OKI Semiconductor MSM7728

Single Rail Linear CODEC

GENERAL DESCRIPTION

The MSM7728 is a single-channel linear CODEC CMOS IC for voice signals that contains filters for A/D and D/A conversions.

Designed especially for a single-power supply and low-power applications, the device is optimized for applications for the analog interfaces of audio signal processing DSPs and digital wireless systems.

The analog outputs include the speaker drive output, earphone drive output and ringer output. Therefore, the sound interface can be configured with a few external circuits.

FEATURES

 Single power supply 	: 2.5 V to 3.6 V
Low power consumption	
Operating mode	: 36 mW Typ.
Power down mode	: 0.003 mW Typ.
• Digital signal input/output interface	: 14-bit serial code in 2's complement format
Transmission clock frequency	: 112 kHz min., 2048 kHz max.
• Filter characteristics	: Complies with ITU-T Recommendation G.714
• Built-in PLL eliminates a master clock	
• Built-in PB tone signal generator	
Built-in service tone generator	
• Built-in ringer tone generator	
• General latch output: 1 bit	
• Both transmit and receive gain adjusta	ble by external control
• Desident interference Consultant Atoms (Anton	

• Receive interface: Speaker direct drive output

Earphone interface output $: 600 \Omega, 1 \text{ mW max}.$

Ringer output : 70 nF, 4 V_{PP}

- Transmit gain adjustable using an external resistor
- Transmit microphone amplifier is eliminated by the gain setting of a maximum of 36 dB.
- Built-in reference voltage supply
- Serial 8-bit processor interface
- Package:

30-pin plastic SSOP (SSOP30-P-56-0.65-K) (Product name: MSM7728GS-K)

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

30-Pin Plastic SSOP

PIN AND FUNCTIONAL DESCRIPTIONS

V_{DD}

Power supply pin for 2.5 to 3.6 V (Typically 3.0 V).

AG

Analog signal ground.

DG

Ground pin for the digital signal circuits.

This ground is separated from the analog signal ground in this device. The DG pin must be connected to the AG pin on the printed circuit board.

SGC

Bypass capacitor pin for generating the signal ground voltage level. Insert a 0.1 μ F capacitor with excellent high frequency characteristics between the AG pin and the SGC pin.

MAIN, MAO

Transmit microphone input and level adjustment.

MAIN is connected to the inverting input of the op-amp, and MAO is connected to the output of the op-amp. This amplifier can set up a gain to a maximum of 36dB by using an external resistor.

Level adjustment should be performed in a way below.

A transmit level of +6, 0, –6, or –12dB can be selected using control data from the processor interface.

When CODEC is turned off, the MAO output goes high impedance.

SPKP, SPKN

These pins are used for speaker driving.

The SPKN output is reversed in phase against the SPKP output when the gain is 1.

The receive output signal amplitude is $2.2V_{PP}$ at maximum.

These outputs swing around the SG potential (signal ground potential, $V_{DD}/2$) and can drive the minimum 0.6k Ω load in pushpull driving mode.

The maximum output amplitude is $4.4V_{PP}$ in pushpull driving mode (a load is inserted between SPKN and SPKP).

Control data from the processor interface allows selecting the D/A conversion output, PB tone output, or service tone output and also can provide a level control and mute control. When SPK is turned off, the SG potential is output with high resistance.

EAR

Analog output for external accessary circuit.

This output swings around the SG potential and can drive the minimum $0.6k\Omega$ against the SG potential.

Control data from the processor interface allows selecting the D/A conversion output, PB tone output, or service tone output and also can provide a level control and mute control. When EAR is turned off, the SG potential is output with high resistance.

BCLK

Shift clock signal input for PCMIN and PCMOUT. The frequency is equal to the data signaling rate.

SYNC

Synchronizing signal input.

In the transmit section, the PCM output signal from the PCMOUT pin is output synchronously with this synchronizing signal. This synchronizing signal triggers the PLL and synchronizes all timing signals of the transmit section.

In the receive section, 14 bits required are selected from serial input of PCM signals on the PCMIN pin by the synchronizing signal.

Signals in the receive section are synchronized by this synchronizing signal. This signal must be synchronized in phase with the BCLK.

When this signal frequency is 8 kHz, the transmit and receive paths have the frequency characteristics specified by ITU-T G. 714. The frequency characteristics for 8 kHz are specified in this data sheet.

For different frequencies of the SYNC signal, the frequency values in this data sheet should be translated according to the following equation:

 $\frac{\text{Frequency values described in the data sheet}}{8 \text{ kHz}} \times \text{the SYNC frequency values to be actually used}$

PCMIN

PCM signal input.

A serial PCM signal input to this pin is converted to an analog signal synchronously with the SYNC signal and BCLK signal.

The data signaling rate of the PCM signal is equal to the frequency of the BCLK signal.

The PCM signal is shifted at the falling edge of the BCLK signal. The PCM signal is latched into an internal register when shifted by 14 bits.

The top of the data (MSD) is identified at the rising edge of SYNC.

The input signal should be input in the 14-bit 2's complement format.

The MSD bit represents the polarity of the signal with respect to the signal ground.

PCMOUT

PCM signal output.

The PCM output signal is output starting with MSD in sequential order, synchronously with the rising edge of the BCLK signal.

MSD may be output at the rising edge of the SYNC signal, depending on the timing between BCLK and SYNC.

This pin is in a high impedance state except during 14-bit PCM output. It is also high impedance when the CODEC is turned off.

A pull-up resistor must be connected to this pin, because its output is configured as an open drain.

The output coding format is in 14-bit 2's complement.

The MSD represents a polarity of the signal with respect to the signal ground.

Input/Output Level							PC	CMI	N/PC	мо	UT				
	M	SD													
+Full scale	0	1	1	1	1	1	1	1	1	1	1	1	1	1	
+1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
-1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
–Full scale	1	0	0	0	0	0	0	0	0	0	0	0	0	0	

Table 1

WRN, RDN, DCLK, CDIN, CDOUT

Serial control ports for microcontroller interface.

Writing data to 8-bit control registers allows controling the transmit speech path/receive speech path mute, transmit speech path/receive speech path level, PB tone, service tone, and ringer. WRN is the write control signal input, RDN is the read control signal input, DCLK is the clock signal input for data shift, CDIN is the control data input, CDOUT is the control data output. When reset (RSTN=0), the control registers are reset to the initial values as described in "Control Data Description".

The initial values remains unchanged until control data is written after reset.

Writing of control data: When WRN is at digital "0", data that is entered in CDIN is shifted at the rising edge of the DCLK signal pulse and is latched in an internal control register.

Reading of control data: When RDN is at digital "0", control data is output from CDOUT at the rising edge of a DCLK signal pulse.

See Figure 2 for write and read timings.

RINGP, RINGN

Ringer (sounder) drive outputs.

The sounder can be structured by putting a piezo-electric type sounding body (equivalent capacitance: less than 70nF) between RINGP and RINGN.

LED

Ringer digital level output. This pin is used for LED blinking synchronous with the ringer.

LA

General latch output. This output is used as a control signal for a peripheral circuit because this output can be set to digital "0" or "1" by writing data from a microcontroller interface.

TOUT

PB tone/service tone output. When SW6 is in the ON state, tone is output. The output resistance of this pin is approximately $10k\Omega$, which should be taken into account when using it externally.

RSTN

Control register reset signal input. When this pin is set to digital "0" level. All control registers are reset to the initial values. Be sure to reset the control registers after turning on the power.

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V _{DD}	AG = DG = 0 V	-0.3 to +7.0	V
Analog Input Voltage	V _{AIN}	AG = DG = 0 V	-0.3 to V _{DD} + 0.3	V
Digital Input Voltage	V _{DIN}	AG = DG = 0 V	-0.3 to V _{DD} + 0.3	V
Storage Temperature	T _{STG}	_	-55 to +150	°C

ABSOLUTE MAXIMUM RATINGS

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Power Supply Voltage	V _{DD}	—	2.5	3.0	3.6	V
Operating Temperature	Та	_	-30	+25	+85	°C
Analog Input Voltage	V _{AIN}	Gain = 1	_		1.4	V _{PP}
High Level Input Voltage	V _{IH}	SYNC, BCLK, PCMIN, WRN,	$0.45 \times V_{DD}$	_	V _{DD}	V
Low Level Input Voltage	VIL	HDN, DOEN, ODIN, HOTN	0	_	$0.16 \times V_{DD}$	V
Clock Frequency	Fc	BCLK	$14 \times Fs$	_	128 × Fs	kHz
Sync Pulse Frequency	Fs	SYNC	4.0	8.0	12	kHz
Clock Duty Ratio	D _C	BCLK	40	50	60	%
Digital Input Rise Time	t _{lr}	SYNC, BCLK, PCMIN, WRN,	_		50	ns
Digital Input Fall Time	t _{lf}	RDN, DCLK, CDIN, RSTN			50	ns
Cure Circel Timin	t _{XS}	BCLK \rightarrow SYNC, See Fig.1	100	_	—	ns
Sync Signar mining	t _{SX}	SYNC \rightarrow BCLK, See Fig.1	100	—	—	ns
High Level Sync Pulse Width *1	t _{WSH}	SYNC, See Fig.1	1 BCLK		_	_
Low Level Sync Pulse Width *1	t _{WSL}	SYNC, See Fig.1	1 BCLK	_	—	
PCMIN Setup Time	t _{DS}	Refer to Fig.1	100		_	ns
PCMIN Hold Time	t _{DH}	Refer to Fig.1	100		_	ns
Digital Output Load	R _{DL}	Pull-up resistor	0.5		_	kΩ
Digital Output Load	C _{DL}	_	_		100	pF
	t _{WCL}	DCLK Low width, See Fig.2	50			
	t _{WCH}	DCLK High width, See Fig.2	50		_	115
	t _{WR1}	DCLK \rightarrow WRNL, See Fig.2	50			
	t _{WR2}	WRNL→DCLK, See Fig.2	50			ns
WRN Hming	t _{WR3}	DCLK \rightarrow WRNH, See Fig.2	50			
	t _{WR4}	WRNH \rightarrow DCLK, See Fig.2	50		—	ns
WRN Period	P _{WRN}		9DCLK		—	

*1 For example, the minimum pulse width of SYNC is 488 ns when the frequency of BCLK is 2048 kHz.

RECOMMENDED OPERATING CONDITIONS (Continued)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	t _{RD1}	DCLK \rightarrow RDNL, See Fig.2	50	_	—	20
DDN Timing	t _{RD2}	RDNL \rightarrow DCLK, See Fig.2	50	_	_	115
	t _{RD3}	DCLK \rightarrow RDNH, See Fig.2	50	_		20
	t _{RD4}	RDNH \rightarrow DCLK, See Fig.2	50	_		115
RDN Period	P _{RDN}	—	9DCLK	_		_
CDIN Setup Time	t _{CDS}	See Fig.2	50			
CDIN Hold Time	t _{CDH}	See Fig.2	50	_	_	ns
	V	Transmit gain stage, Gain = 0 dB	-100	_	+100	mV
Analog Input Allowable DC Offset	Voff	Transmit gain stage, Gain = 20 dB	-10	_	+10	mV
Allowable Jitter Width	—	SYNC, BCLK		_	1000	ns
	t _{SD}		20	_	100	
DOM Data Output Dalay Time	t _{XD1}	C _L = 50 pF + 1 LSTTL	20	_	100	
PGM Data Output Delay Time	t _{XD2}	Pull-up resistor = 500 Ω	20	_	100	ns i
	t _{XD3}		20		100	
Control Data Output Dalay Time	t _{CD1}		50			
Control Data Output Delay Time	t _{CD2}		50			

ELECTRICAL CHARACTERISTICS

DC and Digital Interface Characteristics

$(Fs = 8 \text{ kHz}, V_{DD} = 2.5 \text{ V to } 3.6 \text{ V}, Ta = -30^{\circ}\text{C to } +85^{\circ}\text{C})$												
Parameter	Symbol	Cond	Min.	Тур.	Max.	Unit						
	1	Operating mode,	V _{DD} = 3.6 V	—	20		mA					
Power Supply Current	IDD1	No signal	V _{DD} = 3.0 V	_	12		mA					
	I _{DD2}	Power-off mod	$ \frac{V_{DD} = 3.0 \text{ V}}{Ower-off \text{ mode}} = \frac{12}{-} = \frac{\text{mA}}{200} \frac{12}{\mu \text{A}} $ $ \frac{0.45 \times}{V_{DD}} = \frac{V_{DD}}{-} \frac{V_{DD}}{V} \frac{V}{V_{DD}} = \frac{12}{-} \frac{V_{DD}}{-} \frac{V_{DD}}{-} \frac{V}{V} = \frac{12}{-} \frac{V_{DD}}{-} \frac{V}{V} \frac{V}{V_{DD}} = \frac{12}{-} \frac{V}{-} \frac{V_{DD}}{-} \frac{V}{-} \frac{V}$									
High Lovel Input Veltage	Max			0.45 imes		M	V					
nığıl Level input voltaye	VIH	SYNC, BCLK, F	PCMIN, WRN,	V _{DD}		VDD	V					
Low Loval Input Voltage	V	RDN, CDIN, DO	CLK, RSTN	0.0		0.16×	V					
Low Level input voltage	VIL			0.0		V _{DD}	V					
High Level Input Leakage Current	I _{IH}	-	_	—	—	2.0	μA					
Low Level Input Leakage Current	١ _{١L}	-	_	—	—	0.5	μA					
Digital Output Low Voltage	Ve	PCMOUT pull-up	resistor = 500 Ω	0.0	0.2	0.4	V					
	V OL	LA, LED, CDOL	JT I _{OL} = 0.4mA	0.0	0.2	0.4	V					
Digital Output High Voltage	V _{OH}	LA, LED, CDOL	JT I _{OH} = 1μΑ	$V_{DD}-0.2$			V					
Digital Output Leakage Current	I ₀	-	_	—	—	10	μA					
Input Capacitance	CIN	-	_	_	5	—	рF					

Transmit Analog Interface Characteristics

 $(Fs = 8 \text{ kHz}, V_{DD} = 2.5 \text{ V to } 3.6 \text{ V}, Ta = -30^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Resistance	R _{INX}	MAIN	10	_	—	MΩ
Output Load Resistance	R _{LGX}	MAO with respect to SG	30	—		kΩ
Output Load Capacitance	C_{LGX}	potential	_	—	30	рF
Output Amplitude	V _{OGX}		-0.7	_	+0.7	V
Offect Voltage		MAO with respect to SG potential	20		. 20	m\/
	VOSGX	(DC Gain = 1)	-20		+20	IIIV

Receive Analog Interface Characteristics

 $(Fs = 8 \text{ kHz}, V_{DD} = 2.5 \text{ V to } 3.6 \text{ V}, Ta = -30^{\circ}\text{C to } +85^{\circ}\text{C})$

		(, , , , , , , , , , , , , , , , , , ,		,		/
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	R ₀ SP	SPKP, SPKN	—	_	10	Ω
Output Resistance	R ₀ ER	EAR	—	_	100	Ω
	R ₀ T0	TOUT	—	10	_	kΩ
Output Load Desistance	R _{LSP}	SPKP-SPKN	600	_	—	Ω
Output Load Resistance	R _{LER}	EAR with respect to SG potential	600	_	—	Ω
Output Load Capacitance	CLAO	Output open			50	pF
Output Amplitude	V _{0A0}	SPKP, SPKN, EAR	-1.1		+1.1	V
	N	SPKP, SPKN, EAR, TOUT with	100		.100	
Unset voltage	VOSA	respect to SG potential	-100		+100	IIIV

AC Characteristics

(Fs = 8 kHz, V_{DD} = 2.5 V to 3.6 V, Ta = -30°C to +85°C)

Parameter	Symbol	Freq. (Hz)	Level (dBm0)	Condition	Min.	Тур.	Max.	Unit
	Loss 1	60			20			
	Loss 2	300			-0.2		+0.4	
Overall Frequency Perpense	Loss 3	1020	0	Analog to	Reference value			dB
Overall Frequency Response	Loss 4	2020	0	Analog	-0.2	_	+0.4	UD
	Loss 5	3000			-0.2	_	+0.4	
	Loss 6	3400			0	_	1.6	
	Loss T1	60			20	—	_	
	Loss T2	300			-0.15	_	+0.2	
Transmit Frequency Response	Loss T3	1020	0		Re	٩D		
(Expected Value)	Loss T4	2020			-0.15	_	+0.2	uв
	Loss T5	3000]		-0.15		+0.2	
	Loss T6	3400			0		0.8	
	Loss R1	300			-0.15		+0.2	
	Loss R2	1020	1		Re	ference va	ue	
Receive Frequency Response (Expected Value)	Loss R3	2020	0		-0.15		+0.2	dB
	Loss R4	3000			-0.15		+0.2	
	Loss R5	3400			0.0		0.8	
	SD 1		3	Analog to	57.0		_	
	SD 2		0		57.0		_	
	SD 3	1000	-10	Analog *1	50.0			dB
Overall Signal to Distortion Ratio	SD 4	1020	-30		32.0			
	SD 5		-40	$v_{DD} =$	23.0		_	
	SD 6		-45	2.7 10 3.3 V	20.0		_	
	SD T1		3		58	_	_	
	SD T2		0	1	58	_	_	
Transmit Signal to Distortion Ratio	SD T3	1000	-10		58	_	_	
(Expected Value)	SD T4	1020	-30	1 1	38	_	_	aв
	SD T5		-40		28	_	_	
	SD T6		-45		23	_	_	
	SD R1		3		60	_	_	
	SD R2		0		60	_	_	dB
Receive Signal to Distortion Ratio	SD R3	1000	-10		60	_	_	
(Expected Value)	SD R4	1020	-30	1 1	40			
	SD R5		-40		30		_	
	SD R6		-45		25			

*1 Psophometric filter is used.

AC Characteristics (Continued)

 $(Fs = 8 \text{ kHz}, V_{DD} = 2.5 \text{ V to } 3.6 \text{ V}, Ta = -30^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Freq. (Hz)	Level (dBm0)	Condition	Min.	Тур.	Max.	Unit	
	GT 1		3		-0.4	+0.01	+0.4		
	GT 2		-10	Analog to	Re	ference va	lue		
Overall Gain Tracking	GT 3	1020	-40	Analog to Analog	-0.4	0.0	+0.4	dB	
	GT 4		-50		-1.0	-0.03	+1.0		
	GT 5		-55		-1.5	+0.15	+1.5		
	GT T1		3		-0.3	+0.01	+0.3		
T	GT T2		-10		Re	lue]		
Iransmit Gain Tracking	GT T3	1020	-40		-0.3	0.0	+0.3	dB	
(Expected Value)	GT T4		-50		-0.6	-0.03	+0.6		
	GT T5		-55		-1.2	+0.15	+1.2	1	
	GT R1		3		-0.3	-0.06	+0.3		
	GT R2		-10		Re	ference va	lue		
Receive Gain Tracking	GT R3	1020	-40		-0.3	-0.02	+0.3	dB	
(Expected Value)	GT R4		-50		-0.6	-0.02	+0.6		
	GT R5		-55		-1.2	-0.27	+1.2		
Transmit Idle Channel Noise (Expected Value)	Nidle T		_	AIN: no signal	_	-72	-68		
Receive Idle Channel Noise (Expected Value)	NidleR			*1	_	-76	-74	dBmOp	
*2	AV T			MAO-PCMOUT	0.312	0.350	0.393		
	AV _{SPK}	1020	0	PCMIN-SPKP*3	0.045	0.975	0.200	Vrms	
(Initial value)	AV _{EAR}			PCMIN-EAR *3	0.245	0.275	0.309		
Output Level	AV Tt			V _{DD} = 2.5 to 3.6 V	-0.2	_	+0.2	dB	
(Deviation of Temperature and Power)	AV Rt			Ta = –30 to +85°C	-0.2		+0.2	dB	
Absolute Delay	T _d	1020	0	A to A BCLK = 128 kHz	_	_	0.6	ms	
	ten T1	500			_		0.325		
Transmit Group Delay	ten T2	600 to 2600	0	*4			0.175	ms	
	ten T3	2800					0.325		
	ten R1	500 to 2600				0.00	0 125		
Receive Group Delay	ten R2	2800	0	*4		0.12	0.325	– ms	
	CRT	2000			75	85			
Crosstalk Attenuation	CR R	1020	0	RECV → TRANS	70	80		dB	

*1 Psophometric filter is used.

*2 AVT is the input level to output 0dBm0 pattern. VOL1 0dB setting.

AV_{SPK} is the level to be output from SPKP pin when 0dBm0 pattern is input.

AV_{EAR} is the level to be output from EAR pin when 0dBm0 pattern is input.

*3 VOL2 0dB setting

*4 The minimum value of group delay distortion is referenced.

AC Characteristics (Continued)

(Fs = 8 kHz, V_{DD} = 2.5 V to 3.6 V, Ta = -30°C to +85°C)

Parameter	Symbol	Freq. (Hz)	Level (dBm0)	Conditio	on	Min.	Тур.	Max.	Unit
Discrimination	DIS	4.6 kHz to 72 kHz	0	0 to 4000 H	0 to 4000 Hz		32	_	dB
Out-of-band Spurious	S	300 to 3400	0	4.6 kHz to 1	00 kHz	_	-37.5	-35	dBm0
Intermodulation Distortion	IMD	fa = 470 fb = 320	-4	2fa – fb		_	-52	-40	dBm0
Power Supply Noise Rejection Ratio	PSR T PSR R	0 to 50 kHz	50 mV _{PP}	Measured	inband	_	30	_	dB
		SPKP	, EAR	High group)	-27	-22	-19	
DD Asknowledge Tene Output Level		VOL3 s	tandard	Low group		-28	-23	-20	
PB Acknowledge Tone Output Level	V PB	то	шт	High group)	-16	-11	-8	0BV
			UI	Low group		-17	-12	-9	
Saniaa Tana Autout Laval	у рт	SPKP, EA	R	VOL3 standard		-18	-15	-13	
	VNI	TOUT					-3	-1	
PB Acknowledge Tone Frequency Distortion	Df _{PB}							+1.5	%
Service Tone Frequency Distortion	Df _{RT}					-1.5	_	+1.5	
	Gv ₁₁	1020 0		Defense and to	6dBsetting	5	6	7	
VULI	Gv ₁₂		0	Referenced to	-6dBsetting	-7	-6	-5	dB
	Gv ₁₃			UOB Setting	–12dBsetting	-13	-12	-11	
	Gv ₂₁				6dBsetting	5	6	7	
	Gv ₂₂				3dBsetting	2	3	4	
	Gv ₂₃			Poforanced to	-3dBsetting	-4	-3	-2	
Gain Setting Value	Gv ₂₄	1020	0	NdB setting	-6dBsetting	-7	-6	-5	dB
	Gv ₂₅			oub setting	-9dBsetting	-10	-9	-8	
	Gv ₂₆				–12dBsetting	-13	-12	-11	
	Gv ₂₇				–15dBsetting	-16	-15	-14	
	Gv ₃₁				12dBsetting	10.5	12	13.5	
	Gv ₃₂				8dBsetting	6.5	8	9.5	
V0L3	Gv ₃₃			Referenced to	4dBsetting	2.5	4	5.5	
VOL3 Gain Setting Value	Gv ₃₄	1020	0	Referenced to	-4dBsetting	-5.5	-4	-2.5	dB
	Gv ₃₅			,	-8dBsetting	-9.5	-8	-6.5	
	Gv ₃₆				–12dBsetting	-13.5	-12	-10.5	
	Gv ₃₇				-16dBsetting	-17.5	-16	-14.5	

Ringing Tone

(Fs = 8 kHz, V_{DD} = 2.5 V to 3.6 V, Ta = -30°C to +85°C)

Parameter	Symbol	Cond	dition	Min.	Тур.	Max.	Unit
	Sound volume1		Sound volume max.	3.5	_		
Dinging Tone Output Amplitude	Sound volume2	730Ω between	Sound volume mid.	1.5	—		V
Ringing Tone Output Amplitude	Sound volume3	RINGP and RINGN	Sound volume sma.1	0.5	_	_	VPP
	Sound volume4		Sound volume sma.2	0.25	_		

TIMING DIAGRAMS

CODEC Interface Timing

Processor Interface Timing

Figure 2 Processor Timing Diagram

FUNCTIONAL DESCRIPTION

Control Data Description

The MSM7728 has eight registers to control the analog pass switch, volume, and tone via an external CPU.

The data interface consists of 3-bit address data and 5-bit control data in the serial 8-bit format. The register map is as shown below.

	AD2	AD1	AD0	B4 B3 B2			B1	B0	Function	Read
CR0	0	0	0	VC)L1		VOL2		VOL1, VOL2 gain setting	Enable
CR1	0	0	1		VOL3		VC)L4	VOL3, VOL4 gain setting	Enable
CR2	0	1	0	SW5	SW4	SW3	SW2	SW1	SW ON/OFF control	Enable
CR3	0	1	1	-				SW6	Latch output/SW ON/OFF control	Enable
CR4	1	0	0			PB ton	e		PB tone setting ON/OFF control	Disable
CR5	1	0	1		Se	rvice to	one		Service tone setting ON/OFF control	Disable
CR6	1	1	0		Ri	nger to	one		Ringer tone setting ON/OFF control	Disable
CR7	1	1	1		Pow	/er ON/	/OFF		Power ON/OFF control	Enable

Description of Each Register

CR0 --- VOL1, VOL2 control

A2	A1	A0	B4	B3	B2	B1	B0		Functio	n	Remarks
0	0	0	0	0						OdB (standard)	VOL1 and VOL2:
			0	1					VOL 1 agin patting	6dB	Simultaneous setting
			1	0					VULT gain setting	-6dB	Standard after reset
			1	1						-12dB	is released
				0		0	0			OdB (standard)	
					0	0	0 1			6dB	
					0	1	0			3dB	
					0	1	1		VOL 9 goin patting	-3dB	
					1	0	0		VULZ gain setting	-6dB	
					1	0	1			-9dB	
					1	1	0			-12dB	
					1	1	1			-15dB	

CR1 --- VOL3, VOL4 control

A2	A1	A0	B4	B3	B2	B1	B0		Functio	n	Remarks
0	0	1	0	0	0					OdB (standard)	VOL3 and VOL4:
			0	0	1					12dB	Simultaneous setting
			0	1	0					8dB	Standard after reset
			0	1	1				VOL 2 gain catting	4dB	is released
			1	0	0					–4dB	
			1	0	1					-8dB	
			1	1	0					-12dB	
			1	1	1					-16dB	
						0	0			Middle (standard)	
						0	1		Ringer sound	Maximum	
						1	0		volume	Small 1	
						1	1			Small 2	

CR2 - - - SWcontrol

A2	A1	A0	B4	B3	B2	B1	B0	Function	Remarks
0	1	0						 1: SW1 ON, 0: SW1 OFF	SW1 to SW5:
								 1: SW2 ON, 0: SW2 OFF	Simultaneous setting
								 1: SW3 ON, 0: SW3 OFF	Standard after reset
								 1: SW4 ON, 0: SW4 OFF	is released
								 1: SW5 ON, 0: SW5 OFF	

CR3 - - - SW & latch control

A2	A1	A0	B4	B3	B2	B1	B0		Function	Remarks
0	1	1	0	0	0			-	0: SW6 OFF, 1: SW6 ON	SW6 and LA:
									0: LA=0, 1: LA=1	Simultaneous setting
										SW6: OFF, LA=0
										after reset is released

CR4 --- PB tone control

A2	A1	A0	B4	B3	B2	B1	В0	HEX Code	Function	Remarks
1	0	0	1	0	0	0	0	9 0h	PBtone 697Hz, 1209Hz	Output destination of
			1	0	0	0	1	9 1h	PBtone 697Hz, 1336Hz	PB tone:
			1	0	0	1	0	9 2h	PBtone 697Hz, 1477Hz	EAR
			1	0	0	1	1	9 3h	PBtone 697Hz, 1633Hz	SPKP
			1	0	1	0	0	9 4h	PBtone 770Hz, 1209Hz	SPKN
			1	0	1	0	1	9 5h	PBtone 770Hz, 1336Hz	PB OFF after reset is
			1	0	1	1	0	9 6h	PBtone 770Hz, 1477Hz	released
			1	0	1	1	1	9 7h	PBtone 770Hz, 1633Hz	
			1	1	0	0	0	9 8h	PBtone 852Hz, 1209Hz	
			1	1	0	0	1	9 9h	PBtone 852Hz, 1336Hz	
			1	1	0	1	0	9 Ah	PBtone 852Hz, 1477Hz	
			1	1	0	1	1	9 Bh	PBtone 852Hz, 1633Hz	
			1	1	1	0	0	9 Ch	PBtone 941Hz, 1209Hz	
			1	1	1	0	1	9 Dh	PBtone 941Hz, 1336Hz	
			1	1	1	1	0	9 Eh	PBtone 941Hz, 1477Hz	
			1	1	1	1	1	9 Fh	PBtone 941Hz, 1633Hz	
			0	0	0	0	0	8 0h	PBtone OFF	

CR5 - - - Service tone control

10	۸1	۸0	D1	02	00	D1	DO	HEX	Frequency	Interm	ittent Time	(Note1)	Domarka
AZ	AI	AU	D4	00	DZ	DI	DU	Code	riequency	Make Time	Break Time1	Break Time2	nemarks
1	0	1	1	0	0	0	0	B Oh	400Hz	0.125sec	0.125sec		Output
			1	0	0	0	1	B 1h	400Hz	0.5sec	0.5sec		destination
			1	0	0	1	0	B 2h	400Hz	0.25sec	0.25sec		of PB tone:
			1	0	1	0	0	B 4h	400Hz	Continuous	i <u>—</u>	-	EAR
			1	0	1	0	1	B 5h	1000Hz	Continuous	i <u>—</u>	_	SPKP
			1	0	1	1	0	B 6h	2000Hz	Continuous	—		SPKN
			1	1	0	0	1	B 9h	400Hz/16Hz	1sec	2sec		
			1	1	0	1	0	B Ah	400Hz/16Hz	0.5sec	∞		
			1	1	0	1	1	B Bh	400Hz/16Hz	0.032sec	0.032sec	_	
			0	0	0	0	0	A Oh	Above tones stop				

CR6	Ringer	tone	control
-----	--------	------	---------

10	۸.1	٨٥	D/	02	DΟ	D1	D٥	HEX	Frequency	Interm	ittent Time	(Note1)	Domarka
AZ	AI	AU	D4	60	DZ	DI	DU	Code	riequency	Make Time	Break Time1	Break Time2	neillaiks
1	1	0	1	0	0	0	0	D Oh		1sec	2sec	—	Output
			1	0	0	0	1	D 1h	1011- alternation of 11/1-/1 01/11-	0.5sec	0.5sec	—	destination
			1	0	0	1	0	D 2h		0.25sec	0.25sec	2.25sec	of PB tone:
			1	0	0	1	1	D 3h		Continuous	—	_	RINGP
			1	0	1	0	0	D 4h		1sec	2sec	_	RINGN
			1	0	1	0	1	D 5h		0.5sec	0.5sec		
			1	0	1	1	0	D 6h	TOHZ AITERNATION OF ZKHZ/2.6KHZ	0.25sec	0.25sec	2.25sec	
			1	0	1	1	1	D 7h		Continuous			
			1	1	0	0	1	D 9h	400Hz	Continuous	—	_	
			1	1	0	1	0	D Ah	1kHz	Continuous	—	_	
			1	1	0	1	1	D Bh	2kHz	Continuous	_		
			0	0	0	0	0	C Oh	Above tones stop				

CR7 --- Power-on/off control

A2	A1	A0	B4	B3	B2	B1	B0		Function	Remarks
1	1	1							0: CODEC power-off , 1: CODEC power-on	All paths enter a
									0: SPK power-off , 1: SPK power-on	power-down state
									0: EAR power-off , 1: EAR power-on	after reset is released
									0: toneGEN power-off , 1: toneGEN power-on	
								-	0: SG/VR/PLL power-off , 1: SG/VR/PLL power-on	

APPLICATION CIRCUIT

* The analog output swings at a maximum of ± 1.0 V above and below the V_{DD}/2 offset level.

APPLICATION INFORMATION

Digital pattern for 0 dBm0

The digital pattern for 0 dBm0 is shown below. (SYNC frequency = 8 kHz, signal frequency = 1 kHz)

Sample No.	MSD	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14
S1	0	0	1	0	0	0	1	0	1	0	1	0	1	1
S2	0	1	0	1	0	0	1	1	1	0	1	1	1	0
S3	0	1	0	1	0	0	1	1	1	0	1	1	1	0
S4	0	0	1	0	0	0	1	0	1	0	1	0	1	1
S5	1	1	0	1	1	1	0	1	0	1	0	1	0	0
S6	1	0	1	0	1	1	0	0	0	1	0	0	0	1
S7	1	0	1	0	1	1	0	0	0	1	0	0	0	1
S8	1	1	0	1	1	1	0	1	0	1	0	1	0	0

NOTES ON USE

- To ensure proper electrical characteristics, use by pass capacitors with excellent high frequency characteristics for the power supply and keep them as close as possible to the device pins.
- Connect the AG pin and the DG pin as close as possible. Connect them to the system ground with low impedance.
- Mount the device directly on the PC board. Do not use an IC socket. If use of an IC socket is unavoidable, use a short lead type socket.
- When mounting the device on a frame, use electro-magnetic shielding, if any electromagnetic wave source such as power supply transformers is surrounding the device.
- Keep the voltage on the V_{DD} pin not lower than –0.3 V to avoid latch-up that may otherwise occur when power is turned on.
- Use a low noise (particularly, low level type of high frequency spike noise or pulse noise) power supply to avoid erroneous operation and the degradation of the characteristics of the device.

PACKAGE DIMENSIONS

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).