

LB1913

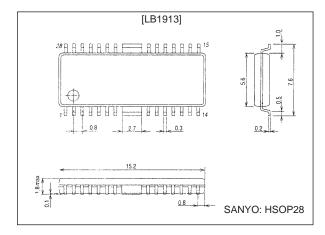
FDD Spindle Motor Driver

Overview

The LB1913 is a three-phase disk drive motor driver IC that is optimal for use as a 3.5-inch floppy disk drive spindle motor driver.

Functions and Features

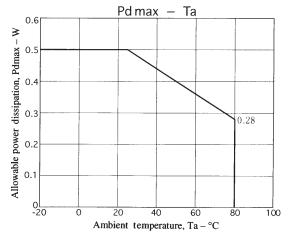
- Three-phase full-wave linear drive
- · On-chip digital speed control
- Start and stop circuits (active low)
- Speed switching High: 300 rpm, Low: 360 rpm
- · Current limiter circuit
- Index comparator circuit
- · Index delay circuit
- · Thermal protection circuit


Specifications

Absolute Maximum Ratings at Ta = 25°C

Package Dimensions

unit: mm


3222-HSOP28

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		7.0	V
Maximum output current	I _O max1	t ≤ 0.5 s	1.0	Α
Maximum steady-state output current	I _O max2		0.7	Α
Allowable power dissipation	Pd max	Independent IC	0.5	W
Operating temperature	Topr		-20 to +80	∞
Storage temperature	Tstg		-40 to +150	∞

Allowable Operating Ranges at $Ta = 25^{\circ}C$

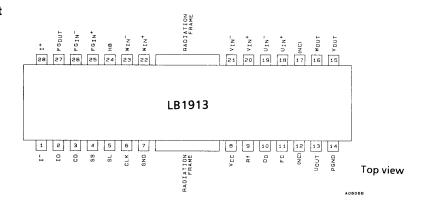
Parameter	Symbol	Conditions	Ratings	Unit	
Recommended supply voltage	V _{CC}		4.2 to 6.5	V	

SANYO Electric Co.,Ltd. Semiconductor Bussiness Headquarters
TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

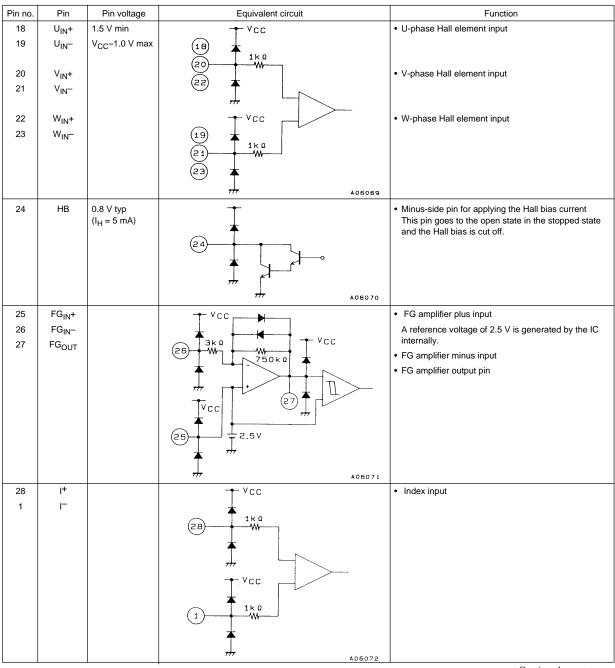
LB1913

Electrical Characteristics at Ta = 25°C, V_{CC} = 5.0 $V_{\rm C}$

Description	Cumahad	Conditions	Ratings			Llait
Parameter	Symbol	Conditions		typ	max	Unit
	Icco	S/S = 5 V (standby mode)			10	μΑ
Current drain	Icc	S/S = 0 V (normal mode)		12	18	mA
SL bias current	I _{SL}	V _{SL} = 0V			10	μΑ
SL input low-level voltage	V _{SLL}		0		1.0	V
SL input high-level voltage	V _{SLH}		3.5		V _{CC}	V
S/S bias current	I _{S/S}			180	270	μΑ
S/S low-level voltage	V _{S/SL}		0		0.8	V
S/S high-level voltage	V _{S/SH}		3.5		V _{CC}	V
Hall amplifier input bias current	I _{HB}				10	μΑ
Common-mode input voltage range	Vh		1.5		V _{CC} -1.0	V
Differential-mode input voltage range	Vdif		50		200	mVp-p
Hall bias output voltage	V _H	I _H = 5 mA		0.8		V
Leakage current	I _{HL}	S/S = 5 V			±10	μΑ
Output saturation voltage	Vsat	I _O = 0.7 A, sink + source		1.3	1.8	V
Output leakage current	l _{OL}				1.0	mA
Current limiter	Vlim		0.27	0.3	0.33	V
Control amplifier voltage gain	G _C			-7		dB
Interphase voltage gain difference	ΔG _C				±1	dB
V/I converter source current	I ⁺		9	14	19	μA
V/I converter sink current			-9	-14	-19	μA
V/I converter current ratio	I+/I-		0.8	1.0	1.2	
DSC buffer input current	I _{DSC}				1.0	μΑ
FG Schmitt hysteresis	ΔVsh	*		50		mV
Number of speed discriminator counts	N			1041.5		
Discriminator operating frequency	F _D	*			1.1	MHz
Oscillator frequency range	Fosc	*			1.1	MHz
Index output low-level voltage	V _{IDL}	I _O = 2 mA			0.4	V
Index output leakage current	I _{IDL}				±10	μA
FG amplifier voltage gain	G _{FG}	*		48		dB
FG amplifier input offset	V _{FGO}				±10	mV
FG amplifier internal reference voltage	V _{FGB}		2.2	2.5	2.8	V
Schmitt hysteresis	ΔV _{SH}	*		50		mV
Index input hysteresis	ΔV _{ID}	*		20		mV
Index common-mode input voltage range	V _{ID}		1.0		V _{CC} -1.0	V
Thermal shutdown circuit operating temperature	TSD	*	150	180		°C
Hysteresis	ΔTSD	*		40		°C


Note: $\mbox{\ensuremath{^{*}}}$ These items are design target values and are not tested.

Truth Table


	Source → Sink	Hall input			
	Source → Sink	U	V	W	
1	$V \text{ phase} \to W \text{ phase}$	Н	Н	L	
2	V phase → U phase	L	Н	L	
3	W phase → U phase	L	Н	Н	
4	W phase \rightarrow V phase	L	L	Н	
5	U phase → V phase	Н	L	Н	
6	U phase → W phase	Н	L	L	

A "high-level" (H) Hall amplifier input means: $U_{IN}+>U_{IN}-V_{IN}+>V_{IN}-V_{IN}+>V_{IN}-V_{IN}+>V_{IN}-V_{IN}+>V_{IN}-V_{IN}+>V_{IN}-V_{IN}+>V_{IN}-V_{IN}+>V_{IN}-V_{IN}+>V_{IN}-V_{IN}+V_{IN}-V_{IN}+V_{IN}-V_{IN}+V_{IN}-V_{IN}+V_{IN}+V_{IN}-V_{IN}+$

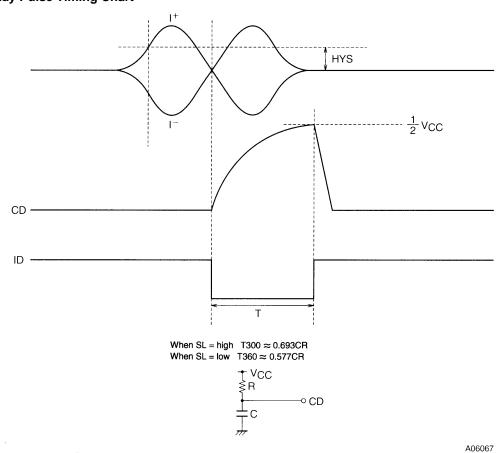
Pin Assignment

Pin Functions

Continued on next page

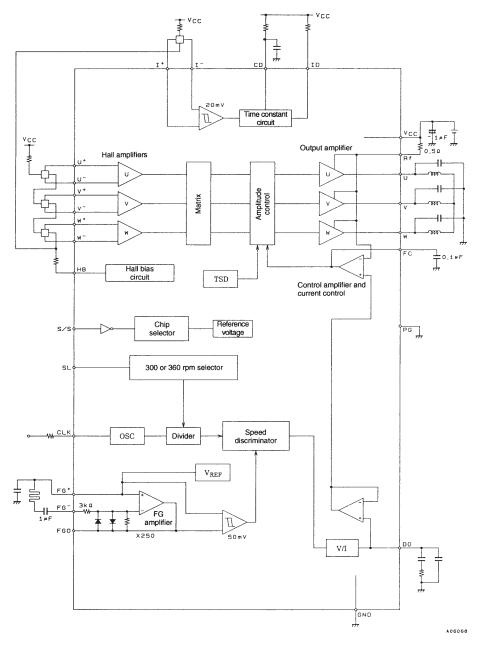
LB1913

Continued from preceding page


Pin no.	Pin	Pin voltage	Equivalent circuit	Function
2	ID	Low: 0.4 V max High: 4.5 V min	2	Index output
3	CD		777 777 A06073	Connection for external RC time constant circuit.
			3 2kū A06074	
4	SS	Low: 0.8 V max High: 3.5 V min	VCC \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Start/stop switching input This is an active-low input.
5	SL	Low: 1.0 V max High: 3.5 V min	VCC 5	Speed switching input
6	CLK	Low: 1.0 V max High: V _{CC} -1.0 V min	VCC VCC W A06077	Reference clock input Use a clock rate of 1 MHz for 300 and 360 rpm speeds.
7	GND			Ground connection Connect this pin, pin 14, and the frame to ground.
8	V _{CC}			Power supply Provide a well-stabilized power supply so that ripple and noise do not enter the LB1913 from this pin.
9	Rf			Used for output current detection. The output current is converted to a voltage and detected by connecting a resistor (Rf) between this pin and V _{CC} . The current limiter operates by detecting the voltage on this pin.

Continued on next page

Continued from preceding page


Pin no.	Pin	Pin voltage	Equivalent circuit	Function
10	D _O		10 W A0607B	Speed discriminator
11	F _C			Frequency characteristics correction Current control system open loop oscillation can be prevented by inserting a capacitor between this pin and ground.
13 15 16	U _{OUT} V _{OUT} W _{OUT}		(13) (15) (16) (16) (16)	U-phase output V-phase output W-phase output
14	PGND			Output transistor ground connection

Index Delay Pulse Timing Chart

No. 5503-5/6

Block Diagram

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of August, 1996. Specifications and information herein are subject to change without notice.