

LET9085

RF POWER TRANSISTORS

Ldmos Enhanced Technology

TARGET DATA

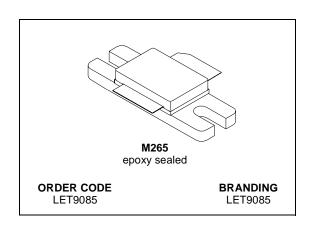
N-CHANNEL ENHANCEMENT-MODE LATERAL MOSFETs

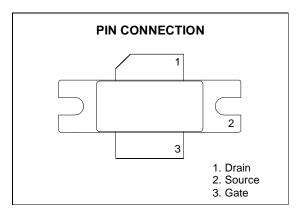
• IS-95 CDMA PERFORMANCES

P_{OUT} = 20 W EFF. = 28 %

• EDGE PERFORMANCES

P_{OUT} = 35 W EFF. = 35 %


GSM PERFORMANCES


P_{OUT} = 75 W EFF. = 55 %

- EXCELLENT THERMAL STABILITY
- BeO FREE PACKAGE
- INTERNAL INPUT MATCHING
- ESD PROTECTION

The LET9085 is a common source N-Channel enhancement-mode lateral Field-Effect RF power transistor designed for broadband commercial and industrial applications at frequencies up to 1.0 GHz. The LET9085 is designed for high gain and broadband performance operating in common source mode at 26 V. Its internal matching makes it ideal for base station applications requiring high linearity.

ABSOLUTE MAXIMUM RATINGS $(T_{CASE} = 25 \degree C)$

Symbol	Parameter	Value	Unit
V _{(BR)DSS}	Drain-Source Voltage	65	V
V _{GS}	Gate-Source Voltage	-0.5 to +15	V
I _D	Drain Current	12	Α
P _{DISS}	Power Dissipation (@ Tc = 70 °C)	186	W
Tj	Max. Operating Junction Temperature	200	°C
T _{STG}	Storage Temperature	-65 to +150	°C

THERMAL DATA

_{j-c)} Junction -Case Thermal Res	0.7	°C/W
--	-----	------

January, 28 2003 1/4

 $Downloaded \ from \ \underline{Elcodis.com} \ \ electronic \ components \ distributor$

ELECTRICAL SPECIFICATION (T_{CASE} = 25 °C)

STATIC (Per Section)

Symbol	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	$V_{GS} = 0 \text{ V}$ $I_D = 10 \mu\text{A}$	65			V
I _{DSS}	V _{GS} = 0 V V _{DS} = 26 V			1	μΑ
I _{DSS}	V _{GS} = 0 V V _{DS} = 65 V			10	μΑ
I _{GSS}	V _{GS} = 5 V V _{DS} = 0 V			1	μΑ
V _{GS(Q)}	$V_{DS} = 26 \text{ V}$ $I_D = TBD$		TBD		V
V _{DS(ON)}	V _{GS} = 10 V I _D = 2 A		0.19	0.4	V
G _{FS}	V _{DS} = 10 V I _D = 6 A		8		mho
C _{ISS} *	V _{GS} = 0 V V _{DS} = 28 V f = 1 MHz		TBD		pF
Coss	V _{GS} = 0 V V _{DS} = 28 V f = 1 MHz			75	pF
C _{RSS}	V _{GS} = 0 V V _{DS} = 28 V f = 1 MHz		2.9		pF

^{*} Includes Internal Input Moscap.

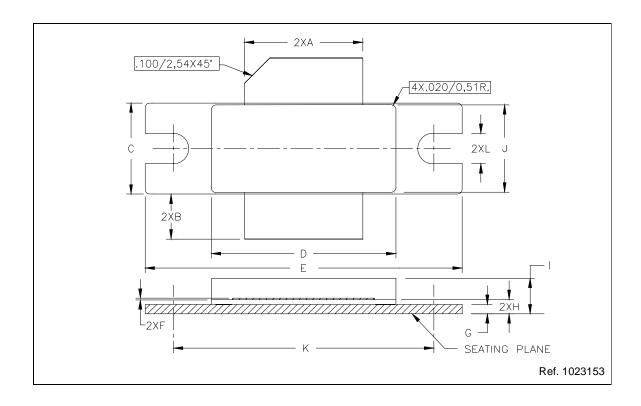
DYNAMIC (*f* = 865 - 895 MHz)

Symbol	Test Conditions	Min.	Тур.	Max.	Unit
P _{1dB}	$V_{DD} = 26 \text{ V} I_{DQ} = \text{TBD}$	90	105		W
ηD	$V_{DD} = 26 \text{ V}$ $I_{DQ} = TBD$ $P_{OUT} = 90 \text{ W}$	50	55		%
G _P	$V_{DD} = 26 \text{ V}$ $I_{DQ} = TBD$ $P_{OUT} = 90 \text{ W PEP}$	17			dB
IMD3	$V_{DD} = 26 \text{ V}$ $I_{DQ} = TBD$ $P_{OUT} = 90 \text{ W PEP}$		-31	-28	dBc
Load mismatch	$V_{DD} = 26 \text{ V}$ $I_{DQ} = TBD$ $P_{OUT} = 90 \text{ W}$ ALL PHASE ANGLES			10:1	VSWR
POUT (CDMA) ⁽¹⁾	750 KHz ACPR: -45dBc 1.98 MHz ACPR: -60dBc		20		W
η _{D (CDMA)} ⁽¹⁾	750 KHz ACPR: -45dBc 1.98 MHz ACPR: -60dBc		28		%

⁽¹⁾ IS-95 CDMA Pilot, Sync, Paging, Traffic, Codes 8 Thru 13

DYNAMIC (*f* = 920 - 960 MHz)

P _{1dB}	$V_{DD} = 26 \text{ V}$ $I_{DQ} = TBD$	70	75		W
G _P	$V_{DD} = 26 \text{ V}$ $I_{DQ} = TBD$ $P_{OUT} = 70 \text{ W}$	15	16		dB
η _D	$V_{DD} = 26 \text{ V}$ $I_{DQ} = TBD$ $P_{OUT} = 70 \text{ W}$	50	55		%
Load mismatch	$V_{DD} = 26 \text{ V}$ $I_{DQ} = TBD$ $P_{OUT} = 85 \text{ W}$ ALL PHASE ANGLES			10:1	VSWR
P _{OUT(EDGE)}	400 KHz < -60 dBc 600 KHz < -70 dBc EVM < 3 %		35		W
η _{D(EDGE)}	400 KHz < -60 dBc 600 KHz < -70 dBc EVM < 3 %		35		%


ESD PROTECTION CHARACTERISTICS

Test Conditions	Class		
Human Body Model	2		
Machine Model	M3		

2/4

M265 (.370 x .780 WIDE 2/L N/HERM W/FLG) MECHANICAL DATA

DIM		mm			Inch	
DIM.	MIN.	TYP.	MAX	MIN.	TYP.	MAX
Α	12.57		12.83	.495		.505
В	4.32		5.33	.170		.210
С	9.65		9.91	.380		.390
D	19.61		20.02	.772		.788
E	33.91		34.16	1.335		1.345
F	0.08		0.15	.003		.006
G	0.89		1.14	.035		.045
Н	1.45		1.70	.057		.067
I	3.18		4.32	.125		.170
J	9.27		9.53	.365		.375
K	27.69		28.19	1.090		1.110
L	3.00		3.51	.118		.138

3/4

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics ® 2003 STMicroelectronics - All Rights Reserved

All other names are the property of their respective owners.

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

57

4/4