

SP7512 and HS3120

Double-Buffered 12-Bit Multiplying DAC

- Monolithic Construction
- 12-Bit Resolution
- 0.01% Non-Linearity
- Four–Quadrant Multiplication
- Latch-up Protected
- Low Power 30mW
- Single +15V Power Supply

DESCRIPTION...

The **SP7512** and **HS3120** are precision 12-bit multiplying DACs, double—buffered for easy interfacing with microprocessor busses. Both unipolar and bipolar operation can be accommodated with a minimum of external components. The **SP7512** is available for use in commercial and industrial temperature ranges, packaged in a 28-pin SOIC. The **HS3120** is available in commercial and military temperature ranges, packaged in a 28-pin side—brazed DIP.

SPECIFICATIONS

(Typical @ 25°C, nominal power supply, V_{pcc} = +10V, unipolar, unless otherwise noted)

DIGITAL INPUT Resolution			MAX.	UNITS	CONDITIONS
i (Coolulloi i	12			Bits	
2-Quad, Unipolar Coding	l	ı ry & Comp.	Binon/	حاات	The input coding is comple-
z-Quad, Unipolar Coding	Dinai	y & Comp.	. Dinary		
	l .		1		mentary binary if I_{02} is used.
4–Quad, Bipolar Coding		Offset Bina			
Logic Compatibility	۱ '	CMOS, TT	Ļ		Digital input voltage must no
					exceed supply voltage or go
					below -0.5V; "0" <0.8V;
					2.4V < "1" ≤V _{DD}
Input Current			±1	μΑ	55
Data Set-up Time	250			ns	All strobes are level triggere
					See Timing Diagram; GBD*
Strobe Width	250			ns	All strobes are level triggere
Subse Width	200			110	See Timing Diagram; GBD*
Data Hold Time	0			20	All strobes are level triggere
Data FIUIU FIITIE	0]	ns	
					See Timing Diagram; GBD*
REFERENCE INPUT					
Voltage Range			±25	V	
Input Impedance	4		12	KOhms	
ANALOG OUTPUT					
Scale Factor	62.5		187.5	μΑ/V _{REF}	
Scale Factor Accuracy	02.5	±0.4	107.5	μΑ V REF	Using the internal feedback
Scale Facior Accuracy				/0	
					resistor and an external op
Outside the state of			40		amp.
Output Leakage			10	nA	At 25°C; the output leakage
					current will create an offset
					voltage at the external op an
					output. It doubles every 10°C
					temperature increase.
Output Capacitance]		
C _{OUT} 1, all inputs high		80]	pF	
Cour 1, all inputs low		40]	pF	
Co. 2. all inputs high		40]	pF	
C _{OUT} 1, all inputs low C _{OUT} 2, all inputs high C _{OUT} 2, all inputs low		80		pF	
STATIC PERFORMANCE		- 50		Pi	
Integral Linearity					
SP7512BN/KN, HS3120-2			±0.015	% FSR	
Differential Linearity					
SP7512BN/KN, HS3120-2			±0.024	%FSR	
Monotonicity		I	1		
SP7512BN/KN, HS3120-2	Guar	anteed to	12 bits		
STABILITY					(T _{MIN} to T _{MAX})
Scale Factor			2	ppm FSR/°C	Note 1
Integral Linearity			0.2	ppm FSR/°C	1,010 1
			0.2	ppm FSR/°C	
			0.2	ppiii F3R/ C	/T += T \
Differential Linearity					(T _{MIN} to T _{MAX})
STABILITY		1			
STABILITY Monotonicity Temp. Range					
STABILITY Monotonicity Temp. Range SP7512KN, HS3120C	0		+70	°C	
STABILITY Monotonicity Temp. Range	0 -40		+70 +85	°C	
STABILITY Monotonicity Temp. Range SP7512KN, HS3120C					
STABILITY Monotonicity Temp. Range SP7512KN, HS3120C SP7512BN	-40		+85	°C	

SPECIFICATIONS (continued)

(Typical @ 25°C, nominal power supply, $V_{REF} = +10V$, unipolar unless otherwise noted)

PARAMETER	MIN.	TYP.	MAX.	UNITS	CONDITIONS
DYNAMIC PERFORMANCE					
Digital Small Signal Settling		1.0		μS	
Full Scale Transition Settling		2.0		μS	to 0.01% (strobed)
Reference Feedthrough Error					$(V_{REF} = 20Vpp)$
@ 1kHz		<1		mV	
@ 10kHz		2		mV	
Delay to output		400			5
from Bits input		100		ns	Delay times are twice the
from LDAC from CE		200		ns	amount shown at T _A = +125° C
==		120		ns	
POWER SUPPLY (V _{DD})					
Operating Voltage	_	+15 ±5%		V	specifications guaranteed
Voltage Range	+5		+16	V	
Current			2.5	mA	
Rejection Ratio			0.002	%/%	
ENVIRONMENTAL AND MEC	HANICAL				
Operating Temperature				_	
SP7512K	0		+70	°C	
SP7512B	-40		+85	°C	
HS3120-C	0		+70	°C	
HS3120-B	-55 -55		+125	°C	
HS3120-B/883	-55 65		+125	°C ℃	
Storage Temperature Package	-65		+150	, °C	
SP7512 N		ı 28-pin SOIC			
HS3120-C		pin Plastic			
HS3120-B		n Side-Bra			

Notes:

Using the internal feedback resistor, output leakage current creates an offset, which doubles every 10°C rise in temperature.

PIN ASSIGNMENTS

Pin 1 – FB₄ – Feedback Bipolar Operation

Pin 2 - LDTR - Ladder Termination

Pin 3 – FB₃ – Feedback Bipolar Operation

Pin 4 – V_{REF} – Reference Voltage Input

Pin 5 – FB₁ – Feedback, Unipolar/Bipolar

Pin 6 – I_{O1} – Current out into virtual ground

Pin 7 – I_{02} – Current out-complement of I_{01}

Pin 8 – V_{SS} – Ground, Analog and DAC Register

Pin $9 - DB_{11} - MSB$, Data Bit 1

Pin 10 – DB₁₀ – Data Bit 2

Pin $11 - DB_9 - Data Bit 3$

Pin 12 – DB₈ – Data Bit 4

Pin 13 – DB₇ – Data Bit 5

Pin 14 – DB₆ – Data Bit 6

Pin $15 - DB_5 - Data$ Bit 7

Pin $16 - DB_4 - Data Bit 8$

Pin 17 – DB₃ – Data Bit 9

Pin 18 – DB₂ – Data Bit 10

Pin 19 – DB₁ – Data Bit 11

Pin $20 - DB_0 - LSB$, Data Bit 12

Pin 21 – LDAC – Transfers data from input to DAC register; a logic "0" latches data into registers; a logic "1" allows data to change (transfer to) register.

Pin $22 - \overline{CE} - \overline{Chip Enable}$, active low

Pin 23 – LBE – Bit 12 to Bit 9 Enable

Pin 24 – MBE – Bit 8 to Bit 5 Enable

Pin 25 – HBE – Bit 4 to Bit 1 Enable

Pin $26 - V_{DD2} - Supply Analog and DAC Register$

Pin 27 – V_{SS1} – Ground input latches

Pin 28 – V_{DD1} – Supply input latches

NOTE: Pins 8 and 27, and pins 26 and 28 must be connected externally.

FEATURES...

The **SP7512** and **HS3120** are precision 12-bit multiplying DACs with internal two-stage input storage registers for easy interfacing with microprocessor busses. The DACs are implemented as a one-chip CMOS circuit with a resistor ladder network designed for 0.01% linearity without laser trimming.

The input registers are sectioned into 3 segments of 4 bits each, all individually addressable. The DAC-register, following the input registers, is a parallel 12-bit register for holding the DAC data while the input registers are updated. Only the data held in the DAC register determines the analog output value of the converter.

The **SP7512** and **HS3120** have been designed for great flexibility in connecting to bus-oriented systems. The 12 data inputs are organized into 3 independent addressable 4-bit input registers such that the DACs can be connected to either a 4, 8 or 16-bit data bus. The control logic of the DACs includes chip enable and latch enable inputs for flexible memory mapping. All controls are level-triggered to allow static or dynamic operation.

A total of 5 output lines are provided on the DACs to allow unipolar and bipolar output connection with a minimum of external components. The feedback resistor is internal. The resistor ladder network termination is externally available, thus eliminating an external resistor for the 1 LSB offset in bipolar mode.

The **SP7512** is available for use in commercial and industrial temperature ranges, packaged in

Figure 1. Unipolar Operation

Figure 2. Bipolar Op	eration
----------------------	---------

TRANS	SFER FUNCTION (N=12)			
BINARY INPUT	UNIPOLAR OUTPUT	BIPOLAR OUTPUT		
111111	-V _{REF} (1 - 2-N)	-V _{REF} (1 - 2 -(N - 1))		
100001	$-V_{REF}(1/2 + 2^{-N})$	-V _{REF} (2 -(N - 1))		
100000	-V _{REF} /2	0		
011111	-V _{REF} (1/2 - 2-N)	V _{REF} (2 -(N-1))		
000000	0	V_{REF}		

Table 1. Transfer Function

a 28-pin SOIC. The **HS3120** is available in commercial and military temperature ranges, packaged in a 28-pin side-brazed DIP. For product processed and screened to the requirements of MIL-M-38510 and MIL-STD-883C, please consult the factory (**HS3120B** only).

APPLICATIONS INFORMATION Unipolar Operation

Figure 1 shows the interconnections for unipolar operation. Connect $\rm I_{O1}$ and $\rm FB_1$ as shown in diagram. Tie $\rm I_{O2}$ (Pin 7), $\rm FB_3$ (Pin 3), and $\rm FB_4$ (Pin 1) to Ground (Pin 8). To maintain specified linearity, external amplifiers must be zeroed. This is best done with $\rm V_{REF}$ set to zero and, with the DAC register loaded with all bits at zero, adjust $\rm R_{OS}$ for $\rm V_{OUT}=0V$

Bipolar Operation

Figure 2 shows the interconnections for bipolar operation. Connect I_{O1} , I_{O2} , FB_1 , FB_3 , FB_4 as shown in diagram. Tie LDTR to I_{O2} . To maintain specified linearity, external amplifiers must be zeroed. This is best done with V_{REF} set to zero and, the DAC register loaded with 10...0 (MSB = 1), set R_{OS2} for $V_{OUT1} = 0V$. Then set R_{OS1} for $V_{OUT} = 0V$.

Grounding

Connect all GND pins to system analog ground and tie this to digital ground. All unused input pins must be grounded.

TIMING

TIME AXIS NOT TO SCALE. ALL STROBES ARE LEVEL TRIGGERED.

- t_1 : Data Setup Time, Time data must be stable before strobe (byte enable/LDAC) goes to "0", t_1 (min) = 250ns.
- t_2 : Strobe Width. t_2 (min) = 250ns. (CE, LBE, MBE, HBE, LDAC).
- t_3 : Hold Time. Time data must be stable after strobe goes to "0", t_3 = 0ns.
- t_4 : Delay from LDAC to Output, t_4 = 200ns.

NOTE: Minimum common active time for CE and any byte enable is 250ns.

ORDERING INFORMATION					
Model					
AC					
12-Bit	40°C to +85°C	28-pin, 0.3" SOIC			
12-Bit	0°C to +70°C	28-pin, 0.3" SOIC			
12-Bit	0°C to +70°C	28-pin, 0.6" Plastic DIF			
12-Bit	0°C to +70°C	28-pin, 0.6" Side-Brazed DIP			
12-Bit	55°C to +125°C	28-pin, 0.6" Side-Brazed DIP			
12-Bit	55°C to +125°C	28-pin, 0.6" Side-Brazed DIP			
	DAC				

