OKI Semiconductor

MSM7540/7560

Single Rail ADPCM CODEC

GENERAL DESCRIPTION

The MSM7540/7560 are single channel ADPCM CODEC ICs which perform mutual transcoding between an analog voice band signal 300 to 3400 Hz and 32 kbps ADPCM serial data.

Using advanced circuit technology, these devices operate using a single 5 V power supply and have low power consumption.

The MSM7540/7560 are optimized for advanced digital cordless telephone system applications.

FEATURES

• Single 5 V Power Supply Operation

• ADPCM Algorithm : Complies completely with 1988's version ITU-T

G.721 (32 kbps)

• Transmit/Receive Full-Duplex Operation

Transmit/Receive Synchronous Mode Only

Serial ADPCM Transmission Data Rate : 32 kbps to 2048 kbps
Serial PCM Transmission Data Rate : 64 kbps to 2048 kbps

PCM Interface Coding Format

MSM7540 : A-law or Linear (14-bit, 2's compliment) Selectable MSM7560 : μ-law or Linear (14-bit, 2's compliment) Selectable

• Low Power Consumption

Operating Mode: 60 mW Typ. Power-Down Mode: 1.0 mW Typ.

Two Analog Input Amplifier Stages : Externally Adjustable Gain

• Analog Output Stage : Push-pull Drive (direct drive of 350 Ω + 120 nF)

• Built-in Crystal Oscillator (10.368 MHz)

• Built-in Reference Voltage Supply

Option Reset Specified by ITU-T G. 721/ADPCM

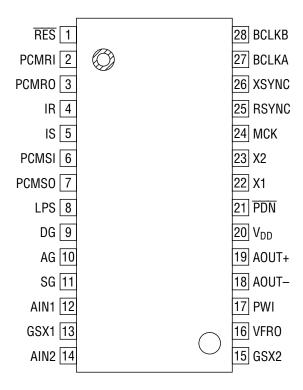
Package:

28-pin plastic SOP (SOP28-P-430-1.27-K) (Product name: MSM7540GS-K)

(Product name: MSM7560GS-K)

This version: Nov. 1999

Previous version: Aug. 1998


FEDL7540-03

X1

Х2

V_{DD} AG DG

PIN CONFIGURATION (TOP VIEW)

28-Pin Plastic SOP

PIN AND FUNCTIONAL DESCRIPTIONS

AIN1, AIN2, GSX1, GSX2

Transmit analog inputs and the output for transmit gain adjustment.

AIN1 (AIN2) connects to the inverting input of the internal transmit amplifier. GSX1 (GSX2) connects to the internal transmit amplifier output. Refer to Fig. 1 for gain adjustment.

VFRO, AOUT+, AOUT-, PWI

Receive analog output and the output for receive gain adjustment.

VFRO is the receive filter output. AOUT+ and AOUT- are differential analog signal outputs which can directly drive $Z_L = 350 \ \Omega + 120 \ nF$. Refer to Fig. 1 for gain adjustment.

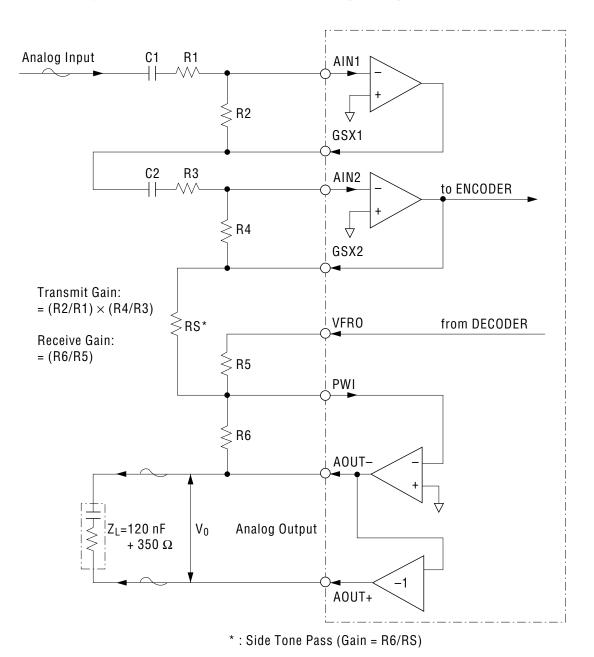


Figure 1 Analog Input/Output Interface

SG

Analog signal ground voltage output.

The output voltage of this pin is approximately 2.4 V. Put bypass capacitors between this pin and the AG pin. During power-down this output voltage is 0 V. The external SG voltage, if necessary, should be used via a buffer.

AG

Analog ground.

DG

Digital ground.

This ground is separated internally from the analog signal ground pin (AG). The DG pin must be kept as close as possible to AG on the PCB.

V_{DD}

+5 V power supply.

LPS

PCM coding law selection.

MSM7540 only; if this pin goes to a "0" level, PCMSO, PCMSI, PCMRO, and PCMRI become the A-law character signal, and if these pins goes to a "1" level, the signal becomes a linear value character signal (2's complement).

MSM7560 only; if this pin goes to a "0" level, PCMSO, PCMSI, PCMRO, and PCMRI become the μ -law character signal, and if these pins goes to a "1" level, the signal becomes a linear value character signal (2's complement).

PDN

Power down control input.

If this pin is "0", this device is in the power-down state.

Normally, this pin is set to "1".

RES

Optional reset input specified by ITU-T Recommendation G. 721.

If this pin is "0", the device is in the reset state. The reset width (during "L") should be 125µs or more.

MCK

Master clock input.

The frequency must be 10.368 MHz. The master clock signal may be asynchronous to BCLKA, BCLKB, XSYNC, and RSYNC.

PCMSO

Transmit PCM data output.

PCM is output from MSB in synchronization with the rising edge of BCLKB and XSYNC.

PCMSI

Transmit PCM data input.

This signal is converted to the transmit ADPCM data. PCM is shifted in synchronization with the falling edge of BCLKB. Normally, this pin is connected to PCMSO.

PCMRO

Receive PCM data output.

PCM is the output signal after ADPCM decoder processing. This signal is output serially from MSB in synchronization with the rising edge of BCLKB and RSYNC.

PCMRI

Receive PCM data input.

PCM is shifted on the falling edge of the BCLKB and input from MSB. Normally, this pin is connected to PCMRO.

IS

Transmit ADPCM signal output.

After having encoded PCM with ADPCM, this signal is output from MSB in synchronization with the rising edge of BCLKA and XSYNC. This pin is an open drain output and remains in a high impedance state during power-down. IS requires a pull-up resistor.

IR

Receive ADPCM signal input.

The ADPCM signal is shifted in series and synchronization with the falling edge of BCLKA and RSYNC, starting with MSB.

BCLKB

Shift clock input for the PCM data (PCMSO, PCMSI, PCMRO, PCMRI).

The frequency is set in the 64 kHz to 2048 kHz range.

XSYNC

8 kHz synchronous signal input for transmit PCM and ADPCM data.

Synchronize this signal with BCLKA and BCLKB signal. XSYNC is used to indicate the MSB of the serial PCM and ADPCM data stream.

Be sure to input the XSYNC signal because it is also used as the input of the timing generator.

RSYNC

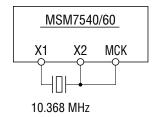
8 kHz synchronous signal input for receive PCM and ADPCM data.

Synchronize this signal with BCLKA and BCLKB signal. RSYNC is used to indicate the MSB of the serial PCM and ADPCM data stream.

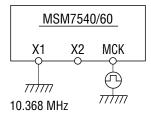
BCLKA

Shift clock input for the ADPCM data (IS, IR).

The frequency is set in the range of 32 kHz to 2048 kHz.


X1, X2

Crystal oscillator (10.368 MHz) connection.


Connect X2, the clock output pin, directly to the MCK pin.

When using a conventional external clock of 10.368 MHz, X1 should be connected to the ground, leave X2 open, and provide the external clock through the MCK pin.

<Using a self-oscilation circuit>

<Using an external clock>

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V _{DD}	_	-0.3 to +7	V
Analog Input Voltage	V _{AIN}	_	-0.3 to V _{DD} + 0.3	V
Digital Input Voltage	V _{DIN}	_	-0.3 to V _{DD} + 0.3	V
Storage Temperature	T _{STG}	_	-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

Parameter Symb		Condition	Min.	Тур.	Max.	Unit
Power Supply Voltage	V _{DD}	Voltage must be fixed	4.5		5.5	V
Operating Temperature	Ta	_	-25	+25	+70	°C
Input High Voltage	V _{IH}	MCK, XSYNC, RSYNC, PCMRI, PCMSI, BCLKA, BCLKB, IR,	2.2		V_{DD}	V
		LPS, PDN, RES				
Input Low Voltage	V _{IL}	MCK, XSYNC, RSYNC, PCMRI, PCMSI, BCLKA, BCLKB, IR, LPS, PDN, RES	0	_	0.6	V
Master Clock Frequency	f _{MCK}	MCK	-0.01%	10.368	+0.01%	MHz
Dit Clock Fraganov	f _{BCKA}	BCLKA	32	_	2048	kHz
Bit Clock Freqency	f _{BCKB}	BCLKB	64	_	2048	kHz
Synchronous Signal Frequency fsv		XSYNC, RSYNC	_	8.0		kHz
Clock Duty Ratio	D _C	MCK, BCLKA, BCLKB	30	50	70	%
Digital Input Rise Time		MCK, XSYNC, RSYNC, PCMRI, PCMSI, BCLKA, BCLKB, IR, LPS, PDN, RES	_	_	50	ns
Digital Input Fall Time	t _{lf}	MCK, XSYNC, RSYNC, PCMRI, PCMSI, BCLKA, BCLKB, IR, LPS, PDN, RES	_	_	50	ns
Transmit Sync Signal Setting Time	t _{XS}	BCLKA, BCLKB to XSYNC	100	_		ns
Transmit Sync Signal Setting Time	t _{XS}	XSYNC to BCLKA, BCLKB	100			ns
Receive Sync Signal Setting Time	t _{RS}	BCLKA, BCLKB to RSYNC	100			ns
neceive Sylic Signal Setting Time	t _{SR}	RSYNC to BCLKA, BCLKB	100		_	ns
Synchronous Signal Width	tws	XSYNC, RSYNC	1 BCLK	_	100	μs
PCM, ADPCM Set-up Time t _{DS}		_	100			ns
PCM, ADPCM Hold Time		_	100	_	_	ns
Digital Output Load	R _{DL}	IS (Pull-up Resistor)	500	_		Ω
Digital Output Lodu	C _{DL}	IS, PCMSO, PCMRO		_	100	pF
Bypass Capacitor for SG	C _{SG}	SG↔GND		10 + 0.1	_	μF

ELECTRICAL CHARACTERISTICS

DC and Digital Interface Characteristics

 $(V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Ta} = -25^{\circ}\text{C to } +70^{\circ}\text{C})$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
		Operating Mode,		12	24	
Devices Complet Comment	I _{DD1}	(When no signal, and $V_{DD} = 5.0 \text{ V}$)	_			mA
Power Supply Current		Power Down Mode		0.0	0.5	mA
	I _{DD2}	(When $V_{DD} = 5.0 \text{ V}$)	_	0.2		
Input High Voltage	V _{IH}	_	2.2	_	V_{DD}	V
Input Low Voltage	V _{IL}	_	0.0	_	0.6	V
Input Lookaga Current	I _{IH}	$V_I = V_{DD}$	_		2.0	μΑ
Input Leakage Current	I _{IL}	V _I = 0 V	_	_	0.5	μΑ
Output Low Voltage	V _{OL}	1 LSTTL, Pull-up: 500Ω	0.0	0.2	0.4	V
Output Leakage Current	I ₀	IS	<u> </u>	_	10	μΑ
Input Capacitance	C _{IN}	_		5	_	pF

Transmit Analog Interface Characteristics

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input Resistance	R _{INX}	AIN1, AIN2	10	_	_	MΩ
Output Load Resistance	R _{LGX}	GSX1, GSX2	50	_	_	kΩ
Output Load Capacitance	C _{LGX}	GSX1, GSX2	_	_	100	pF
Output Amplitude	V _{OGX}	GSX1, GSX2, $R_L = 50 \text{ k}\Omega$	_	_	*2.226	V _{PP}
Input Offset Voltage	V _{OFGX}	Pre-OPAMPs	-20	_	+20	mV
SG Output Voltage	V _{SG}	_		2.4	_	V
SG Output Impedance	R _{SG}	_		40	80	kΩ
SG Rise Time	G Rise Time T _{SG}		_	700	_	ms

^{*} $-3 \text{ dBm } (600 \Omega) = 0 \text{ dBm0}, +3.14 \text{ dBm0} = 2.226 \text{ V}_{PP} (\text{MSM7540})$

 $^{-3 \}text{ dBm } (600 \Omega) = 0 \text{ dBm0}, +3.17 \text{ dBm0} = 2.226 \text{ V}_{PP} \text{ (MSM7560)}$

Receive Analog Interface Characteristics

Parameter	Symbol		Condition	Min.	Тур.	Max.	Unit		
Input Resistance	R _{INPW}	PWI		PWI		10	_	_	MΩ
Outnot Load Desistance	R _{LVF}	VFR0		50	_	_	kΩ		
Output Load Resistance	R _{LA0}	AOUT+, AC)UT–	1.2	_	_	kΩ		
Outnut Consoitance	C _{LVF}	VFR0		_	_	100	pF		
Output Capacitance	C _{LAO}	AOUT+, AOUT-		_	_	100	pF		
	V _{OVF}	VFR0	$R_L = 50 \text{ k}\Omega$	_	_	*2.226	V_{PP}		
Output Valtage Leval	V _{OAO}	AOUT+, AOUT-	$R_L = 1.2 \text{ k}\Omega$	_	_	*2.226	V_{PP}		
Output Voltage Level			$Z_L = 350 \Omega$	_	_	*2.226	\/		
			+ 120 nF(See Fig.1)				V_{PP}		
	V _{OFVF}	VFR0		-100	_	+100	mV		
Offset Voltage	V _{OFAO}	AOUT+, AOUT- (GAIN = 0 dB),		00		00	m\/		
		Power amp only		-20	_	+20	mV		
Onen Lean Cain		Power amp (0.3 to 3.4 kHz,		40			-ID		
Open Loop Gain	G _{DB}	$Z_L = 350 \Omega + 120 \text{ nF})(\text{See Fig.1})$		40		_	dB		

^{*} $-3 \text{ dBm } (600 \Omega) = 0 \text{ dBm0}, +3.14 \text{ dBm0} = 2.226 \text{ V}_{PP} (MSM7540)$

 $^{-3 \}text{ dBm } (600 \Omega) = 0 \text{ dBm0}, +3.17 \text{ dBm0} = 2.226 \text{ V}_{PP} \text{ (MSM7560)}$

AC Chracteristics

 $(V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Ta} = -25^{\circ}\text{C to } +70^{\circ}\text{C})$

		Condition						
Parameter	Symbol	Freq. (Hz)	Level (dBm0)	Others	Min.	Тур.	Max.	Unit
	L _{OSS} T1	0 to 60			25	_		dB
	L _{OSS} T2	300 to 3000			-0.15	_	+0.20	dB
Transmit Frequency	L _{OSS} T3	1020	0			dB		
Response	L _{OSS} T4	3300			-0.15	_	+0.80	dB
	L _{OSS} T5	3400			0	_	0.80	dB
	L _{OSS} T6	3968.75			14	_	_	dB
	L _{OSS} R1	0 to 3000			-0.15	_	+0.20	dB
Dagaiya Fraguanay	L _{OSS} R2	1020					dB	
Receive Frequency	L _{OSS} R3	3300	0	- [-0.15	_	+0.80	dB
Response	L _{OSS} R4	3400			0	_	0.80	dB
	L _{OSS} R5	3968.75			14	_	_	dB
	SD T1	1020	3		35	_	_	dB
Transmit Cianal	SD T2		0		35	_		dB
Transmit Signal to Distortion Ratio	SD T3		-30	(*1)	35	_		dB
to distortion ratio	SD T4		-40		28	_	_	dB
	SD T5		–45		23	_	_	dB
	SD R1		3		35	_	_	dB
Receive Signal	SD R2		0		35	_	_	dB
to Distortion Ratio	SD R3	1020	-30	(*1)	35	_		dB
to distortion ratio	SD R4		-40		28	_	_	dB
	SD R5		-45		23	_	_	dB
	GT T1		3		-0.2	_	+0.2	dB
Transmit Cain	GT T2		-10		Reference			dB
Transmit Gain Tracking	GT T3	1020	-40		-0.2	_	+0.2	dB
	GT T4		– 50		-0.5	_	+0.5	dB
	GT T5		– 55	<u> </u>	-1.2		+1.2	dB
	GT R1		3		-0.2	_	+0.2	dB
Receive Gain	GT R2		-10			Reference		dB
	GT R3	1020	-40] - [-0.2		+0.2	dB
Tracking	GT R4		-50		-0.5	_	+0.5	dB
	GT R5		- 55		-1.2	_	+1.2	dB

^{*1} Use the P-message weighted filter

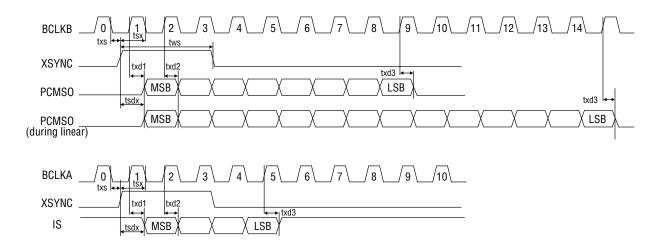
AC Characteristics (Continued)

 $(V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Ta} = -25^{\circ}\text{C to } +70^{\circ}\text{C})$

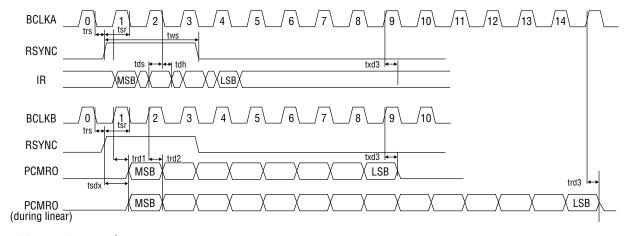
			Condition					
Parameter	Symbol	Freq.	Level	Others	Min.	Тур.	Max.	Unit
		(Hz)	(dBm0)	Others				
	N	_	AIN CC	/*4\			-69	
Idle Channel Noise	N _{IDLT}		AIN = SG	(*1)		_	(-72)	dBm0p
Tule Ghaillei Noise	N			(*1)		_	-72	(dBmp)
	N _{IDLR}		_	(*2)	_		(-75)	
	۸. ــ	1020	0	GSX2	0.488	0.548	0.615	Vrms
Absolute Signal	A _{VT}					(*3)		VIIIIS
Amplitude	Λ	1020		VFR0	0.488	0.548	0.615	Vrms
	A _{VR}				0.400	(*3)	0.615	VIIIIS
Power Supply Noise	P _{SRRT}	Noise Freq.	Noise Level		30	_	_	dB
Rejection Ratio	P _{SRRR}	: 0 to 50 kHz	: 50 mV _{PP}		30	_	_	dB
	t _{SDX}				50	_	200	ns
Digital Output	t _{SDR}		4.0771 400 5		50	_	200	ns
Delay Time	t_{XD1}, t_{RD1}	_	1 LSTTL + 100 pF,	- [50	_	200	ns
Delay Tillie	t_{XD2}, t_{RD2}		Pull-up: 500Ω		50	_	200	ns
	t_{XD3}, t_{RD3}				50	_	200	ns

^{*1} Use the P-message weighted filter

Note: All ADPCM coder and decoder characteristics comply with ITU-T Recommendation G.721.


^{*2} PCMRI input code "11010101"(MSM7540)

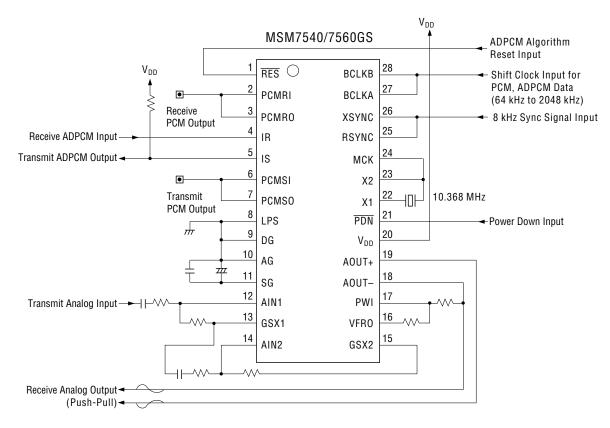
[&]quot;11111111"(MSM7560)


^{*3} 0.548 Vrms = 0 dBm0 = -3 dBm

TIMING DIAGRAM

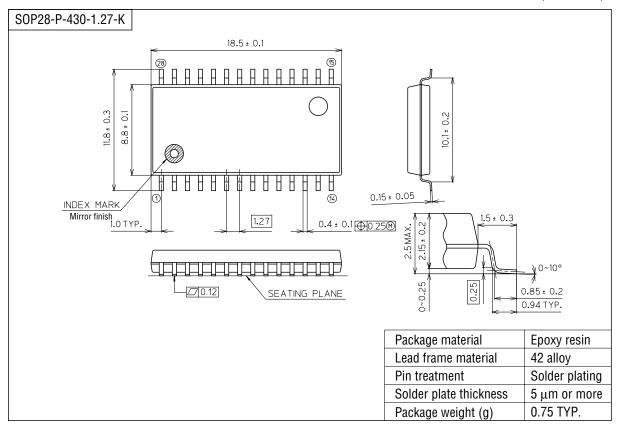
Transmit Side PCM/ADPCM Data Interface

Receive Side PCM/ADPCM Data Interface



Note: Linear format

A code of an input/output level is determined by the 14-bit 2'compliment. Refer to the table below for code format.


Input/Output level	MSB to LSB
+Full-scall	011111111111111
0	00000000000000
–Full-scall	10000000000000

APPLICATION CIRCUIT

PACKAGE DIMENSIONS

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

NOTICE

- 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
- 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
- 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
- 4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
- 5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
- 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
- 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
- 8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.
- 9. MS-DOS is a registered trademark of Microsoft Corporation.

Copyright 1999 Oki Electric Industry Co., Ltd.

Printed in Japan