

2 – 6 GHz Cascadable GaAs MMIC Amplifier

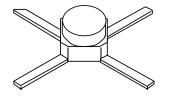
Technical Data

MGA-64135

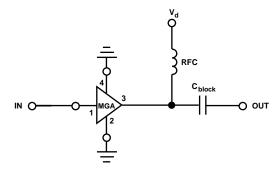
Features

- Cascadable 50 Ω Gain Block
- $\begin{array}{ll} \bullet & Broadband\ Performance: \\ 2-6\ GHz \\ 12.0\ dB\ Typical\ Gain \\ \pm\ 0.8\ dB\ Gain\ Flatness \\ 12.0\ dBm\ P_{1\ dB} \end{array}$
- Single Supply Bias
- Cost Effective Ceramic Microstrip Package

Description


The MGA-64135 is a high performance gallium arsenide Monolithic Microwave Integrated Circuit (MMIC) housed in a cost effective, microstrip package. This device is designed for use as a general purpose 50 ohm gain block in the 2 to 6 GHz frequency range. Typical

applications include narrow and broadband IF and RF amplifiers for commercial, industrial, and military requirements.


This MMIC is a cascade of two stages, each utilizing shunt feedback to establish a broadband impedance match. The source of each stage is AC grounded to allow biasing from a single positive power supply. The interstage blocking capacitor as well as a resistive "self-bias" network are included on chip.

The die is fabricated using HP's nominal .5 micron recessed Schottky-barrier-gate, gold metallization and silicon nitride passivation to achieve excellent performance, uniformity, and reliability.

35 Micro-X Package

Typical Biasing Configuration

5965-9005E 6-192

MGA-64135 Absolute Maximum Ratings

Symbol	Parameter	Units	Absolute Maximum ^[1]
$V_{\rm d}$	Device Voltage	V	12
P _{diss}	Total Power Dissipation ^[2]	mW	650
P _{in}	CW RF Input Power	dBm	+13
T_{ch}	Channel Temperature	°C	175
T_{STG}	Storage Temperature ^[3]	°C	-65 to 175

Thermal Resistance: $\theta_{jc} = 150^{\circ}\text{C/W}^{[4]}; T_{CH} = 150^{\circ}\text{C}$ Liquid Crystal Measurement: $1 \mu m \text{ Spot Size}^{[5]}$

Notes:

- 1. Operation of this device above any one of these parameters may cause permanent damage.
- 2. Derate linearly at 8.3 mW/°C for $T_{\rm CASE}\!>\!103^{\circ}{\rm C}.$
- 3. Storage above +150°C may tarnish the leads of this package making it difficult to solder into a circuit. After a device has been soldered into a circuit, it may be safely stored up to 175°C.
- 4. The thermal resistance value is based on measurements taken with the device soldered to a 25 mil Teflon PCB.
- 5. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASURE-MENTS section for more information.

MGA-64135 Electrical Specifications, $T_A = 25$ °C

Symbol	Parameters and Test Conditions: V_{d}	Units	Min.	Тур.	Max.	
GP	Power Gain $(S_{21} ^2)$	f = 2 to 6 GHz	dB	10.0	12.0	
ΔG_{P}	Gain Flatness	f = 2 to 6 GHz	dB		± 1.20	
_	Gain Variation vs. Temperature $T_{CASE} = -25$ °C to $+85$ °C	f = 2 to 6 GHz	dB		±0.5	
VSWR	Input VSWR	f = 2 to 6 GHz			1.5:1	2.0:1
	Output VSWR	f = 2 to 6 GHz			1.4:1	2.0:1
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 2 to 6 GHz	dBm	10.0	12.0	
NF	50Ω Noise Figure	f = 2 to 6 GHz	dB		7.5	
_	Reverse Isolation ($ S_{21} ^2$)	f = 2 to 6 GHz	dB		35	
Id	Device Current		mA	35	50	65

$\textbf{MGA-64135 Typical Performance}, T_{A} = 25 ^{\circ} C$

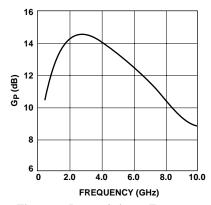


Figure 1. Power Gain vs. Frequency, $V_d=10\ V.$

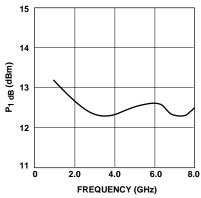


Figure 2. Output Power @ 1 dB Gain Compression vs. Frequency, V_d = 10 V.

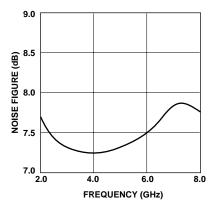


Figure 3. Noise Figure vs. Frequency, $V_d=10\ V.$

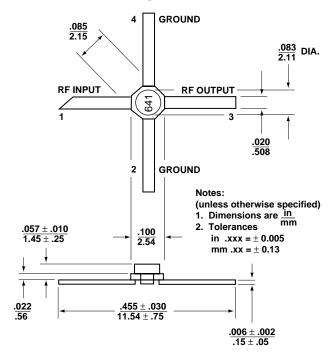


Figure 4. VSWR vs. Frequency, $V_d = 10 \text{ V}$.

MGA-64135 Typical Scattering Parameters (Z $_0$ = 50 $\Omega,\,T_A$ = 25°C, V_d = 10 V)

Freq.	S_{11}		\mathbf{S}_{21}		\mathbf{S}_{12}			\mathbf{S}_{22}		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.5	.27	-38	10.6	3.38	174	-31.0	.028	-13	.38	-4 1
1.0	.18	-4 4	12.9	4.42	- 9	-33.1	.022	-20	.26	-4 8
2.0	.14	– 67	14.3	5.21	- 54	-34.9	.018	- 19	.16	– 59
3.0	.17	- 91	14.5	5.33	- 93	-37.1	.014	- 21	.11	- 75
4.0	.20	-105	14.2	5.11	- 131	-37.8	.013	-1 5	.11	-7 1
5.0	.18	-114	13.6	4.79	-167	-37.3	.014	-10	.14	- 57
6.0	.07	-162	12.8	4.35	157	-38.5	.012	-1	.17	-4 1
7.0	.15	96	11.8	3.89	123	-36.0	.016	3	.16	-4 2
8.0	.23	76	10.8	3.46	92	-34.3	.019	4	.10	- 54
9.0	.32	63	9.5	2.98	63	-29.3	.034	12	.04	159
10.0	.43	52	8.6	2.68	38	-27.6	.041	-11	.09	116

35 Micro-X Package Dimensions

