

OKI Semiconductor ML2240

Network Solutions Oki for a Global Society

FEDL2240DIGEST-02

Issue Date: July 12, 2004

4-Channel Mixing Oki ADPCM Algorithm-Based Speech Synthesis LSI

This document contains minimum specifications. For full specifications, please contact your nearest Oki office or representative.

GENERAL DESCRIPTION

The ML2240 is a 4-channel mixing speech synthesis device which connects an external ROM expanded up to 128-Mbit (maximum). This ML2240 allows to select the playback method from the 8-bit PCM, non-linear 8-bit PCM, 16-bit PCM, 2-bit ADPCM2, and 4-bit ADPCM2 algorithms. And the sound volume is adjustable as well. The ML2240 incorporates a 14-bit D/A converter, and low-pass filter.

It is easy to configure a speech synthesizer by externally connecting a power amplifier and a CPU to the ML2240.

FEATURES

- Non-linear 8-bit PCM, 8-bit PCM, 16-bit PCM, 2-bit ADPCM2, and 4-bit ADPCM2 algorithms
- Serial input/parallel input selectable
- Phrase control table function i.e., user definable phrase control table function
- 4 channels mixing function
- Master clock frequency: 4.096 MHz
- Sampling frequency:

4.0 kHz, 5.3 kHz, 6.4 kHz, 8.0 kHz, 10.6 kHz, 12.8 kHz, 16.0 kHz, 21.3 kHz, 25.6 kHz, 32.0 kHz, 42.7 kHz, 48 kHz

- Maximum number of phrases: 256 phrases
- Sound volume adjustment function built in (4 sounds independently adjustable in 29 steps)
- External voice data can be input
- 14-bit D/A converter built in
- Built-in low-pass filter:
- Digital filter • Package: 80-pin plastic TQFP (TQFP80-P-1212-0.50-K) (ML2240TB)

PIN CONFIGURATION (TOP VIEW)

NC: No Connection

PIN DESCRIPTIONS

80-pin Plastic TQFP

Pin	Symbol	Туре	Description
1-3, 5, 66-68, 73-80	RD14-RD0	I	Data pins to connect an external memory. Data is input when the ROE pin is at "L" level. Input data from outside is not accepted when the ROE pin is at "H" level. The RD14-RD8 pins do not accept input data from outside when the BYTE pin is at "L" level.
6	RD15/A-1	I/O	Data pin of the externally connected memory when \overrightarrow{BYTE} pin is at "H" level. The data is input when the \overrightarrow{ROE} pin output is at "L" level. When the \overrightarrow{ROE} pin output is at "H" level, input data from outside is not accepted. This pin becomes an address A-1 output pin when the device is in byte mode. The address is output when the \overrightarrow{RCS} pin is at "H" level, this pin is in a high impedance state.
7	BYTE	I	Word/byte switching pin of the externally connected memory. When BYTE pin = "L" level: Byte mode When BYTE pin = "H" level: Word mode
8-20, 22-24, 28-30, 32-35	RA22-RA0	0	Address pins of an externally connected memory. When $\overline{\text{RCS}}$ pin = "H": High impedance
25	ХТ	I	Wired to a crystal or ceramic oscillator. Contains a feedback resistor of around 1 M Ω between this XT pin and XT pin (pin 27).
27	XT	0	Wired to a crystal or ceramic oscillator. When using an external clock, keep this pin open.
36	RESET	I	When "L" level is input to this pin, the device is reset to the initial state. The oscillation stops, and AOUT output goes into "GND" level.
37	WR	I	CPU interface write signal. When \overline{CS} pin is at "H" level, the \overline{WR} signal cannot be input to the device.
38	RD	I	CPU interface read signal. For parallel input interface, a status signal for each channel is output from the D0-D7 pins when the RD pin is at "L" level. For the serial input interface, a status signal for each channel is output from the D5/D0 pin. This pin has a pull-up resistor built-in.
39	CS	I	CPU interface chip select pin. When \overline{CS} pin is at "H" level, the \overline{WR} , and \overline{RD} signals cannot be input to the device.
41-44	D3/STA3 D2/STA2 D1/STA1 D0/STA0	I/O	CPU interface data bus pins in the parallel input interface become data input pins when WR is at "L" level. They become channel status output pins in the serial input interface. These pins also become channel status output pins when RD is at "L" level.

OKI Semiconductor

ML2240 Family

Pin No.	Pin Symbol	I/O	Description
45	D4/STASEL	I/O	CPU interface data bus pin in the parallel input interface. This pin becomes a data input pin when WR is at "L" level. It becomes a channel status output pin when RD is at "L" level. It outputs a BUSY signal for channel 1. For the serial input interface, it becomes a channel status changeover pin. When D4/STASEL is at "L" level, the D3/STA3-D0/STA0 pins output the NCR (Next Command Request) for each channel. When the D4/STASEL is at "H" level, the D3/STA3-D0/STA0 pins output BUSY signals for their corresponding channels.
46	D5/DO	I/O	CPU interface data bus pin in the parallel input interface. This pin becomes a data input pin when WR is at "L" level. It becomes a channel status output pin when RD is at "L" level. This pin outputs 2 channels of BUSY signal. When CS and RD are at "L" level, this D5/DO pin serially outputs the status of each channel in synchronization with D6/SCK clock.
47	D6/SCK	I/O	CPU interface data bus pin in the parallel input interface. This pin becomes a data input pin when \overline{WR} is at "L" level. It becomes a channel status output pin when \overline{RD} is at "L" level. It outputs a \overline{BUSY} signal for channel 3. This pin becomes a serial clock input pin for the serial input interface. When the SCK pin input is at "L" level on the falling edge of the \overline{CS} pin signal, the DI pin input signal goes into the device on at the rising edge of the SCK clock, and the data is output from the DO pin. When the SCK pin input signal goes into the device on the falling edge of the SCK clock, and the data is output from the DO pin.
48	D7/DI	I/O	CPU interface data bus pin in the parallel input interface. When \overline{WR} is at "L" level, it becomes a data input pin. When \overline{RD} is at "L" level, it becomes a channel status output pin. It outputs a \overline{BUSY} signal for channel 4. For the serial input interface, this pin becomes a serial data input pin. Works as serial data input pin in the serial input interface.
50	DAOL	0	Outputs the left 14-bit DAC analog signal.
51	AOUTL	0	Outputs the left 14-bit DAC analog signal via voltage follower.
53	DAOR	0	Outputs the right 14-bit DAC analog signal.
54	AOUTR	0	Outputs the right 14-bit DAC analog signal via voltage follower.
56	RCS	1	"L" level: RA22-0, A-1, and ROE pins output the address data and the output enable signal. "H" level: RA22-0, A-1, and ROE pins are in high impedance.
58	ROE	0	Output enable pin for an externally connected memory. $\overline{\text{RCS}}$ pin = "H" level: High impedance
59	SERIAL	I	CPU interface switching pin. "H" level: Serial input interface, "L" level: Parallel input interface

FEDL2240DIGEST-02

ML2240 Family

Pin No.	Pin Symbol	I/O	Description
40	OPTANA	I	Device test pin. Fix this pin to "L" level.
62	DASCK	0	Device test pin. Leave this pin open.
63	DASD	0	Device test pin. Leave this pin open.
64	DASEL	0	Device test pin. Leave this pin open.
65	TEST	Ι	Device test pin. Input "L" level. This pin has a pull-down resistor built in.
55	AV _{DD}	_	Analog power supply pin. Insert a 0.1 μF or larger bypass capacitor between this pin and AGND pin.
21, 70-72	DV_{DD}	_	Digital power supply pin. Insert a 0.1 μF or larger bypass capacitor between this pin and DGND pin.
49	AGND	_	Analog ground pin.
4, 31, 57, 69	DGND		Digital ground pin.

ABSOLUTE MAXIMUM RATINGS

				(GND = 0 V)
Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	V _{DD}		-0.3 to +7.0	V
Input voltage	V _{IN}	1a = 25 C	-0.3 to V _{DD} +0.3	V
Storage temperature	T _{STG}	—	-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS (3 V)

(GND = 0 V)

Parameter	Symbol	Condition	Range			Unit
Power supply voltage	V_{DD}		2.7 to 3.6			V
Operating temperature	T _{OP}	—	-40 to +85			°C
Master clock frequency	f _{osc}		Min.	Тур.	Max.	MHz
		_	3.5	4.096	4.5	

RECOMMENDED OPERATING CONDITIONS (5 V)

(GND = 0 V)

Parameter	Symbol	Condition	Range			Unit		
Power supply voltage	V_{DD}	—	4.5 to 5.5			V		
Operating temperature	T _{OP}	—	-40 to +85			°C		
Master clock frequency	fosc	4	4		Min.	Тур.	Max.	
		—	3.5	4.096	4.5	IVIEZ		

ELECTRICAL CHARACTERISTICS

DC Characteristics (3 V)

		=	e ele 1, 2 el 1		σ.,	
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
"H" input voltage	V _{IH}	—	$0.86 \times V_{\text{DD}}$	—	—	V
"L" input voltage	VIL	—	_	_	$0.14 \times V_{\text{DD}}$	V
"H" output voltage	V _{OH}	I _{он} = –1 mА	$V_{DD} - 0.4$	—	—	V
"L" output voltage	V _{OL}	I _{OL} = 2 mA	_	_	0.4	V
"H" input current 1	I _{IH1}	$V_{IH} = V_{DD}$	—	—	10	μΑ
"H" input current 2 (Note 1)	I _{IH2}	$V_{IH} = V_{DD}$	0.3	3.0	15	μΑ
"H" input current 3 (Note 4)	I _{IH3}	$V_{\text{IH}} = V_{\text{DD}}$	8	—	130	μΑ
"L" input current 1	I_{IL1}	$V_{IL} = GND$	-10	—	—	μA
"L" input current 2 (Note 2)	I _{IL2}	$V_{IL} = GND$	-120	—	-10	μΑ
"L" input current 3 (Note 1)	I _{IL3}	$V_{IL} = GND$	-15	-3.0	-0.3	μΑ
Output leakage current (Note 3)	I _{LO}	$0 \leq V_{OUT} \leq V_{DD}$	-10	—	+10	μΑ
Operating current consumption 1	I _{DD1}	f _{OSC} = 4 MHz at no load OPTANA = "L"	_	8	20	mA
Operating current consumption 2	I _{DD2}	f _{OSC} = 4 MHz at no load OPTANA = "H"	_	10	30	mA
Standby current	1	Ta = -40 to +70°C	_	_	15	μA
consumption	IDS	$Ta = -40$ to $+85^{\circ}C$	—	_	50	μΑ

 $DV_{DD} = AV_{DD} = 2.7$ to 3.6 V, DGND = AGND = 0 V, Ta = -40 to +85°C

Notes: 1. Applies to XT pin.

2. Applies to RD pin.

3. Applies to RA22 to RA0, D15/A-1, and ROE pins.

4. Applies to TEST pin.

DC Characteristics (5 V)

			0.0 V, DONE		0 V, IU = 4	0.00.00.0
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
"H" input voltage	VIH	—	$0.8\times V_{\text{DD}}$		—	V
"L" input voltage	VIL	—	—	_	$0.2\times V_{\text{DD}}$	V
"H" output voltage	V _{OH}	I _{OH} = -1 mA	$V_{DD}-0.4$		—	V
"L" output voltage	V _{OL}	I _{OL} = 2 mA	—		0.4	V
"H" input current 1	I _{IH1}	$V_{IH} = V_{DD}$	—		10	μA
"H" input current 2 (Note 1)	I _{IH2}	$V_{\text{IH}} = V_{\text{DD}}$	0.8	5.0	20	μA
"H" input current 3 (Note 4)	I _{IH3}	$V_{\text{IH}} = V_{\text{DD}}$	30	_	350	μA
"L" input current 1	I _{IL1}	$V_{IL} = GND$	-10	_	—	μA
"L" input current 2 (Note 2)	I _{IL2}	V _{IL} = GND	-230	_	-60	μΑ
"L" input current 3 (Note 1)	I _{IL3}	V _{IL} = GND	-20	-5.0	-0.8	μA
Output leakage current (Note 3)	I _{LO}	$0 \leq V_{OUT} \leq V_{DD}$	-10	-3.0	+10	μA
Operating current consumption 1	I _{DD1}	f _{OSC} = 4 MHz at no load OPTANA = "L"	_	14	30	mA
Operating current consumption 2	I _{DD2}	f _{OSC} = 4 MHz at no load OPTANA = "H"	_	17	40	mA
Standby current		Ta = -40 to +70°C	_	_	15	μA
consumption	IDS	$Ta = -40$ to $+85^{\circ}C$	_	_	100	μA

$DV_{DD} = AV_{DD} = 4.5$ to 5.5 V, DGND = AGND = 0 V, Ta = -40 to +85°C

Notes: 1. Applies to XT pin.

2. Applies to RD pin.

3. Applies to RA22 to RA0, D15/A-1, and $\overline{\text{ROE}}$ pins.

4. Applies to TEST pin.

Analog Section Characteristics (3 V)

$DV_{DD} = AV_{DD} = 2.7 \text{ to}$	3.6 V, DGND = AG	GND = 0 V, Ta = -	–40 to +85°C
--------------------------------------	------------------	-------------------	--------------

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
AOUT, AOUTR output load resistance	R _{LAO}		50	—	_	kΩ
AOUT, AOUTR output voltage range	V _{AOUT}	No output load	0.5	—	$AV_{DD} - 0.5$	V
DAOL, DAOR output impedance	R _{DAO}		30	43	60	kΩ

Analog Section Characteristics (5 V)

$DV_{} = AV_{} = A E to E E V$	DCND = ACND = 0.	/ To _ 40 to 195°C
$DV_{DD} = AV_{DD} = 4.5 10 5.5 V$	DGIND = AGIND = 0	r_{1} , $r_{1} = -40 10 + 65 C$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
AOUT, AOUTR output load resistance	R _{LAO}	-	50		_	kΩ
AOUT, AOUTR output voltage range	V _{AOUT}	No output load	0.5		$AV_{DD} - 0.5$	V
DAOL, DAOR output impedance	R _{DAO}	_	30	43	60	kΩ

FUNCTIONAL DESCRIPTION

Micro-computer Interface

The micro-computer interface in the ML2240 has 2 types of interface circuits built in: Parallel interface and serial interface. The interface setting can be changed with the SERIAL pin.

SERIAL pin = "H" level: Serial interface

SERIAL pin = "L" level: Parallel interface

Table below shows the SERIAL pin status in the serial and parallel interfaces.

	SERIAL = "L"	SERIAL = "H"		
	Parallel interface	Serial interface		
D7 (I/O)		DI (I)	Serial data input pin	
D6 (I/O)		SCK (I)	Serial clock input pin	
D5 (I/O)		DO (O)	Channel status serial output pin	
D4 (I/O)			Channel status switching pin	
	Data input and output pins/	STASEL (I)	NCRn output at "L" level	
	status output pin		BUSYn output at "H" level	
D3 (I/O)		STA3 (O)	Channel 4 status output pin	
D2 (I/O)		STA2 (O)	Channel 3 status output pin	
D1 (I/O)		STA1 (O)	Channel 2 status output pin	
D0 (I/O)		STA0 (O)	Channel 1 status output pin	

1. Parallel Interface

When selecting the parallel interface, the I/O pins \overline{CS} , \overline{WR} , D7 to D0, and \overline{RD} are used as input pins to input various commands and data, and as output pins to read out the status of the commands and data input. The micro-computer interface becomes effective when the \overline{CS} pin is set to "L" level.

When a command or data is input, the input data to D7 through D0 pins is captured inside the device on the

rising edge of the \overline{WR} pin.

To read the channels status, pins \overline{CS} and \overline{RD} are made "L" level. By doing so, the status signals of each channel are output to D7 through D0 pins.

Command and Data Input Timing

Status Read Timing

Table below shows the contents of each data output when reading the status of the channels.

Pin	Output status signal
D7	Channel 4 BUSY output (BUSY4)
D6	Channel 3 BUSY output (BUSY3)
D5	Channel 2 BUSY output (BUSY2)
D4	Channel 1 BUSY output (BUSY1)
D3	Channel 4 NCR output (NCR4)
D2	Channel 3 NCR output (NCR3)
D1	Channel 2 NCR output (NCR2)
D0	Channel 1 NCR output (NCR1)

The BUSY signal outputs "L" level when either a command is being processed or the playback of a pertinent channel is going on. In other states, the BUSY signal outputs "H" level.

The NCR signal outputs "L" level when either a command is being processed or a pertinent channel is in standby for playback. In other states, the NCR signal outputs "H" level.

2. Serial Interface

When selecting the serial interface, the I/O pins \overline{CS} , \overline{WR} , DI. SCK, \overline{RD} , and DO are used as input pins to input various commands and data, and as output pins to read out the status of the commands and data. The micro-computer interface becomes effective when \overline{CS} pin is set to "L" level.

To input the commands and data, "L" level is input to \overline{CS} and \overline{WR} pins followed by, from MSB, to DI pin in synchronization with the input clock signal at SCK pin. Data at DI pin is captured inside the device on the rising or falling edge of the clock at SCK pin. And the command is executed on the rising edge of the \overline{WR} pin. The selection of rising/falling edge of SCK clock is determined by the input level of the SCK pin on the falling edge of the \overline{CS} pin. If the SCK pin on the falling edge of the \overline{CS} pin is at "L" level, the DI pin data is captured inside the device on the rising edge of SCK clock. Conversely, if the SCK pin on the falling edge of the \overline{CS} pin is at "H" level, then the DI pin data is captured on the falling edge of SCK clock.

Command and Data Input Timings

• SCK Rising Edge Operation

• SCK falling Edge Operation

To read the channel status, input "L" level to \overline{CS} and \overline{RD} pins. D0 pin will output the channel status in synchronization with SCK clock.

The selection of rising/falling edge of SCK clock, similar to when inputting the commands and data, is determined by the level at SCK pin at the falling edge of \overline{CS} pin.

The status signals in the parallel interface are output to D7 to D0 pins sequentially from D7.

Status Read Timing

• SCK Rising Edge Operation

• SCK Falling Edge Operation

Commands List

Each command is 1-byte (8 bits) input. PLAY, MUON, and FLASH I/F only are 2 bytes input.

Command	D7	D6	D5	D4	D3	D2	D1	D0	Description
PUP1	0	0	0	0					Instantly shifts the power down device to the command standby state.
PUP2	0	0	0	1				—	Suppresses pop noise and shifts the power down device to the command standby state.
PDWN1	0	0	1	0					Instantly shifts the device from the command standby state to the power down state.
PDWN2	0	0	1	1					Suppresses pop noise and shifts the device from the command standby state to power down state.
	0	1	0	0	C3	C2	C1	C0	Inputs the phrase after the playback channel is
PLAY	F7	F6	F5	F4	F3	F2	F1	F0	specified, and then starts the playback.
START	0	1	0	1	C3	C2	C1	C0	Playback start command with phrase specification. Inputs the phrase after the playback channel is specified, and then starts the playback. Playback start command without phrase specification. Inputs the phrase with the FADR command and starts the playback on multiple channels at the same time.
FADR	0	1	1	0	C3	C2	C1	C0	Phrase specification command. With this command, specifies the playback
TADIX	F7	F6	F5	F4	F3	F2	F1	F0	phrase for each channel.
STOP	0	1	1	1	C3	C2	C1	C0	Playback stop command.
MUON	1	0	0	0	C3	C2	C1	C0	Specifies the channel for inserting silence,
MOON	M7	M6	M5	M4	М3	M2	M1	MO	silence.
SLOOP	1	0	0	1	C3	C2	C1	C0	Repeats the playback mode setting command. Effective only for the channel being used for playback.
CLOOP	1	0	1	0	C3	C2	C1	C0	Repeat playback mode releasing command. Inputting the STOP command releases repeat playback mode automatically.
VOL	1	0	1	1	C3	C2	C1	C0	Specifies the channel for which the sound
				V4	V3	V2	V1	V0	that channel.
	1	1	0	0	C3	C2	C1	C0	Sate the volume for the Laft/Pight of each
PAN				L4	L3	L2	L1	L0	channel.
	—			R4	R3	R2	R1	R0	

C3, C2, C1, C0 : Channel specification (C3 = "1": Channel 4; C2 = "1": Channel 3; C1 = "1": Channel 2, C0 = "1": Channel 1)

- M7 to M0 : Silence time length
- V4 to V0 : Sound volume
- L4 to L0 : Left sound volume
- R4 to R0 : Right sound volume

F7 to F0 : Phrase address

Power Down Function

In power down state, the power down function in the device stops the internal operation and oscillation, sets AOUT to GND, and minimizes the static Idd.

Figure below shows the equivalent circuit of \overline{XT} and XT pins.

Channel Status

Channel status is of 2 types: NCRn and BUSYn.

Channel	Channel status			
CH1	NCR1	BUSY1		
CH2	NCR2	BUSY2		
CH3	NCR3	BUSY3		
CH4	NCR4	BUSY4		

NCRn = "H" indicates that it is possible to input the PLAY, START, and MUON commands for the phrase to be played back next for channel n.

 \overline{BUSYn} = "H" indicates a state in which channel n has not performed voice processing. \overline{BUSYn} = "L" indicates a state in which channel n is performing voice processing.

Meanwhile, after a command is input, the NCR and BUSY signals of all channels are at "L" level during the processing of the command.

For Status output methods, see the Micro-computer Interface section.

Voice Synthesis Algorithm

The ML2240 contains 5 algorithm types to match the characteristic of playback voice: 2-bit ADPCM 2 algorithm, 4-bit ADPCM 2 algorithm, 8-bit PCM algorithm, 8-bit non-linear PCM algorithm, and 16-bit PCM algorithm. Key feature of each algorithm is described in the table below.

Voice synthesis algorithm	Applied waveform	Feature
Oki 2-bit ADPCM2	Normal voice waveform	Oki's specific speech synthesis algorithm of low bit rate with improved 2-bit ADPCM.
Oki 4-bit ADPCM2	Normal voice waveform	Oki's specific speech synthesis algorithm of improved waveform follow-up with improved 4-bit ADPCM.
Oki 8-bit Nonlinear PCM	High-frequency components inclusive sound effect etc.	Algorithm which plays back mid-range of waveform as 10-bit equivalent voice quality.
8-bit PCM	High-frequency components inclusive sound effect etc.	Normal 8-bit PCM algorithm
16-bit PCM	High-frequency components inclusive sound effect etc.	Normal 16-bit PCM algorithm

Memory Allocation and Creating Voice Data

The ROM is partitioned into 3 data areas: voice (i.e., phrase) control area, voice area, and phrase control table area. The voice control area manages the ROM's voice data. It controls the start/end addresses of voice data, usage/not usage of the phrase control table function and so on. The voice control area stores voice control data for 256 phrases.

The voice area stores the actual waveform data.

The phrase control table area stores data for effective use of voice data. As for the details, please refer to the Phrase control table Function.

There is no phrase control table area if the phrase control table is not used.

The ROM data is created using a development tool.

0x000000 0x0007FF	Voice control area (16 Kbit Fixed)
0x000800	Voice area
max: 0xFFFFFF	
max: 0xFFFFFF	Phrase control table area Depends on creation of ROM data.

ROM Addresses (ML2240 byte mode)

Playback Time and Memory Capacity

The playback time depends upon the memory capacity, sampling frequency, and playback method. The equation showing the relationship is given below.

Playback time [sec] = $\frac{1.024 \times (\text{Memory capacity} - 16) \text{ (Kbit)}}{\text{Sampling frequency (kHz) × Bit length}}$

(Bit length is ADPCM, ADPCM 2 = 4 bits; PCM = 8 bits.)

Example: Let the sampling frequency be 16 kHz and 4-bit ADPCM algorithm. If one 8 Mbits ROM is used, then the playback time is obtained as follows:

Playback time = $\frac{1.024 \times (8192 - 16) \text{ (Kbit)}}{16 \text{ (kHz)} \times 4 \text{ (bit)}} \cong 131 \text{ (sec)}$

The above equation gives the playback time when the phrase control table function is not used.

Mixing Function

The ML2240 can perform simultaneous mixing of 4 channels. It is possible to specify PLAY and STOP for each channel separately.

- Precautions for Waveform Clamp at the Time of Channels Mixing When mixing of channels is done, the clamp occurrence possibility increases from the mixing calculation point of view. If it is known beforehand that the clamp will occur, then adjust the sound volume by VOL command.
- Mixing of Different Sampling Frequency

It is not possible to perform analog mixing by a different sampling frequency.

When performing analog mixing, the sampling frequency group of the first playback channel is selected. Therefore, please note that if analog mixing is performed by a sampling frequency group other than the selected sampling frequency group, then the playback will not be of constant speed: some times faster and at other times slower.

The available sampling groups for analog mixing by a different sampling frequency are listed below.

4.0 kHz, 8.0 kHz, 16.0 kHz, 32.0 kHz	··· (Group 1)
5.3 kHz, 10.6 kHz, 21.3 kHz, 42.7 kHz	··· (Group 2)
6.4 kHz, 12.8 kHz, 25.6 kHz	··· (Group 3)

Figures below show a case when a sampling frequency group played back a different sampling frequency group.

Figure 2 In Case a Different Sampling Frequency Played Back after the End of the Other Channel

Phrase Control Table Function

The phrase control table function makes it possible to play back multiple phrases in succession. The following functions are set using the phrase control table function:

- Continuous playback: There is no limit to the number of times a continuous playback can be specified. It depends on the memory capacity only.
- Silence insertion function: 4 to 1024 ms

Using the phrase control table function enables to effectively use the memory capacity of voice ROM. Below is an example of the ROM configuration in the case of using the phrase control table function.

Example 1: Phrases Using the Phrase Control Table Function

Example 2: Example of ROM Data in case Example 1 Converted to ROM

Address control area			
A			
В	С		
D	E		
	F		
Editing area			

APPLICATION CIRCUIT EXAMPLE

PACKAGE DIMENSIONS

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

REVISION HISTORY

		Pa	ge	
Document No.	Date	Previous Edition	Current Edition	Description
FEDL2240DIGEST-01	Oct. 17, 2003	_	_	Final edition 1
FEDL2240DIGEST-02	Jul. 12, 2004	15	15	Corrected first byte of Play command.

NOTICE

- 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
- 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
- 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
- 4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
- 5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
- 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not, unless specifically authorized by Oki, authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans.

Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.

- 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
- 8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2004 Oki Electric Industry Co., Ltd.