _{VS}	Open Loop Voltage Gain	$\pm V_{CC} = \pm 5V$, $V_{O} = \pm 2V$, $R_{L} = 2K\Omega$	(Note 8)	10		V/mV	4, 5, 6
		$\pm V_{CC} = \pm 5V$, $V_{O} = \pm 2V$, $R_{L} = 10K\Omega$	(Note 8)	10		V/mV	4, 5, 6

AC Parameters

The following conditions apply to all the following parameters, unless otherwise specified.

AC: $V_{CC} = \pm 20V$

Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
NI _{BB}	Noise Input Broadband	BW = 10Hz to 5KHz, $R_S = 0\Omega$			25	μV_{RMS}	7
NI _{PC}	Noise Input Popcorn	BW = 10Hz to 5KHz, $R_S = 20K\Omega$			80	μV_{PK}	7
TR _{tR}	Transient Response: Rise Time	V _I = 50mV, PRR = 1KHz			40	nS	7, 8A, 8B
TR _{OS}	Transient Response: Overshoot	V _I = 50mV, PRR = 1KHz			50	%	7, 8A, 8B
+SR	Slew Rate	$A_V = 1, V_I = -5V \text{ to } +5V$		50		V/µS	7, 8B
				40		V/µS	8A
-SR	Slew Rate	$A_V = 1, V_I = +5V \text{ to } -5V$		50		V/µS	7, 8B
				40		V/µS	8A
+t _S	Settling Time	$V_I = -5V$ to $+5V$	(Note 10)		800	nS	12
			(Note 10)		1200	nS	13, 14
-t _S	Settling Time	$V_I = +5V$ to -5V	(Note 10)		800	nS	12
			(Note 10)		1200	nS	13, 14

LM118 JAN Electrical Characteristics (Continued)

DC Drift Parameters

The following conditions apply to all the following parameters, unless otherwise specified.

DC: $V_{CC} = \pm 20V$

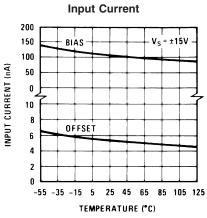
Delta calculations performed on JAN S devices at group B, subgroup 5 only.

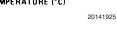
Symbol	Parameter	Conditions	Notes	Min	Max	Unit	Sub- groups
V _{IO}	Input Offset Voltage	$V_{CM} = 0V$		-1.0	1.0	mV	1
±I _{IB}	Input Bias Current	$V_{CM} = 0V, R_S = 100K\Omega$		-25	25	nA	1

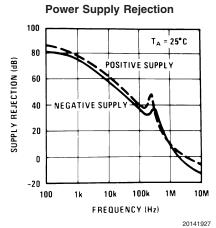
Note 3: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (package junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $P_{Dmax} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower.

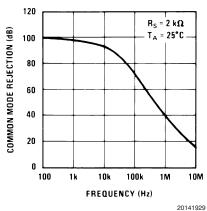
Note 5: The inputs are shunted with back-to-back diodes for over voltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used.


Note 6: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.


Note 7: Human body model, 1.5 k Ω in series with 100 pF.


Note 8: Datalog in K = V/mV Note 9: Calculated parameter. Note 10: Errorband = ±2%.

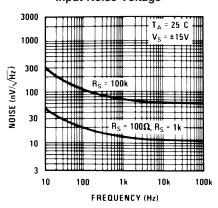
Note 11: Slash Sheet: R_S = 20K Ω , tested with R_S = 100K Ω for better resolution.


Typical Performance Characteristics

Common Mode Rejection

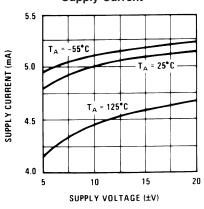
Voltage Gain 115 110 T_A = -55°C T_A = 25°C 105 T_A = 125°C

20141926

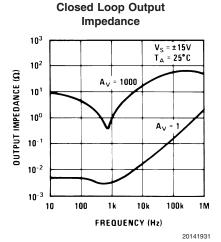

20

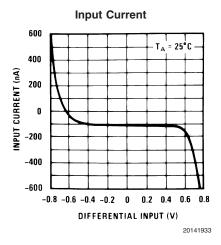
15

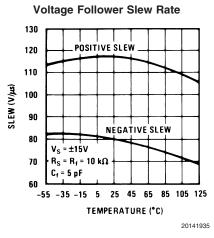
Input Noise Voltage

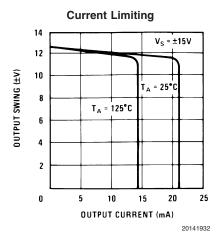

SUPPLY VOLTAGE (±V)

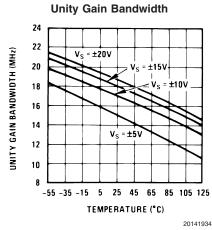
10

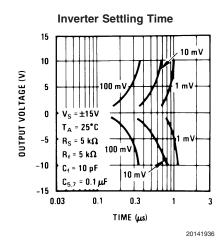

20141928

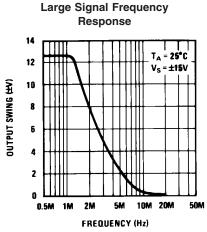

Supply Current

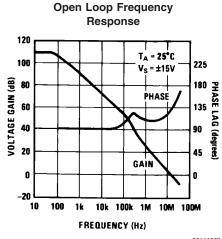


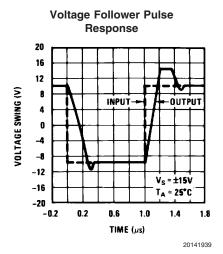

20141930

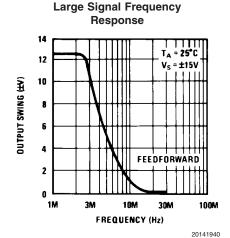

Typical Performance Characteristics (Continued)

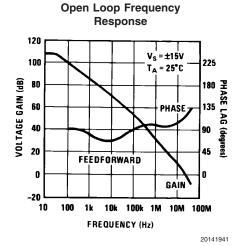




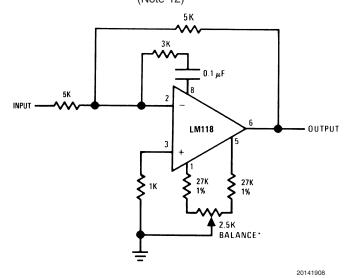



Typical Performance Characteristics (Continued)



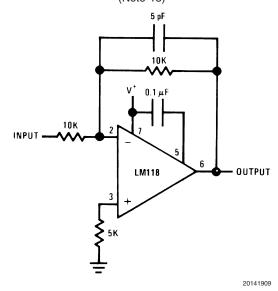

20141937

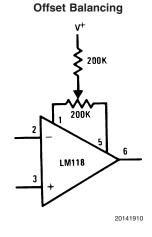
20141938



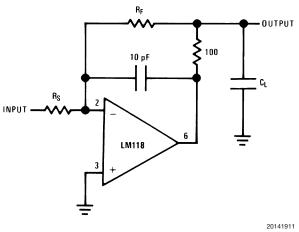
Inverter Pulse Response 20 16 12 VOLTAGE SWING (V) 8 INPUT OUTPUT 4 0 -4 -8 -12 FEEDFORWARD TA = 25°C -16 V_S = ±15V -0.1 0.1 0.3 0.9 TIME (pus)

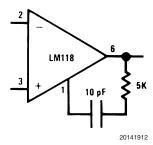
Auxiliary Circuits


Feedforward Compensation for Greater Inverting Slew Rate (Note 12)

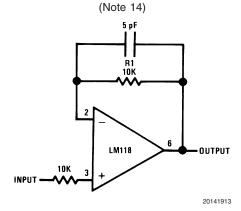

*Balance circuit necessary for increased slew.

Note 12: Slew rate typically 150V/µs.

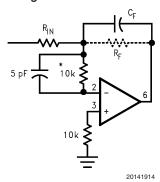

Compensation for Minimum Settling Time (Note 13)


Note 13: Slew and settling time to 0.1% for a 10V step change is 800 ns.

Isolating Large Capacitive Loads



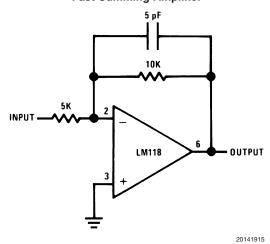
Overcompensation



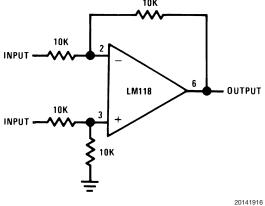
Typical Applications

Fast Voltage Follower

Integrator or Slow Inverter

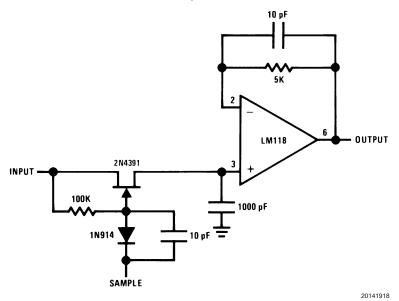

C_F = Large

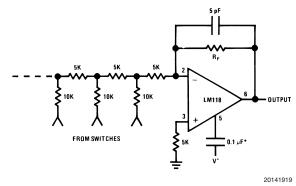
 $(C_F \ge 50 pF)$


*Do not hard-wire as integrator or slow inverter; insert a 10k-5 pF network in series with the input, to prevent oscillation.

Note 14: Do not hard-wire as voltage follower (R1 \geq 5 k Ω)

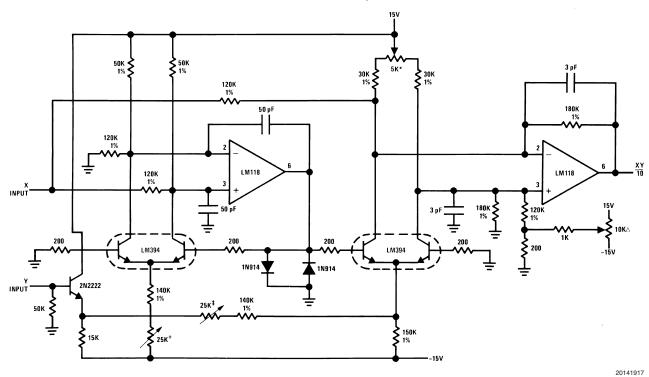
Fast Summing Amplifier


Differential Amplifier


201419

Typical Applications (Continued)

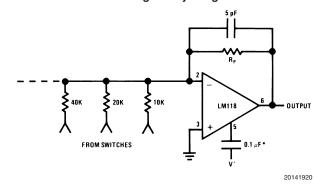
Fast Sample and Hold


D/A Converter Using Ladder Network

*Optional — Reduces settling time.

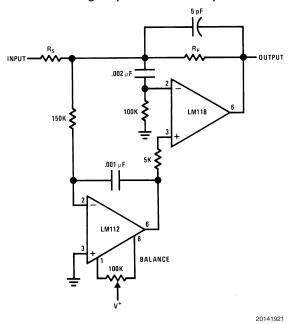
Typical Applications (Continued)

Four Quadrant Multiplier

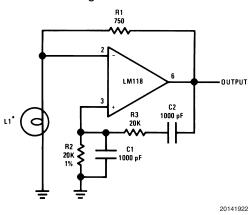

 $\Delta \text{Output zero}.$

*"Y" zero

+"X" zero


‡Full scale adjust.

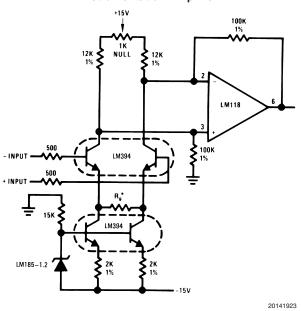
D/A Converter Using Binary Weighted Network



Typical Applications (Continued)

Fast Summing Amplifier with Low Input Current

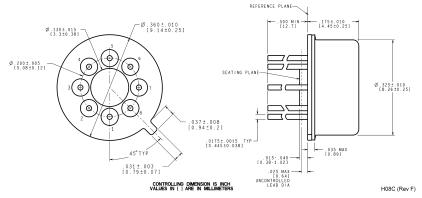
Wein Bridge Sine Wave Oscillator

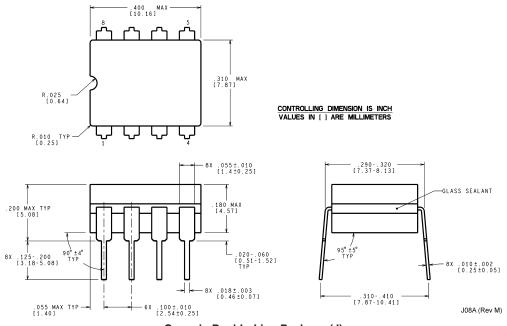

*L1-10V-14 mA bulb ELDEMA 1869

R1 = R2

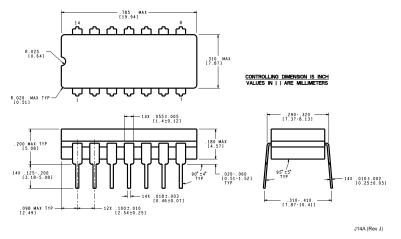
C1 = C2

 $f = \frac{1}{2\pi R2 C1}$

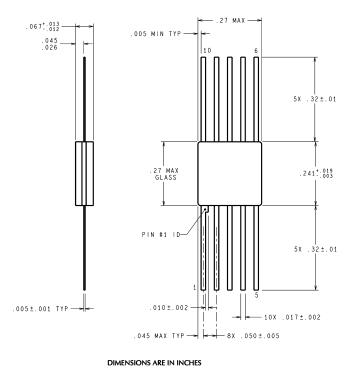

Instrumentation Amplifier


*Gain $\geq \frac{200K}{R_g}$ for 1.5K $\leq R_g \leq 200K$

Revision History Section Date Released Revision Section Originator Changes 07/12/05 A New Release, Corporate format L. Lytle 1 MDS data sheet, MJLM118–X Rev 0A0 was converted into the Corp. datasheet format. MDS datasheet will be archived.


Physical Dimensions inches (millimeters) unless otherwise noted

Metal Can Package (H) NS Package Number H08C



Ceramic Dual-In-Line Package (J) NS Package Number J08A

Ceramic Dual-In-Line Package (J) NS Package Number J14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Coromio SOI

W10A (Rev H)

Ceramic SOIC (W)
NS Package Number W10A

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560