OKI Semiconductor ML7000-01 ML7001-01

Single Rail CODEC

GENERAL DESCRIPTION

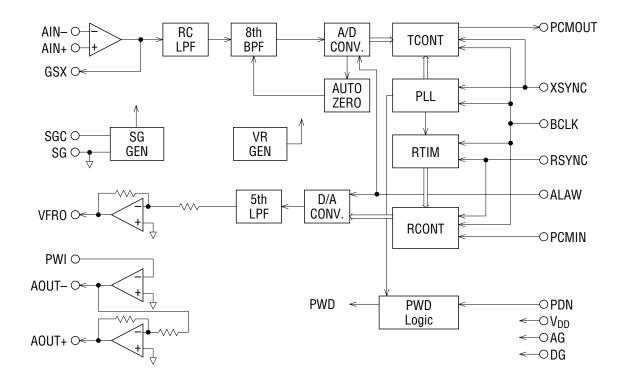
The ML7000/ML7001 are single-channel CMOS CODEC LSI devices for voice signals ranging from 300 to 3400 Hz with filters for A/D and D/A conversion.

Designed especially for a single-power supply and low-power applications, the devices are optimized for ISDN terminals, digital wireless systems, and digital PBXs.

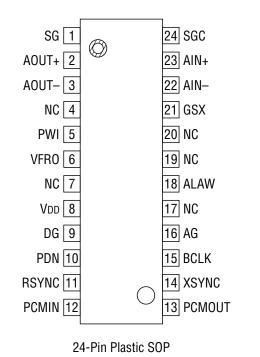
The devices use the same transmission clocks as those used in the MSM7507.

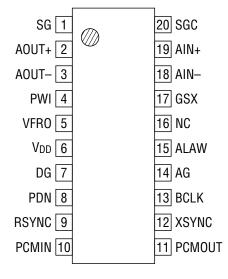
With the differential analog signal outputs which can drive $600 \Omega \log d$, the devices can directly drive a handset receiver.

FEATURES


- Single power supply: +5 V (ML7000-01)
 - +3 V (ML7001-01)

• Low power consump	tion	
Operating mode:	25 mW Typ.	$V_{DD} = 5.0 V (ML7000-01)$
	20 mW Typ.	$V_{DD} = 3.0 V (ML7001-01)$
Power-down mode:	0.05 mW Typ.	$V_{DD} = 5.0 V (ML7000-01)$
	0.03 mW Typ.	$V_{DD} = 3.0 V (ML7001-01)$


- Conforms to ITU-T Companding law μ/A-law pin selectable
- Transmission characteristics conform to ITU-T G.714
- Short frame sync timing operation
- Built-in PLL eliminates a master clock
- Serial data rate: 64/96/128/192/200/256/384/512/ 768/1024/1536/1544/2048 kHz
- Adjustable transmit gain
- Adjustable receive gain
- Built-in reference voltage supply
- Package options:

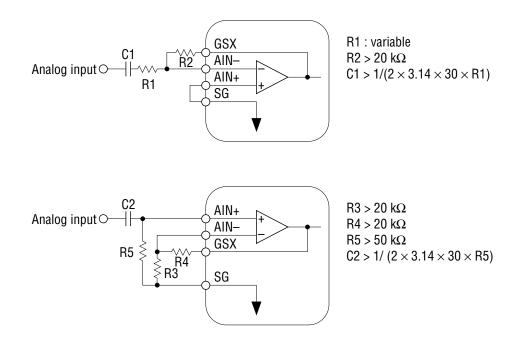

24-pin plastic SOP (SOP24-P-430-1.27-K) (Product name: ML7000-01MA/ML7001-01MA) 20-pin plastic SSOP (SSOP20-P-250-0.95-K) (Product name: ML7000-01MB/ML7001-01MB)

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

20-Pin Plastic SSOP

NC : No connect pin


PIN FUNCTIONAL DESCRIPTION

AIN+, AIN-, GSX

Transmit analog input and transmit level adjustment.

AIN+ is a non-inverting input to the op-amp; AIN– is an inverting input to the op-amp; GSX is connected to the output of the op-amp.

The level adjustment should be performed using any of the methods shown below. During power-saving and power-down modes, the GSX output is at AG voltage.

AG

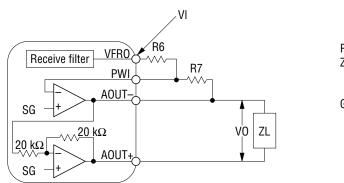
Analog ground.

VFRO

Receive filter output.

The output signal has an amplitude of 2.4 V_{PP} for ML7000-01 and 2.0 V_{PP} for ML7001-01 above and below the signal ground voltage (SG) when the digital signal of +3 dBm0 is input to PCMIN and can drive a load of 20 k Ω or more.

For driving a load of less than 20 k Ω , connect a resistor of 20 k Ω or more between the pins VFRO and PWI.


During power-saving or power-down mode, the VFRO output is at an SG level.

When adjusting the receive signal on the basis of frequency characteristics, refer to the Frequency Characteristics Adjustment Circuit.

PWI, AOUT+, AOUT-

PWI is connected to the inverting input of the receive driver.

The receive driver output is connected to the AOUT– pin. Therefore, the receive level can be adjusted with the pins VFRO, PWI, and AOUT–. During power-saving or power down-mode, the outputs of AOUT+ and AOUT– are in a high impedance state. The output of AOUT+ is inverted with respect to the output of AOUT–. Since these outputs provide differential drive of an impedance of 1.2 k Ω , they can directly be connected to a handset using a piezoelectric earphone or a line transformer. Refer to the application example.

 $\begin{array}{l} \mathsf{R6} > 20 \; \mathsf{k}\Omega \\ \mathsf{ZL} > 1.2 \; \mathsf{k}\Omega \end{array}$

Gain = V0/VI = $2 \times R7/R6 \le 2$

V_{DD}

Power supply for +5 V (ML7000-xx) or +3 V (ML7001-xx)

PCMIN

PCM data input.

A serial PCM data input to this pin is converted to an analog signal in synchronization with the RSYNC signal and BCLK signal.

The data rate of PCM is equal to the frequency of the BCLK signal.

PCM signal is shifted in at the falling edge of the BCLK signal and latched into the internal register when shifted by eight bits.

The start of the PCM data (MSD) is identified at the rising edge of RSYNC.

BCLK

Shift clock signal input for the PCMIN and PCMOUT signals.

The frequency, equal to the data rate, is 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 1544, or 2048 kHz. Setting this signal to logic "1" or "0" drives both transmit and receive circuits to the power saving state.

RSYNC

Receive synchronizing signal input.

Eight required bits are selected from serial PCM signals on the PCMIN pin by the receive synchronizing signal.

Signals in the receive section are synchronized by this synchronizing signal. This signal must be synchronized in phase with the BCLK. The frequency should be $8 \text{ kHz} \pm 50 \text{ ppm}$ to guarantee the AC characteristics which are mainly the frequency characteristics of the receive section.

However, if the frequency characteristic of an applied system is not specified exactly, this device can operate in the range of 6 to 9 kHz, but the electrical characteristics in this specification are not guaranteed.

XSYNC

Transmit synchronizing signal input.

The PCM output signal from the PCMOUT pin is output in synchronization with this signal. This synchronizing signal triggers the PLL and synchronizes all timing signals of the transmit section. This synchronizing signal must be synchronized in phase with BCLK.

The frequency should be 8 kHz ±50 ppm to guarantee the AC characteristics which are mainly the frequency characteristics of the transmit section. However, if the frequency characteristic of an applied system is not specified exactly, this device operates in the range of 6 to 9 kHz, but the electrical characteristics in this specification are not guaranteed.

Setting this signal to logic "1" or "0" drives both transmit and receive circuits to the power saving state.

DG

Ground for the digital signal circuits.

This ground is separate from the analog signal ground AG. The DG pin must be connected to the AG pin on the printed circuit board to make a common analog ground AG.

PDN

Power down control signal.

A logic "0" level drives both transmit and receive circuits to a power down state.

PCMOUT

PCM signal output.

Synchronizing with the rising edge of the BCLK signal, the PCM output signal is output from MSD in a sequential order.

MSD may be output at the rising edge of the XSYNC signal, based on the timing between BCLK and XSYNC.

This pin is in a high impedance state except during 8-bit PCM output. It is also in a high impedance state during power saving or power down mode.

A pull-up resistor must be connected to this pin because its output is configured as an open drain. This device is compatible with the ITU-T recommendation on coding law and output coding format.

When A-law is selected, the ML7000-01 and ML7001-01 output the character signal, inverting the even bits.

land the second second		PCMIN/PCMOUT														
Input/Output Level		μ -law					A-law									
+Full scale	MSD							LSD	MSD							LSD
+Full Scale	1	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0
+0	1	1	1	1	1	1	1	1	1	1	0	1	0	1	0	1
-0	0	1	1	1	1	1	1	1	0	1	0	1	0	1	0	1
–Full scale	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0

SG

Signal ground voltage output. The output voltage is 1/2 of the power supply voltage. The output drive current capability is $\pm 300 \,\mu\text{A}$ for ML7000-01 and $\pm 200 \,\mu\text{A}$ for ML7001-01. This pin provides the SG level for CODEC peripherals. This output voltage level is undefined during power-saving or power-down mode.

SGC

Used to generate the signal ground voltage level by connecting a bypass capacitor. Connect a $0.1 \,\mu\text{F}$ capacitor with excellent high frequency characteristics between the AG pin and the SGC pin.

ALAW

Control signal input of the companding law selection.

The CODEC will operate in the μ -law when this pin is at a logic "0" level and the CODEC will operate in the A-law when this pin is at a logic "1" level. The CODEC operates in the μ -law if the pin is left open, since the pin is internally pulled down.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V _{DD}	—	-0.3 to +7	V
Analog Input Voltage	V _{AIN}	—	-0.3 to V _{DD} + 0.3	V
Digital Input Voltage	V _{DIN}	—	-0.3 to V _{DD} + 0.3	V

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Dower Supply Voltage			4.75	5.00	5.25	V
Power Supply Voltage	V _{DD}	_	2.70	3.00	3.30	V
Operating Temperature	Та	_	-30	+25	+85	°C
	N	Connect AIN– and GSX			2.4	v
Analog Input Voltage	V _{AIN}	Gonnect AIN- and GSA	—	_	1.2	V_{PP}
High Level Input Voltage	VIH		2.2		V _{DD}	V
	VIH	XSYNC, RSYNC, BCLK,	$0.45 \times V_{DD}$		V _{DD}	V
Low Level Input Voltage	V.	PCMIN, PDN, ALAW	0	—	0.8	V
	VIL		0	—	$0.16 \times V_{DD}$	V
			64, 96, 12	28, 192, 20	00, 256,	
Clock Frequency	Fc	BCLK	384, 512,	768, 1024	i , 1536,	kHz
			1544, 204	18		
	-		6.0	8.0	9.0	1.11-
Sync Pulse Frequency	FS	XSYNC, RSYNC (-40 to +75 °C)	6.0	8.0	10.0	kHz
Clock Duty Ratio	D _C	BCLK	40	50	60	%
Digital Input Rise Time	t _{lr}	XSYNC, RSYNC, BCLK,			50	ns
Digital Input Fall Time	t _{lf}	PCMIN, PDN	_	_	50	ns
Transmit Curs Dules Catting Time	t _{CX}	BCLK \rightarrow XSYNC, See Fig. 1	50		—	ns
Transmit Sync Pulse Setting Time	t _{XC}	XSYNC \rightarrow BCLK, See Fig. 1	50	—	_	ns
XSYNC Setup Time	t _{XS}	_	50	_	_	ns
XSYNC Hold Time	t _{XH}	_	50	_	—	ns
Dessive Cupe Dulas Catting Time	t _{CR}	BCLK \rightarrow RSYNC, See Fig. 1	50	_	—	ns
Receive Sync Pulse Setting Time	t _{RC}	RSYNC \rightarrow BCLK, See Fig. 1	50		—	ns
RSYNC Setup Time	t _{RS}	_	50		—	ns
RSYNC Hold Time	t _{RH}	_	50	_	_	ns
PCMIN Setup Time	t _{DS}	_	50	_	—	ns
PCMIN Hold Time	t _{DH}	_	50			ns
	R _{DL}	Pull-up resistor	0.5		_	kΩ
Digital Output Load	C _{DL}	_			100	рF
Analog Input Allowable DO Offert		Transmit gain stage, Gain = 0 dB	-10		+10	mV
Analog Input Allowable DC Offset	Voff	Transmit gain stage, Gain = +20 dB	-100		+100	mV
Allowable Jitter Width	_	XSYNC, RSYNC, BCLK	_		1000	ns

ELECTRICAL CHARACTERISTICS

DC and Digital Interface Characteristics

(ML7001-01: V_{DD} = 2.7 V to 3.3 V, Ta = -30 to +85°C) (ML7000-01: V_{DD} = +5.0 V ±5%, Ta = -30 to +85°C)

$(IVIL / 000-01. VDD = +3.0 V \pm 3.0, Ia = -30 t0 +63 C)$											
Parameter	Symbol	Condit	Min.	Тур.	Max.	Unit					
	1	Operating mode	V _{DD} = 5.0 V	—	5.0	12.0	m۸				
	I _{DD1}	No signal	No signal V _{DD} = 3.0 V — 6.5 1				mA				
Power Supply Current		Power-saving mo	ode, PDN = 1,	—	1.5	4.0	m۸				
Power Supply Current	I _{DD2}	$\text{XSYNC} \rightarrow \text{OFF}$			2.0	8.0	mA				
	1	Power-down mod	de, PDN = 0,		0.01	0.05	m۸				
	I _{DD3}	BCLK OFF		0.01	0.05	mA					
High Level Input Voltage	VIH		2.2		V _{DD}	V					
	VIH		$0.45 \times V_{DD}$	—	V _{DD}						
Low Level Input Voltage	M.		0.0		0.8	V					
	VIL		0.0		0.16×V _{DD}						
High Level Input Leakage Current	IIH	_		—	—	2.0	μA				
High Level Input Leakage Current	I _{IH2}	ALAW		—	_	30.0	μA				
Low Level Input Leakage Current	IIL			—	—	0.5	μA				
Digital Output Low Voltage	V _{OL}	Pull-up resistor = 500 Ω		0.0	0.2	0.4	V				
Digital Output Leakage Current	I ₀	_				10	μA				
Input Capacitance	CIN			—	5	_	pF				

Transmit Analog Interface Characteristics

(ML7001-01: V_{DD} = 2.7 V to 3.3 V, Ta = -30 to +85°C) (ML7000-01: V_{DD} = +5.0 V ±5%. Ta = -30 to +85°C)

$(\text{WE7000-01}, \text{VDD} = +3.0 \text{ V} \pm 3\%, \text{ ra} = -30 \text{ to } +3.0 \text{ ra} = -30 \text{ to } +3.0 \text{ ra} = -3.0 $										
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit				
Input Resistance	R _{INX}	AIN+, AIN–	10	—	—	MΩ				
Output Load Resistance	R _{LGX}	GSX with respect to SG	20	—	_	kΩ				
Output Load Capacitance	C _{LGX}		—	—	30	рF				
Output Amplitude	Mana		-1.2	—	+1.2	VOn				
Output Amplitude	V _{OGX}		-0.7	_	+0.7	V0p				
Offset Voltage	Vosgx	Gain = 1	-20		+20	mV				

Values above the dotted line are for ML7000-01; those below, for ML7001-01.

Receive Analog Interface Characteristics

	(ML7000-01: V_{DD} = +5.0 V ±5%, Ta = -30 to +85°								
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit			
Input Resistance	R _{INPW}	PWI	10	_	_	MΩ			
	R _{LVF}	VFRO with respect to SG	20	_	_	kΩ			
Output Load Resistance	R _{LA0}	AOUT+, AOUT- (each) with respect to SG	0.6	—	_	kΩ			
Output Load Capacitance	CLVF	VFRO	—	_	30	pF			
	CLAO	AOUT+, AOUT-	—	_	50	pF			
		VFR0, R_L = 20 k Ω with	-1.2	—	+1.2				
Output Amplitude	V _{OVF}	respect to SG	-1.0	—	+1.0	VOn			
Output Amplitude	Maria	AOUT+, AOUT-, R_L = 0.6 k Ω	-1.3	_	+1.3	V0p			
	V _{OAO}	with respect to SG	-1.0		+1.0				
	VOSVF	VFRO with respect to SG	-100	_	+100	mV			
Offset Voltage	V _{OSAO}	AOUT+, AOUT–, Gain = 1 with respect to SG	-100	_	+100	mV			

 $\begin{array}{ll} (ML7001\mbox{-}01\mbox{: }V_{DD}\mbox{= }2.7\mbox{ V to }3.3\mbox{ V, }Ta\mbox{= }-30\mbox{ to }+85\mbox{\circ}C) \\ (ML7000\mbox{-}01\mbox{: }V_{DD}\mbox{= }+5.0\mbox{ V }\pm5\mbox{, }Ta\mbox{= }-30\mbox{ to }+85\mbox{\circ}C) \\ \end{array}$

OKI Semiconductor

ML7000-01/ML7001-01

AC Characteristics

(ML7000-01: F _S = 8 kHz, V _{DD} = +5.0 V ±5%, Ta = -30 to +85°										
Parameter	Symbol	Freq. (Hz)	Level (dBm0)	Condition	Min.	Тур.	Max.	Unit		
	Loss T1	60			20	26				
	Loss T2	300			-0.15	+0.07	+0.2			
Transmit Fraguenov Deenange	Loss T3	1020				4D				
Transmit Frequency Response	Loss T4	2020	0		-0.15	-0.04	+0.2	dB		
	Loss T5	3000]		-0.15	+0.07	+0.2			
	Loss T6	3400			0	0.4	0.8			
	Loss R1	300			-0.15	-0.03	+0.2			
	Loss R2	1020				Reference				
Receive Frequency Response	Loss R3	2020	0		-0.15	0.00	+0.2	dB		
	Loss R4	3000]		-0.15	+0.05	+0.2			
	Loss R5	3400]		0	0.54	0.8			
	SD T1		3		35	43				
Transmit Signal to Distortion Ratio	SD T2		0		35	41		- - - dB -		
]	35.0	38.0	_			
	SD T3	1020	-30	+4	34.0	38.0				
				*1	26.0	31.0	_			
	SD T4		-40		26.0	30.0				
	SD T5		45		24.0	25.0	_			
				-45			25.0			
	SD R1		3		36	43				
	SD R2		0		36	41	_			
	00.02	1000	20		36.0	40.0	_			
Dessive Cignal to Distortion Datio	SD R3		-30	*1	35.0	40.0		4D		
Receive Signal to Distortion Ratio		1020	40		25.0	32.0	_	dB		
	SD R4		-40		26.0	32.0				
			45		25.0	27.0	_			
	SD R5		-45		—	27.0	—			
	GT T1		3		-0.3	+0.01	+0.3			
	GT T2		-10			Reference				
Transmit Gain Tracking	GT T3	1020	-40		-0.3	-0.05	+0.3	dB		
	GT T4		-50		-0.6	-0.05	+0.6			
	GT T5		-55		-1.2	-0.08	+1.2	•		
	GT R1		3		-0.3	-0.06	+0.3			
	GT R2		-10			Reference				
Receive Gain Tracking	GT R3	1020	-40		-0.3	+0.08	+0.3	dB		
	GT R4		-50		-0.6	+0.12	+0.6			
	GT R5		-55		-1.2	+0.15	+1.2			

(ML7001-01: $F_S = 8 \text{ kHz}$, $V_{DD} = 2.7 \text{ V}$ to 3.3 V, $Ta = -30 \text{ to } +85^{\circ}\text{C}$) (ML7000-01: $F_S = 8 \text{ kHz}$, $V_{DD} = +5.0 \text{ V} \pm 5^{\circ}$, $Ta = -30 \text{ to } +85^{\circ}\text{C}$)

*1 Psophometric filter is used.

AC Characteristics (Continued)

		(ML	7000-01:	$F_{S} = 8 \text{ kHz},$	$V_{DD} = +5.0$) V ±5%, T	a = –30 to	+85°C)	
Parameter	Symbol	Freq. (Hz)	Level (dBm0)	Condition	Min.	Тур.	Max.	Unit	
	Nidio T			AIN = SG	—	-73.0	-66.0		
Idle Channel Noise	Nidle T		_	*1 *2	—	-69.5	-65.0	dDmOn	
	Nidia D			*1 *2	—	-78.0	-71.0	dBm0p	
	NidleR		_	1 2	—	-75.0	-65.0	1	
				V _{DD} = 5.0 V, Ta = 25°C	0.58	0.6007	0.622		
Absolute Level (Initial Difference)	AV T	1020	0	V _{DD} = 3.0 V, Ta = 25°C	0.338	0.35	0.362	Vrms	
				*3	0.58	0.6007	0.622		
	AV R			- 3	0.483	0.5	0.518		
Absolute Level	AV Tt	$V_{DD} = 5 \text{ V} \pm 5$	5%, Ta = -30	to 85°C *3	-0.2	—	0.2	dB	
(Deviation of Temperature and Power)	AV Rt	V _{DD} = 2.7 to	3.3 V, Ta = –3	30 to 85°C *3	-0.2	—	0.2	ub	
Absolute Delay	Td	1020	0	A to A BCLK = 64 kHz	_	_	0.6	ms	
	t _{GD} T1	500			—	0.19	0.75		
	t _{GD} T2	600			_	0.11	0.35		
Transmit Group Delay	t _{GD} T3	1000	0	*4	—	0.02	0.125	ms	
	t _{GD} T4	2600			—	0.05	0.125		
	t _{GD} T5	2800			—	0.07	0.75		
	t _{GD} R1	500			—	0.00	0.75		
	t _{GD} R2	600			_	0.00	0.35		
Receive Group Delay	t _{GD} R3	1000	0	*4		0.00	0.125	ms	
	t _{GD} R4	2600			_	0.09	0.125		
	t _{GD} R5	2800			_	0.12	0.75		
Crosstalk Attenuation	CR T	1020	0	$\text{TRANS} \rightarrow \text{RECV}$	_	-85	-75	dB	
rosstalk Attenuation	CR R	1020	U	$\text{RECV} \rightarrow \text{TRANS}$	—	-76	-70	UD	

 $\begin{array}{ll} (ML7001\text{-}01:\ F_S=8\ kHz,\ V_{DD}=2.7\ V\ to\ 3.3\ V,\ Ta=-30\ to\ +85^\circ\text{C}) \\ (ML7000\text{-}01:\ F_S=8\ kHz,\ V_{DD}=+5.0\ V\ \pm5\%,\ Ta=-30\ to\ +85^\circ\text{C}) \end{array}$

*1 Psophometric filter is used.

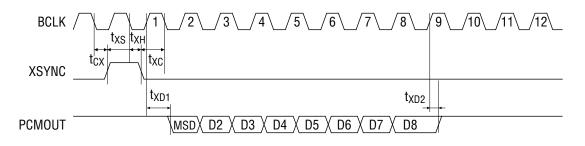
*2 Input "0" code to PCMIN.

*3 AVR is defined at VFRO output.

*4 With respect to minimum value of the group delay distortion.

AC Characteristics (Continued)

(ML7001-01: $F_S = 8 \text{ kHz}$, $V_{DD} = 2.7 \text{ V}$ to 3.3 V, $Ta = -30 \text{ to } +85^{\circ}\text{C}$) (ML7000-01: $F_S = 8 \text{ kHz}$, $V_{DD} = +5.0 \text{ V} \pm 5\%$, $Ta = -30 \text{ to } +85^{\circ}\text{C}$)


Parameter	Symbol	Freq. (Hz)	Level (dBm0)	Condition	Min.	Тур.	Max.	Unit
Discrimination	DIS	4.6 kHz to	0	0 to	30	32	_	dB
		72 kHz		4000 Hz				
Out-of-band Spurious	S	300 to	0	4.6 kHz to		-37.5	-35	dBm0
		3400		100 kHz				
Intermedulation Distortion		fa = 470	-4	2fa – fb		-52	-35	dBm0
Intermodulation Distortion	IMD	fd = 320			_			dBm0
Dawar Currie Naise Dejection Datio	PSR T	0 to	50 m)/	Measured		20		
Power Supply Noise Rejection Ratio	PSR R	50 kHz	50 mV _{PP}	inband *5	_	30		dB
Digital Output Delay Time	t _{XD1}	C _L = 100 p	F + 1 LST	TL	20		200	200
	t _{XD2}	Pull-up re	sistor = 50	0 Ω	20		200	ns

*5 Measured under idle channel noise.

TIMING DIAGRAM

PCM Data Input/Output Timing

Transmit Timing

Receive Timing

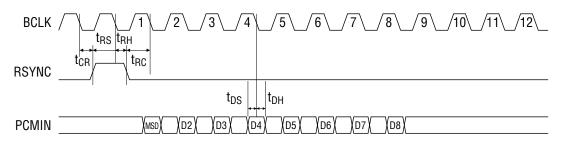
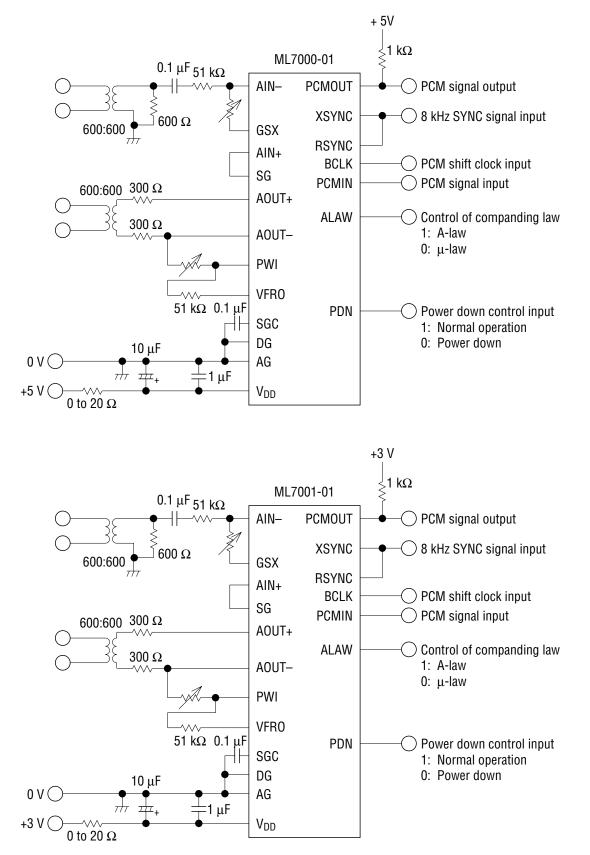
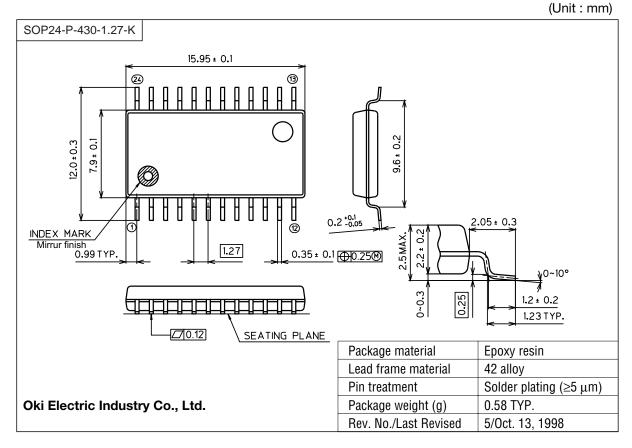



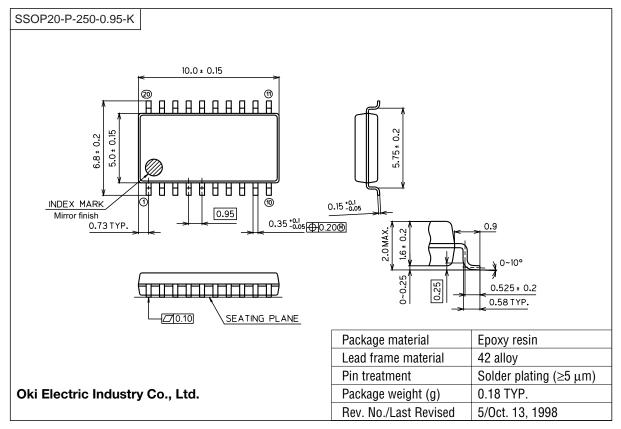
Figure 1 Basic Timing


APPLICATION CIRCUIT

NOTES ON USE

- To ensure proper electrical characteristics, use by pass capacitors with excellent high frequency characteristics for the power supply and keep them as close as possible to the device pins.
- Connect the AG pin and the DG pin as closely as possible. Connect to the system ground with low impedance.
- Mount the device directly on the board when mounted on PCBs. Do not use IC sockets. If the use of IC socket is unavoidable, use the short lead type socket.
- When mounted on a frame, use electromagnetic shielding if any electromagnetic wave sources such as power supply transformers surrounds the device.
- Keep the voltage on the V_{DD} pin not lower than –0.3 V even instantaneously to avoid latchup that may otherwise occur when power is turned on.
- Use a low noise (particularly, low level type of high frequency spike noise or pulse noise) power supply to avoid erroneous operation and the degradation of the characteristics of these devices.

PACKAGE DIMENSIONS


Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

OKI Semiconductor

ML7000-01/ML7001-01

(Unit : mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

NOTICE

- 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
- 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
- 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
- 4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
- 5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
- 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
- 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
- 8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.
- 9. MS-DOS is a registered trademark of Microsoft Corporation.

Copyright 2000 Oki Electric Industry Co., Ltd.

Printed in Japan