

15-Line SCSI Bus Terminators

FEATURES

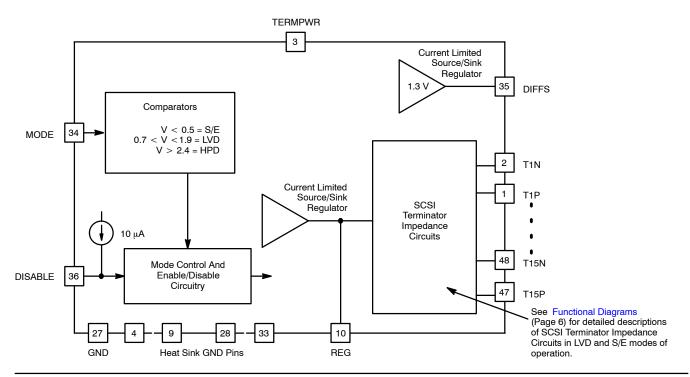
- Auto Selection of S/E or LVD SCSI Termination
- 2.7-V to 5.25-V TERMPWR Range
- Meets SCSI-1, SCSI-2, SPI-2 (ULTRA-2), SPI-3 (ULTRA-160) and SPI-4 (ULTRA-320) Standards
- Differential Failsafe Bias
- Thermal Package
- On-Chip Thermal Shutdown Circuit
- Active Negation
- Hot Swap Compatible

- Pin Compatible with UCC5638
- Lead (Pb)-Free SQFP-48 Package

APPLICATIONS

- Disk Array (RAID)
- Storage Area Networks (SAN)
- Network Attached Storage (NAS)
- SCSI Cable
- Server and Workstation
- Industrial Computers
- High-End Personal Computers

DESCRIPTION


The SiP5638 provides active bus termination suitable for all SCSI bus operational modes from SCSI-1 through SPI-4 (Ultra 320). The termination includes impedance matching of the SCSI bus to minimize signal reflections from the end of the bus, as well as required SCSI bus biasing for either S/E (single ended) or LVD (low voltage differential) operation.

The SiP5638 has fifteen (15) output channels (T1–T15). Each output channel provides termination for one SCSI data signal, parity signal or control signal. Two SiP5638 ICs provide complete termination for a wide SCSI bus.

The SiP5638 senses the operational state of the SCSI bus via the DIFFSENS bus signal, and automatically switches to S/E or LVD operation as required. It cannot be used on an HPD (high power differential) SCSI bus, and goes into high impedance mode when the voltage on the DIFFSENS line indicates HPD operation. The SiP5638 also presents high impedance to the SCSI bus if the DISABLE pin is asserted, or if TERMPWR is removed from the IC.

The SiP5638 is available in a lead (Pb)-free SQFP-48 package for operation over the temperature range of 0 to 70°C.

FUNCTIONAL BLOCK DIAGRAM

Document Number: 73098 S-41843—Rev.A, 11-Oct-04 www.vishay.com

New Product

TYPICAL APPLICATION DIAGRAM

Group 1 Signals:

DB(0), DB(1), DB(2), DB(3), DB(4), DB(5), DB(6), DB(7), DB(P), DB(12), DB(13), DB(14), DB(15), DB(P1)

Group 2 Signals:

ATN, BSY, ACK, RST, MSG, SEL, C/D, REQ, I/O, DB(8), DB(9), DB(10), DB(11)

New Product

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS (ALL VOLTAGES REFERENCED TO GND = 0 V)

TERMPWR 6 V	Storage Temperature
TXN, TXP0.3 to 6 V	Junction Temperature
MODE, DISABLE, M/S, STATUS0.3 to 6 V	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE (ALL VOLTAGES REFERENCED TO GND = 0 V)

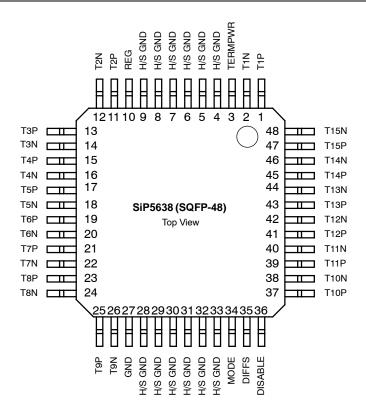
TERMPWR 2.7	V to 5.25 V Or	perating Temperature Range (T _{A)}	0 to 70 °C
-------------	----------------	---	------------

		Test Conditions Unless Specified		Limits			
		TERMPWR = 2.7 to 5.25 V, DISABLE = 0 V			T		
Parameter	Symbol	T _A :	= T _J = 0 to 70 °C	Min ^a	Typb	Max ^a	Unit
SCSI Channels (T1 to T	15), LVD Operati	on					
Differential Impedance	Z _{DIFF}	MODE 40V		100	105	110	Ω
Common Mode Impedance	Z _{CM}			120	140	160	
Differential Failsafe Bias	V _{DIFF}	r	MODE = 1.3 V	100	112	125	mV
Common Mode Bias	V _{CM}			1.15	1.25	1.35	V
SCSI Channels (T1 to T	15), S/E Operation	n					
Impedance	Z _{S/E}	MODE = 0 V		100	108	116	Ω
Bias Voltage	V _{S/E}			2.5	2.7	3.0	V
0.44 04		MODE AV	Channel Voltage = 0.2 V	-25.4	-23	-20.5	
Output Current	I _{S/E}	MODE = 0 V	Channel Voltage = 0.5 V	-22.4			mA
GND Driver Impedance	Z _{GS}	MODE	= 0 V, I _{TEST} = 10 mA		30	60	Ω
SCSI Channels (T1 to T	15), Termination	Disabled					
Channel Leakage ^c	ΙL	Channel Voltage = 0 to 5 V		-500	0	500	nA
Channel Capacitance ^{c, d}	C _T	Referenced to GND			3		pF
SCSI Regulator, LVD M	ode						
Output Voltage	V _{REG(LVD)}	$0.5~\text{V} \leq \text{V}_{\text{CM}} \leq 2.0~\text{V}^{\text{e}}$		1.15	1.25	1.35	V
Source Current	I _{SO(LVD)}	V _{REG} = 0 V		-1000	-600	-400	
Sink Current	I _{SI(LVD)}	V _{REG} = 4 V		200	400	700	mA
SCSI Regulator, S/E Mo	ode						
Output Voltage	V _{REG(S/E)}	$0.2 \text{ V} \leq \text{V}_{\text{CM}} \leq 4.0 \text{ V}^{\text{f}}$		2.5	2.7	3.0	V
Source Current	I _{SO(S/E)}	V _{REG} = 0 V		-1000	-600	-400	
Sink Current	I _{SI(S/E)}	V _{REG} = 4 V		200	400	700	mA
DIFFSENS Regulator							
Output Voltage	V _{DIFFS}	-5 mA ≤ I _{DIFFS} ≤ 50 μA		1.2	1.3	1.4	V
Source Current	I _{SO(DIFFS)}	V _{DIFFS} = 0 V		-15	-8	-5	mA
Sink Current	I _{SI(DIFFS)}	V _{DIFFS} = 2.75 V		50	100	200	μΑ
DISABLE Input					,	•	
Input Threshold	V _{TH(DIS)}			0.8	1.0	1.2	V
Input Current		0 V ≤	V _{DISABLE} ≤ 1.2 V	-30	-10	-3	<u> </u>
	I _{IN(DIS)}	V _{DISABLE} > 1.2 V		-30	0	10	μΑ

Document Number: 73098

S-41843—Rev.A, 11-Oct-04

New Product



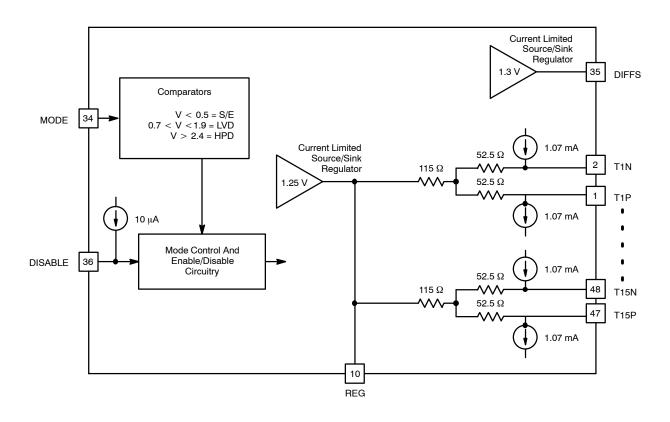
SPECIFICATIONS						
		Test Conditions Unless Specified	Limits			
Parameter	Symbol	TERMPWR = 2.7 to 5.25 V, DISABLE = 0 V $T_A = T_J = 0$ to 70 °C	Min ^a	Typb	Max ^a	Unit
MODE Input						
S/E to LVD Threshold	V _{TH(S/E)}		0.5	0.6	0.7	v
LVD to HPD Threshold	V _{TH(HPD)}		1.9	2.1	2.4	\ \
Input Current	I _{IN(MODE)}	$0 \text{ V} \le \text{V}_{\text{MODE}} \le 5.25 \text{ V}$	-1	0	1	μΑ
THERMAL Shutdown	· ·					
Shutdown Temperature ^d	T _{OFF}	Rising Temperature		160		°C
Hysteresis ^d	T _{HYS}			10		*0
TERMPWR Supply						•
LVD Mode	I _{DD(LVD)}	MODE = 1.3 V, Channels Unloaded		25	35	
S/E Mode	I _{DD(S/E)}	MODE = 0 V, Channels Unloaded		10	20	mA
HPD Mode	I _{DD(HPD)}	MODE = 3 V		10	20	
Disabled Mode	I _{DD(DIS)}	DISABLE = 3 V		500	1000	μΑ

- Notes
 a. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum is used in this data sheet.
 b. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
 c. MODE = 3 V and/or DISABLE = 3 V and/or TERMPWR = 0 V.

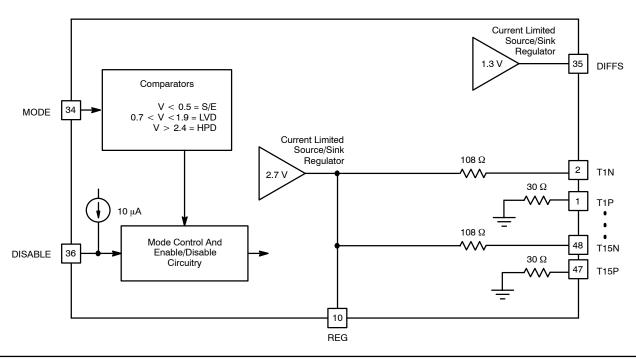
- Guaranteed by design, not subject to production test. V_{CM} applied simultaneously to Line PLUS and Line MINUS pins of all SCSI channels T1-T15. V_{CM} applied simultaneously to Line MINUS pins of all SCSI channels T1-T15.

PIN CONFIGURATION AND ORDERING INFORMATION

ORDERING INFORMATION			
Part Number	Temperature Range	Marking	
SiP5638CS-TR—E3	0 to 70°C	SiP5638CS	

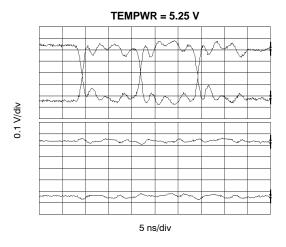

PIN DESCRIPTION				
Pin	Name	Function		
1, 11, 13, 15, 17, 19, 21, 23, 25, 37, 39, 41, 43, 45, 47	TXP; X = 115	Positive terminator channel pins. Provide positive signal line termination in LVD operation, and are connected to GND through low impedance in S/E operation. In HPD, DISABLE, or power off condition these pins present high impedance to the SCSI bus.		
2, 12, 14, 16, 18, 20, 22, 24,26, 38, 40, 42, 44, 46, 48	TXN; X = 115	Negative terminator channel pins. Provide negative signal line termination in LVD operation, and line termination for S/E operation. In HPD, DISABLE, or power off condition these pins present high impedance to the SCSI bus.		
3	TERMPWR	Power for the terminator IC. Connect to the TERMPWR lines on the SCSI bus and decouple with a 4.7-μF capacitor to GND at the IC.		
4, 5, 6, 7, 8, 9, 28, 29, 30, 31, 32, 33	H/S GND	Heat sink ground. Should be connected to as large a grounded heat sink area on the PC board as is practical.		
10	REG	SCSI regulator output. Connect a 4.7-μF bypass capacitor from this pin to GND.		
27	GND	Electrical ground connection for the terminator IC. Connect to the ground lines of the SCSI Bus		
34	MODE	SCSI MODE select pin. Connect to the DIFFSENS line of the SCSI bus to sense the present mode of operation on the bus. Decouple MODE from the DIFFSENS signal with a 50-k Ω /4.7- μ F low pass filter to meet SPI-3 mode change requirements.		
35	DIFFS	DIFFSENS regulator output. Connect to the DIFFSENS line of the SCSI bus to bias the mode selection function.		
36	DISABLE	Chip disable. There is a small (nominal 10 µA) pull up current on this pin. Pull this pin to GND to enable bus termination. When this pin is left floating or pulled high all SCSI channel pins present high impedance to the SCSI bus, and the SCSI regulator and DIFFSENS regulator are both disabled.		

Document Number: 73098


S-41843-Rev.A, 11-Oct-04

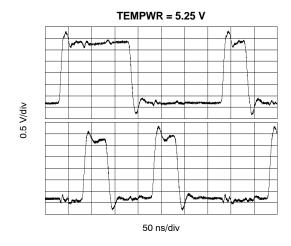
FUNCTIONAL BLOCK DIAGRAM—LVD OPERATION

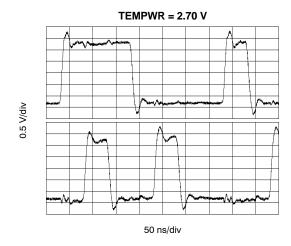
FUNCTIONAL BLOCK DIAGRAM—S/E OPERATION



New Product

LVD WAVEFORMS

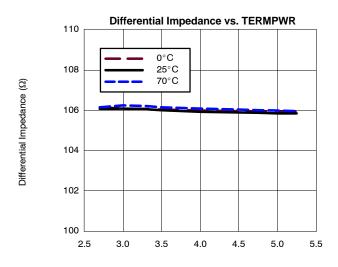

160 Mbyte/sec data transfer. Top panel DB10 T- and T+ signals. Bottom panel DB9 T- and T+ signals. All bits except DB9 toggling at maximum data rate.

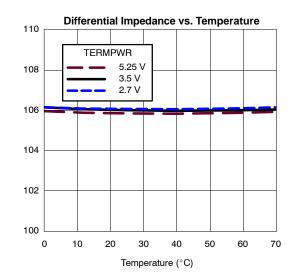


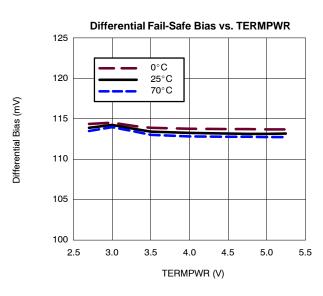
S/E WAVEFORMS

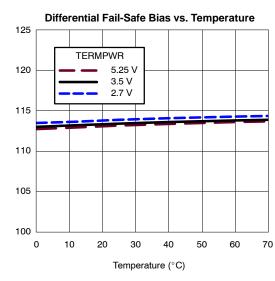
40 Mbyte/sec data transfer. Top panel DB10 T- signals. Bottom panel DB9 T- signals.

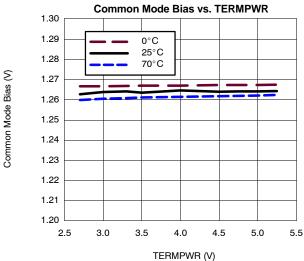
New Product

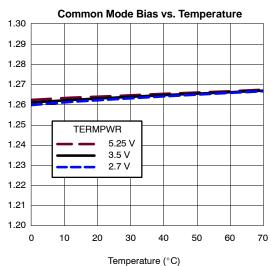

Differential Impedance (᠒)

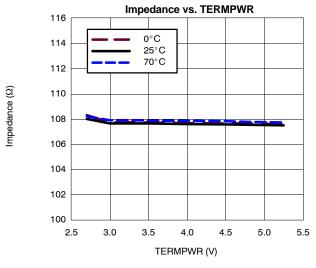

Differential Bias (mV)

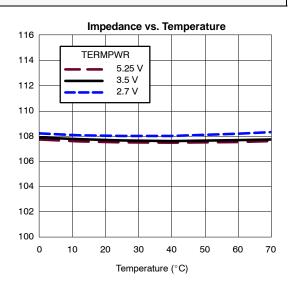

Common Mode Bias (V)

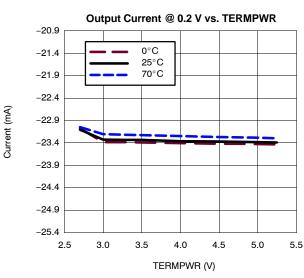


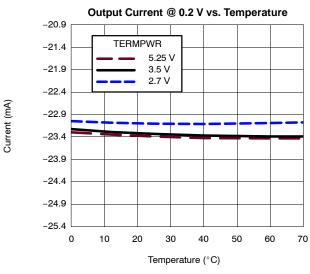

LVD TYPICAL CHARACTERISTICS

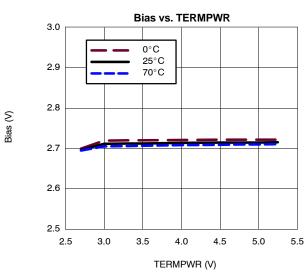


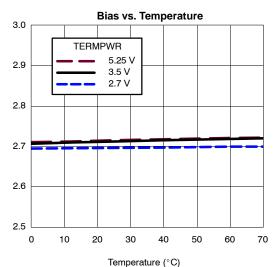

Impedance (Q)


Bias (V)




Vishay Siliconix


SE TYPICAL CHARACTERISTICS



Document Number: 73098 S-41843—Rev.A, 11-Oct-04

New Product

DETAILED OPERATION

The SiP5638 is a multimode active terminator IC, which detects the operating mode of the SCSI bus, and switches to the appropriate termination configuration accordingly.

Two SiP5638 terminators are required at each end of a wide SCSI bus to terminate 27 lines (18 data, 9 control). In LVD mode the SiP5638 provides 105- Ω differential impedance and 112-mV differential bias between each TN/TP pair of terminator lines. In S/E mode the SiP5638 provides 108- Ω impedance and 2.7-V pull-up on each TxN pin, and low impedance to ground on each TxP pin. In HPD mode the SiP5638 disconnects from the bus and presents high impedance to all TN/TP lines.

Each SiP5638 IC has a 1.3-V DIFFSENS regulator output that can be used to drive the DIFFSENS line of a SCSI bus. The DIFFSENS regulator attempts to drive the DIFFSENS control signal to 1.3 V, but is current limited so that S/E or HPD devices

on the SCSI bus can override the DIFFSENS regulator and put the bus into S/E or HPD mode of operation.

The MODE pin senses the operational state of the SCSI bus by detecting the voltage on the DIFFSENS control line through an external R/C lowpass filter. 50 k Ω /4.7 μ F are recommended component values for the filter to meet SPI-3 mode change requirements.

The DISABLE pin is used to connect/disconnect the SiP5638. If it is pulled to GROUND the SiP5638 is in connect mode, and operates as a terminator. If it is pulled to TRMPWR or left open the device is in disconnect mode and presents high impedance to the SCSI bus. In disconnect mode the DIFFSENS regulator is disabled.

The SiP5638 operates within SCSI specifications with the TERMPWR voltage between 2.7 V and 5.25 V, which enables it to operate in both 5-V and 3.3-V systems. The 2.7-V lower limit guarantees correct performance in a 3.3-V system.

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?73098.

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000 www.vishay.com
Revision: 08-Apr-05 1