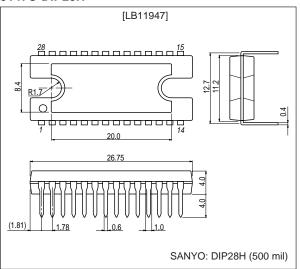
LB11947

PWM Current Control DC Motor Driver/ 5 V Switching Regulator

Overview

The LB11947 is a PWM current control DC motor driver with 5-V switching regulator. This IC can simultaneously drive two DC motors. It is especially suitable for the applications of DC motors that control motor speed with direct PWM technique using external control signals.

Functions


(DC motor drive)

- Driving two DC motors
- External PWM control function
- Internal PWM current control (OFF time fixed)
- Current decay switching function (SLOW DECAY and FAST DECAY modes)
- Noise canceling function
- Output Tr upper diode incorporated (with external lower side Schottky diode)
- Thermal shutdown circuit incorporated (with a heat generation warning function)
- Logic low-voltage OFF circuit incorporated (Switching regulator)
- PWM oscillation frequency variable (external C necessary)
- Soft start function (external C necessary)
- Over-current protection function

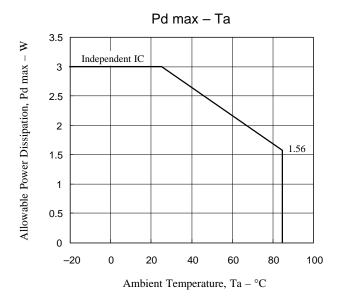
Package Dimensions

unit: mm

3147C-DIP28H

SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co., Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

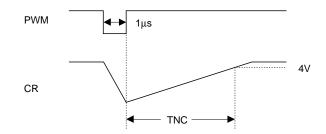

Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.

Specifications Absolute Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	VBBmax		50	V
Output peak current	IOPEAK	Tw ≤ 20µs	1.75	A
Output continuous current	Iomax		1.5	A
Logic input voltage range	VIN		-0.3 to V _{CC} + 0.3	V
Emitter output maximum voltage	VEmax		1.0	V
VREF pin input voltage range	VREF	PWM = "L", Motor driver not operating	-0.3 to V _{CC} + 0.3	V
Operating temperature	Topr		-20 to +85	°C
Storage temperature	Tstg		-55 to +150	°C
Allowable internal loss	Pdmax	Independent IC	3.0	W

Recommended Operating Conditions at $Ta=25^{\circ}C$

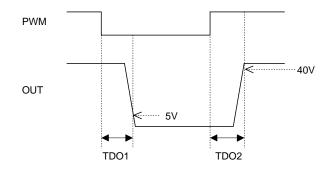
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VBB		10 to 45	V
Reference voltage	VREF		0.0 to 3.0	V
OSC oscillation frequency	fosc		50 to 100	kHz



Electrical Characteristics at Ta = 25	$^{\circ}C. VBB = 45 V. VREF = 1.0 V$
---------------------------------------	---------------------------------------

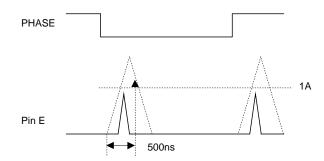
Parameter	Symbol	Conditions		Ratings		Unit	
Falameter	Symbol	Conditions	min	min typ		Unit	
Standby current dissipation	IBB ST	ST = L	3	4.5	6	mA	
Operating current dissipation	IBB ON	ST = H, Motor driver no-load	7	10	13	mA	
Notor Driver Block							
Output saturation voltage 1	VOSAT 1	I _O = +1.0 A, sink		1.2	1.5	V	
Output saturation voltage 2	VOSAT 2	I _O = +1.5 A, sink		1.5	1.8	V	
Output saturation voltage 3	VOSAT 3	$I_{O} = -1.0$ A, source		1.9	2.3	V	
Output saturation voltage 4	VOSAT 4	$I_{O} = -1.5 \text{ A}$, source		2.2	2.5	V	
	I _O 1 (leak)	ST = 0 V, V _O = VBB, sink			50	μA	
Output leak current	I _O 2 (leak)	$ST = 0 V, V_0 = 0 V$, source	-50			μA	
Output sustaining voltage	VSUS	L = 26.6 mH, I _O = 1.5 A *1	50			V	
	VIH	Ta = 25°C	2			V	
Logic input voltage	VIL	Ta = 25°C			0.8	V	
(PWM,PHASE,MD,ST)	VIHT	Ta = -20 to 85°C *1	2			V	
	VILT	Ta = -20 to 85°C *1			0.8	V	
	IIH	VIH = V _{CC}	60	90	120	μA	
Logic input current	IIL	VIL = 0.8 V	5	10	15	μA	
(PWM,PHASE,MD,ST)	IIHT	VIH = V _{CC} , Ta = -20 to 85°C *1	40		150	μA	
	IILT	VIH = 0.8 V, Ta = -20 to 85°C *1	3		20	μA	
	VE25	VREF = 2.5 V	0.483	0.5	0.513	V	
Sense voltage	VE10	VREF = 1.0 V	0.190	0.2	0.210	V	
-	VE05	VREF = 0.5 V	0.092	0.1	0.108	V	
Reference current	Iref	Vref = 1.0 V	-0.5		0.5	μA	
CR pin current	ICR	CR = 1.0 V	-1.38	-1.15	-0.92	mA	
Minimum noise cancel time	tNC	C = 2200pF, R = 16 kΩ *2	5			μs	
	tDO	PWM \rightarrow output delay time *3			1.2	μs	
Output delay time	tDOT	Ta = -20 to 85°C *1			1.2	μs	
Measurement of through current	ITR	Pulse width of 500 ns or more *4			1	A	
Logic OFF voltage	VLSDOFF		6.4	8	9.6	V	
LVSD hysteresis width	VLHIS		0.77	1.1	1.43	V	
TEO pin saturation voltage	VsatTEO	lload = −3 mA, Ta = 150°C *1			0.45	V	
Heat-generation warning temperature	TE	*1		135		°C	
Thermal shutdown temperature	TSD	*1		180		°C	
Switching Regulator Block						I	
Output voltage	V _{CC}		4.85	5.0	5.15	V	
Fluctuation of supply voltage	ΔV _{CC} 1	VBB = 10 to 45 V			50	mV	
Load fluctuation	ΔV _{CC} 2	I _O = 0 to 0.5 A			50	mV	
Output over-current Detection threshold voltage	VtIP	-	0.45	0.5	0.55	V	
Over-current detection delay time	TdIP	fosc = 50kHz		80		μs	
OSC pin charge current	lcosc	V(OSC) = 1.0 V	-24	-20	-16	μΑ	
OSC pin discharge current	Idosc	V(OSC) = 2.5 V	16	20	24	μΑ	
OSC maximum oscillation frequency	Foscmax			-'	100	kHz	
Soft start charge current	Iss	V(CSS) = 0 V	2	3	4	μΑ	

* Note 1: Design guarantee


* Note 2: Measurement of minimum noise canceling time

VM = 45 V, VREF = 2.5 V, C = 2200pF, R = 16 k Ω

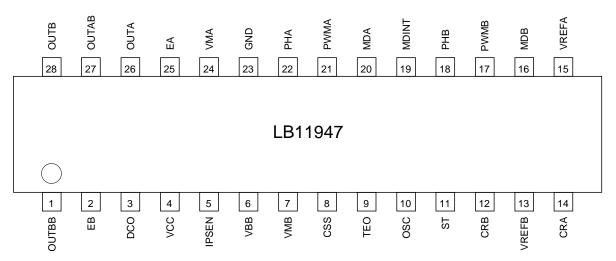
Enter the PWM "L" pulse width of 1µs and measure the time TNC from PWM rise to the CR pin voltage of 4 V.


* Note 3: Output delay time measurement

VM = 45 V, PH = "H", CR = 0V

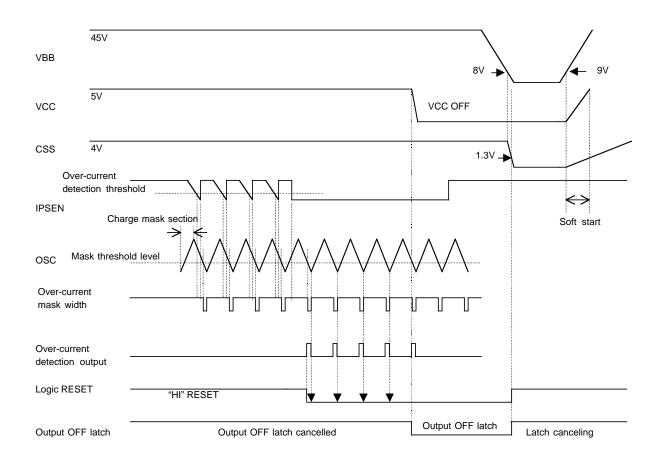
Measure the time TDO1 from PWM = "H" \rightarrow "L" fall to the output fall to 5 V and TDO2 from PWM = "L" \rightarrow "H" rise to the output rise to 40 V. Measure these times for OUTA, OUTAB, OUTB, and OUTBB respectively.

* Note 4: Measurement of through current


Measure the current flowing to pin E during phase switching of "H" \rightarrow "L" and "L" \rightarrow "H" after its conversion to the voltage with a detection resistor.

The current exceeding the current value of 1A at the pulse width of 500 ns or more is judged to be NG as the through current.

Pin functions description


Pin Name	Pin No.	Functions
OUTBB	1	DC motor, BB output pin
EB	2	DC motor Bch, current sense resistor connection pin
DCO	3	Switching regulator, control transistor output pin
VCC	4	Switching regulator, 5 V voltage output pin
IPSEN	5	Switching regulator, over-current detection resistor connection pin
VBB	6	Supply voltage connection pin
VMB	7	DC motor Bch, motor load current supply power connection pin
CSS	8	Switching regulator, soft start capacitor connection pin
TEO	9	Heat generation warning output, open collector pin
OSC	10	Switching regulator, switching frequency decesion capacitor connection pin
ST	11	DC motor, standby input pin
CRB	12	DC motor Bch, noise cancel, TOFF time setting C and R connection pin
VREFB	13	DC motor Bch, current setting reference voltage input pin
CRA	14	DC motor Ach, noise cancel, TOFF time setting C and R connection pin
VREFA	15	DC motor Ach, current setting reference voltage input pin
MDB	16	DC motor Bch, current decay mode switching pin (for PWM = "L" only)
PWMB	17	DC motor Bch, PWM input pin
PHB	18	DC motor Bch, phase switching input pin
MDINT	19	DC motor, current decay mode switching pin (for PWM = "H" only)
MDA	20	DC motor Ach, current decay mode switching pin (for PWM = "L" only)
PWMA	21	DC motor Ach, PWM input pin
PHA	22	DC motor Ach, phase switching input pin
GND	23	GND connection pin
VMA	24	DC motor Ach, motor load current supply power connection pin
EA	25	DC motor Ach, current sense resistor connection pin
OUTA	26	DC motor, A output pin
OUTAB	27	DC motor, AB output pin
OUTB	28	DC motor, B output pin

Pin Assignment

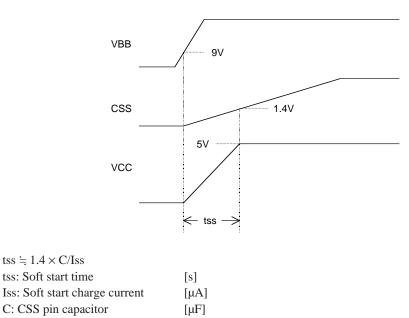
Descriptions of Each Function

(Switching regulator, over-current limit operation time chart)

The DC/DC over-current limit value is determined from the resistor connected between VBB and current sense pin. Current limit value = 0.5(V)/RL

Using about 75% from the upper threshold to lower threshold of the OSC triangular oscillation waveform and using the mask circuit within the OSC charge section, the output of the over-current detection comparator is masked. This can prevent detection error due to output switching noise.

When over-current flows through the output transistor, this over-current is detected if the ON width exceeding the overcurrent detection threshold of IPSEN pin is more than the mask width. The counter is activated when over-current is detected. If over-current is detected further after counting of four shots of OSC oscillation frequency, the output transistor is turned OFF and latched in this condition. If no over-current is detected up to the eighth shot after counting of four shots, the over-current condition is determined to be cancelled and the counter is reset, but the output transistor is not turned OFF.


If the output transistor is latched to the OFF condition, recharge of VBB power supply causes canceling of the latch condition.

(Switching regulator, soft start function)

When the VCC output is about to rise to the target voltage of 5 V instantaneously at start of switching regulator (at VBB power ON), the IC output pulse operates with the maximum duty, causing the rush current to flow to the output transistor. It is therefore necessary to raise the VCC target voltage gradually so that the output does not operate with the maximum duty.

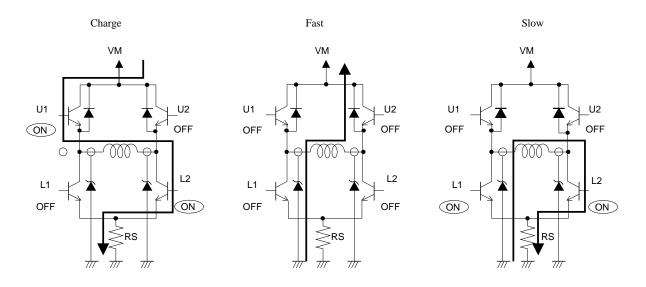
Connection of a capacitor between the CSS pin (pin 8) and GND allows slow rising of VCC output (soft start) when VBB power is applied.

The soft start time (tss) is approximately set by the following equation.

(Switching regulator, switching frequency set time)

The switching frequency of switching regulator is varied by changing the capacitor connected between the OSC pin (pin 10) and GND.

The switching frequency (fosc) is set approximately by the following equation. Since this equation is the approximate expression, check it in the mounted condition when it is to be used at a particularly high frequency.

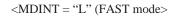

$fosc = \{1/C(1/Icosc+1/Idosc)\} \times 10^{\circ}$)-3
fosc: Switching frequency	[kHz]
Icosc: OSC pin charge current	[µA]
Idosc: OSC pin discharge current	[µA]
C: OSC pin capacitor	[pF]

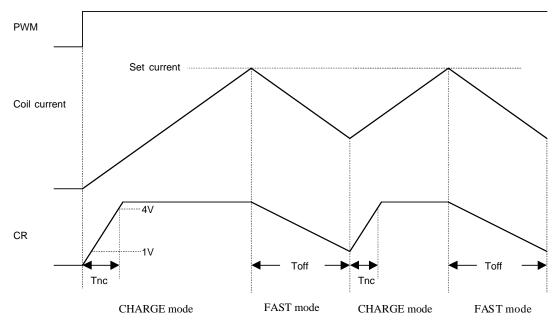
ST	PWM	MD	MDINT	PH	OUT	OUT-	Operation mode
L	*	*	*	*	OFF	OFF	Standby mode (circuit OFF)
Н	н	*	Н	Н	н	L	SLOW (short brake) at power ON, forward rotation, and at the current limit
Н	н	*	L	Н	Н	L	FAST (all OFF) at power ON, forward rotation, and at current limit
Н	н	*	Н	L	L	Н	SLOW (short brake) at power ON, reverse rotation, and at current limit
Н	н	*	L	L	L	Н	FAST (all OFF) at power ON, reverse rotation, and at current limit
н	L	Н	*	*	L	L	Current decay at SLOW (short brake)
Н	L	L	*	*	OFF	OFF	Current decay at FAST (all OFF)

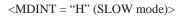
(Motor driver, logic input truth table)

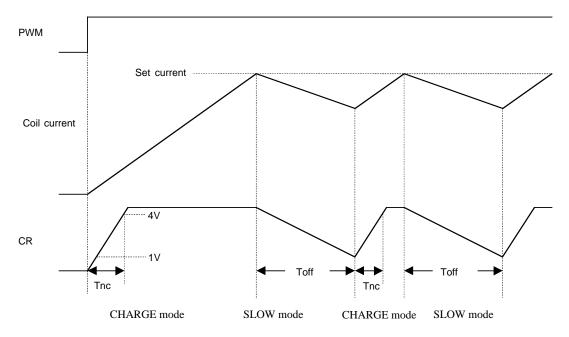
(*) Don't care.

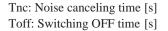
(Motor driver, output stage transistor operation mode)


The figure above shows the current direction at PH = "H." Note that the upper diode is incorporated and the lower diode is an external Schottky diode.


(Motor driver, output stage transistor operation function)


Mode	U1	U2	L1	L2
CHARGE(PH = "H")	ON	OFF	OFF	ON
CHARGE(PH = "L")	OFF	ON	ON	OFF
FAST	OFF	OFF	OFF	OFF
SLOW	OFF	OFF	ON	ON


(Motor driver, internal PWM current control operation mode)


PWM current control is made, so that the peak current flowing through the motor coil with PWM = "H" does not exceed the current level swt with VREF pins (pin 15 (Ach) and pin 13 (Bch)).

(Switching OFF time and noise canceling time set method)

Connection of C and R between CRA pin (pin 14), CRB pin (pin 12) and GND allows setting of the switching OFF time and noise canceling time.

The noise canceling time Tnc and switching OFF time Toff is set approximately by the following equation. [Noise canceling time Tnc]

 $Tnc = C \bullet R \bullet \ln\{(1-RI)/(4-RI)\}[s]$

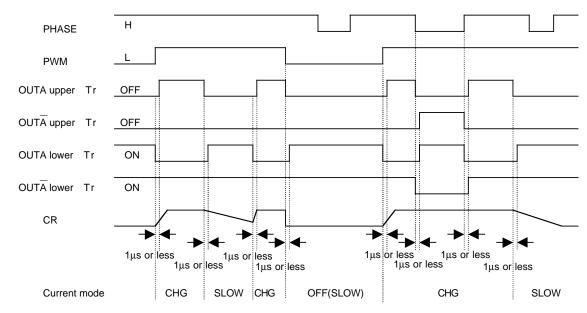
[Switching OFF time Toff]

Toff $= -C \cdot R \cdot \ln(1/4.8)$ [s]

Ι	: CR pin charge current	[A]
С	: CR pin external capacitor	[F]

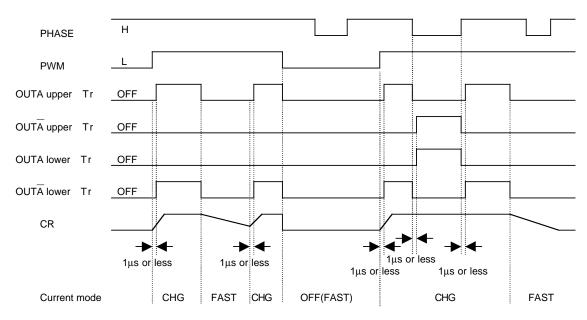
C [F]R : CR pin external resistor

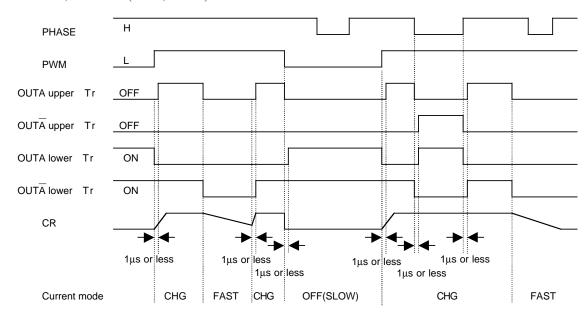
[Ω]


(Peak coil current set method)

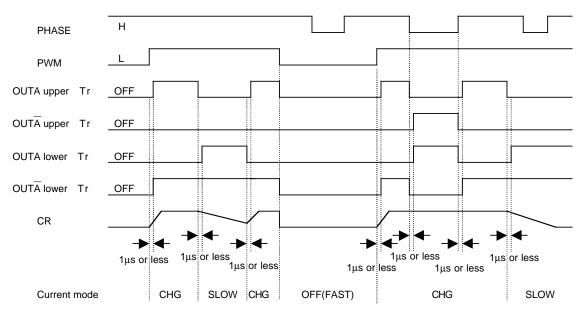
The peak current value (set current) flowing through the motor coil is set by the sense resistor to sense the current connected between EA pin (pin 25), EB pin (pin 2) and GND and by the reference voltage applied to VREFA pin (pin 15) and VREFB pin (pin 13).

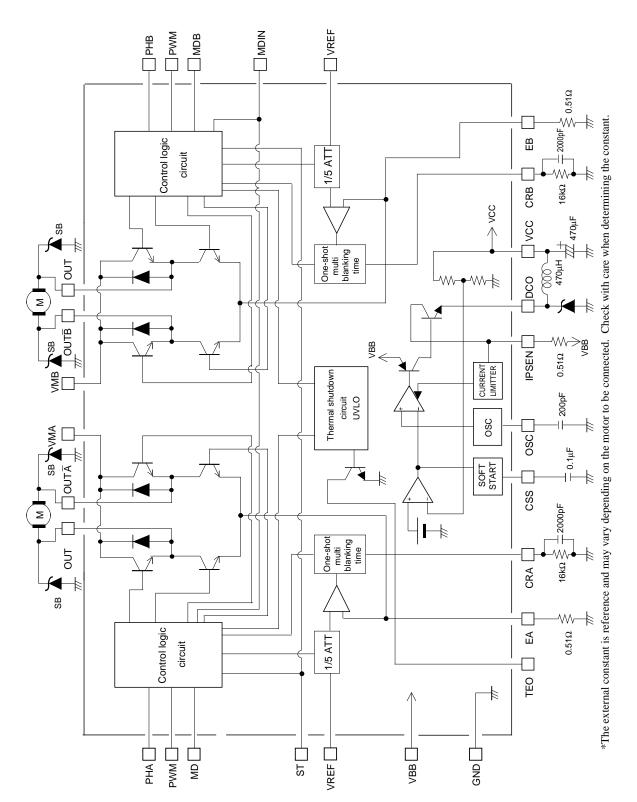
Ipeak = $Vref/(5 \times Rs)$


Ipeak	: Set current	[A]
Vref	: VREF pin application voltage	[V]
Rs	: Current sense resistor	[Ω]


(Motor driver, output transistor operation time chart)

MDINT = "H", MD = "H" (SLOW, SLOW)


MDINT = "L", MD = "L" (FAST, FAST)



MDINT = "L", MD = "H" (FAST, SLOW)

MDINT = "H", MD = "L" (SLOW, FAST)

LB11947

Block Diagram

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 2003. Specifications and information herein are subject to change without notice.