

FSB

GENERAL DESCRIPTION

Metallized polypropylene dielectric capacitor with controlled self-healing.

Reinforced metallization developed for high impulse currents.

APPLICATIONS

- IGBT protection
- IGBT clamping

PACKAGING

• Parallelipedic plastic case with thermosetting resin

ELECTRICAL CHARACTERISTICS

Capacitance Range C _n	0.10µF to 2.5µF			
Tolerance on C _n	±5%: FSB15 ±10%: FSB6			
Rated DC Voltage Vndc	850 to 2000 V			
Stray Inductance	≤ 25 nH			
RMS Current	I _{rms} max. = up to 28A The currents shown in the tables are maximum. It is necessary to respect the thermal limits of the dielectric 85°C see "Hot spot temperature calculation"			
Insulation Resistance	R _i x C ≥ 30,000 s			
Impulse Current	I ² .t max. = up to 1.69 A ² s Spikes or peak currents in the capacitors may cause a deterioration of the bonding between the metallization and the connections. These bonds are capable of withstanding only a limited amount of energy for each spike. The table shows the maximum energy permitted in the form (I ² .t), where I is in Ampere, and t is in seconds.			
Note: The formula (l ² .t) replaces dv/dt which is This type of capacitor has been designed	less easy to use as it is not an expression of energy ($I = C.dv/dt$). d to withstand high (I ² .t) values.			
Variation of Capacitance with Temperature	$\frac{\Delta C}{C} \le \pm 2\%$ between -40 and +85°C			
Climatic Category	40/085/56 (IEC 68)			
Test Voltage Between Terminals @ 25°C	1.6 V _n dc during 10s			
Withstanding Voltage Between Terminals and Case @ 25°C	@ 3 kVrms @ 50Hz during 1 min.			

FSB

GENERAL DESCRIPTION

DIMENSIONS: millimeters (inches)

Box Kind	Length mm ±0.40 (inches)	Width mm ±0.40 (inches)	Height mm ±0.30 (inches)	Dimensions lead mm +10% -0.05 (inches)	LS mm ±0.40 (inches)		
PO	31.1 (1.230)	13.0 (0.051)	22.4 (0.880)	Ø 0.80 (0.031)	27.5 (1.083)		
18	31.1 (1.230)	14.6 (0.580)	25.7 (1.010)	Ø 0.80 (0.031)	27.5 (1.083)		
19	31.1 (1.230)	17.3 (0.068)	29.8 (1.170)	Ø 0.80 (0.031)	27.5 (1.083)		
26	31.1 (1.230)	20.8 (0.820)	31.3 (1.230)	Ø 1.00 (0.039)	27.5 (1.083)		
R68 2 Terminals Solution	32.5 (1.280)	22.0 (0.870)	37.0 (1.460)	Ø 1.00 (0.039)	27.5 (1.083)		
R68 4 Terminals Solution	32.5 (1.280)	22.0 (0.870)	37.0 (1.460)	1.20 x 0.60 (0.047 x 0.023)	27.5 (1.083)		

References	Capacitance (µF)	Box Kind	(l²t) (A²s)	Irms (A)	Rs (mΩ)	Rth (hotspot/amb.)
U _N dc = 1200V	Vpeak = 1600V		Vrms = 560V		Vs = 2000V	
FSB16U0154J	0.15	PO	0.05	3	14.3	45.9
FSB26U0274J	0.27	18	0.15	7.6	8.4	36.8
FSB36U0394J	0.39	19	0.31	11	6.2	32.2
FSB46U0474J	0.47	26	0.41	12	5.6	29.4
FSB56U0684J	0.68	R68 (2 terminals)	0.94	12	3.8	23.7
FSB56U0684JJC	0.68	R68 (4 terminals)	0.94	16.7	3.8	23.7
U _N dc = 1600V		Vpeak = 2000V	Vrm	s = 630V	V	/s = 2300V
FSB16M0134J	0.13	PO	0.05	4.6	13.3	44.9
FSB26M0184J	0.18	18	0.1	6.4	9.9	35.9
FSB36M0244J	0.24	19	0.18	8.5	7.8	32.4
FSB46M0334J	0.33	26	0.35	11.7	5.6	28.6
FSB56M0434J	0.43	R68 (2 terminals)	0.59	12	4.6	23.8
FSB56M0434JJC	0.43	R68 (4 terminals)	0.59	15.2	4.6	23.8
$U_{N}dc = 2000V$		Vpeak = 2400V	Vrm	s = 700V	V	/s = 2600V
FSB16N0104J	0.1	PO	0.05	4.2	14.3	44.6
FSB26N0134J	0.13	18	0.08	5.5	11.3	35.7
FSB36N0184J	0.18	19	0.15	7.6	8.5	32.1
FSB46N0224J	0.22	26	0.22	9.3	6.8	29.1
FSB56N0304J	0.3	R68 (2 terminals)	0.41	12	5.3	23.8
FSB56N0304JJC	0.3	R68 (4 terminals)	0.41	12.7	5.3	23.8

28

FSB

FSB6

Plastic case resin filled

Dimensions: millimeters (inches)

GENERAL TOLERANCES: ±0.50mm (±0.020 inches)

Part Number	Capacitance (µF)	(l2t) (A ² s)	I _{rms max.} (A)	$\mathbf{R}_{\mathbf{s}}$ (m Ω)	R _{th} (°C/W)	
FSB 850V	$V_{n}dc = 850V$	V _{peak} = 1200V	V _{rms} = 450V		/ _S = 1500V	
FSB66B0205K	2	0.99	25	3.4	19.1	
FSB66B0225K	2.2	1.19	28	3.1	18.6	
FSB66B0255K	2.5	1.54	28	2.7	17.8	
FSB 1200V	V _n dc = 1200V	V _{peak} = 1600V	V _{rms} = 56	60V V ₈	s = 2000V	
FSB66U0105K	1	1.47	25	3.6	17.2	
FSB66U0125K	1.2	1.69	26	3.4	17.5	
FSB66U0155K	1.5	1	26	3.4	17.5	
FSB 2000V	$V_{n}dc = 2000V$	V _{peak} = 2400V	V _{rms} = 700V V _s = 2600		s = 2600V	
FSB66N0474K	0.47	0.41	22	6.3	19.4	
FSB66N0564K	0.56	0.62	23	5.2	17.9	
FSB66N0684K	0.68	0.91	24	4.4	17.3	

FSB

STANDARDS

IEC 61071-1, IEC 61071-2: Power electronic capacitors

TANGENT OF LOSS ANGLE (TAN δ_0) FOR POLYPROPYLENE DIELECTRIC

Polypropylene has a constant dielectric loss factor of $2x10^{-4}$ irrespective of temperature and frequency (up to 1 MHz).

IGBT SNUBBER

L = stray inductance IGBT + capacitor R = serial resistance IGBT + capacitor

HOT SPOT TEMPERATURE CALCULATION

 $\theta_{hot spot} = \theta_{ambient} + (P_d + P_t) \times R_{th}$

with \dot{P}_d (Dielectric losses) = Q x tg δ_0

$$\Rightarrow [\frac{1}{2} \times C_n \times (V_{ripple peak to peak})^2 \times f] \times (2 \times 10^{-4})$$

 P_t (Thermal losses) = $R_s \times (I_{rms})^2$

Rth : Rth ambient / hot spot in °C/W

where	C _n in Farad	I _{rms}	in Ampere	f	in Hertz
	V in Volt	R_{s}	in Ohm	θ	in °C

Due to the design of the capacitor and its technology, the thermal impedance between the terminations and the core of the capacitor is low, it is necessary to take care that the capacitor is never overheated by use of wrongly sized connections.

Do not use the capacitor as a heat sink.

Due to the complexity of the IGBT / capacitor thermal exchanges, we recommend that thermal measurements shall be made on the different components. We would be pleased to advise you on specific problems.

WORKING TEMPERATURE

(according to the power to be dissipated) -40°C to +85°C

MARKING

TPC logo Capacitance and tolerance in clear Nominal DC voltage in clear RMS current in clear Date of manufacture (IEC coding)

$$Ieff = \sqrt{\left[\frac{C\beta_0^2 \times U_0}{2j\beta}\right]^2 \times \frac{1}{T} \times \left[\frac{e^{-2\alpha \times T}}{\beta^2 + \alpha^2} \times [\beta \sin(2\beta \times T) - \alpha \times \cos(2\beta \times T)] + \frac{1}{\alpha} \times e^{-2\alpha \times T} + \frac{\alpha}{\beta^2 + \alpha^2} - \frac{1}{\alpha}\right]}$$

with $\beta 0 = \sqrt{\frac{1}{LC}}; \ \alpha = \frac{R}{2L}; \ \beta = \sqrt{\beta_0^2 - \alpha^2}$

30