

STR-A6251MD

Universal-Input/15 W 67 kHz Flyback Switching Regulators

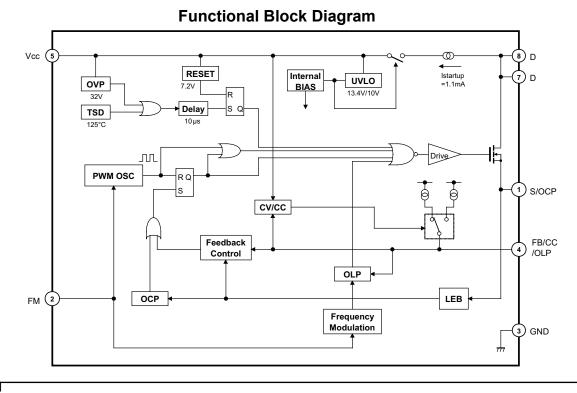
Features and Benefits

- 67 kHz PWM with ±5% Frequency Jittering Cost Reduction of EMI Noise Filtering
- Rugged 650 V Avalanche-Rated MOSFET Simplified Surge Absorption No V_{DSS} Derating Required
- Low $r_{DS(on)}$ (3.95 Ω maximum)
- Auto-Burst Mode for Stand-By Operation or Light Loads Less Transformer Audible Noise
- Built-In Leading Edge Blanking
- Low Operating Current (4 mA max)

Continued on the next page...

Package: 8-pin DIP

Not to scale


Description

The STR-A6251MD is a 67 kHz PWM topology (with \pm 5% frequency jittering for minimum EMI) regulators specifically designed to satisfy the requirements for increased integration and reliability in flyback converters. They incorporate a primary control and drive circuit with avalanche-rated power MOSFETs. This is a higher-frequency version of the STR-A6251D.

Covering the power range from below 21 watts for a 230 VAC input, or to 15 watts for a universal (85 to 264 VAC) input, these devices can be used in a wide range of applications, from DVD players and VCR player/recorders to ac adapters for cellular phones and digital cameras. An auto-burst standby function reduces power consumption at light load, while multiple protections, including the avalanche-energy guaranteed MOSFET, provide high reliability of system design.

Cycle-by-cycle current limiting, undervoltage lockout with hysteresis, overvoltage protection, and thermal shutdown protect the power supply during the normal overload and fault conditions. Overvoltage protection and thermal shutdown are latched after a short delay. The latch may

Continued on the next page

28103.43d

Features and Benefits (continued)

- Automatic Burst Stand-By (intermittent operation) Input Power <0.1 W at No Load
- Auto-Bias Function Stable Burst Operation Without Generating Interference
- Internal Off-Timer Circuit
- Built-In Constant-Voltage/Constant Current
- Multiple Protections: Pulse-by-Pulse Overcurrent Protection (OCP) Overload Protection (OLP) with Auto Restart Latching Overvoltage Protection (OVP) Undervoltage Lockout (UVLO) with Hysteresis Latching Thermal Shutdown (TSD)
- Molded Small-Size 8-Pin Package
 For Low-Height SMPS

Description (continued)

be reset by cycling the input supply. Low start-up current and a low-power standby mode selected from the secondary circuit completes a comprehensive suite of features. It is provided in an 8-pin mini-DIP plastic package with pin 6 removed.

Selection Guide

Part Number	Package	R _{DS(on)} (Ω)
STR-A6251MD	7-pin DIP	3.95

*Contact Allegro for additional packing options

ABSOLUTE MAXIMUM RATINGSat T_A = +25°C

Characteristic	Symbol	Notes	Rating	Units
Control Supply Voltage	V _{CC}		36	V
Drain-Source Voltage	V _{DSS}		650	V
Drain Switching Current*	ID		2.5	А
Peak Drain Switching Current	I _{DM}		2.5	А
Single-Pulse Avalanche Energy	E _{AS}		72	mJ
S/OCP Voltage Range	V _{OCP}		-0.3 to 6	V
FB/CC/OLP Voltage Range	V _{FB/OLP}		-0.3 to 12	V
FM Voltage Range	V _{FM}		-0.3 to 6	V
		Control ($V_{CC} \times I_{CC(ON)}$)	0.15	W
Package Power Dissipation	PD	$MOSFET (V_{DSS} \times I_D)$	1.35	W
		Total	1.5	W
MOSFET Channel Temperature	TJ		150	°C
Internal Frame Temperature	T _F		125	°C
Storage Temperature Range	Ts		-40 to 125	°C

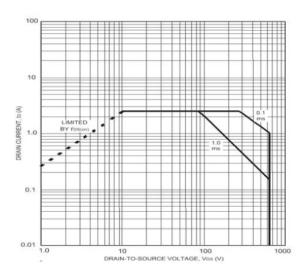
* Drain switching current is limited by temperature (page 2) and safe operating area (page 4).

All performance characteristics given are typical values for circuit or system baseline design only and are at the nominal operating voltage and an ambient temperature, T_A , of 25°C, unless otherwise stated.

115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036

2

ELECTRICAL CHARACTERISTICS at $T_A = 25^{\circ}$ C, $V_{CC} = 18$ V (unless otherwise specified).

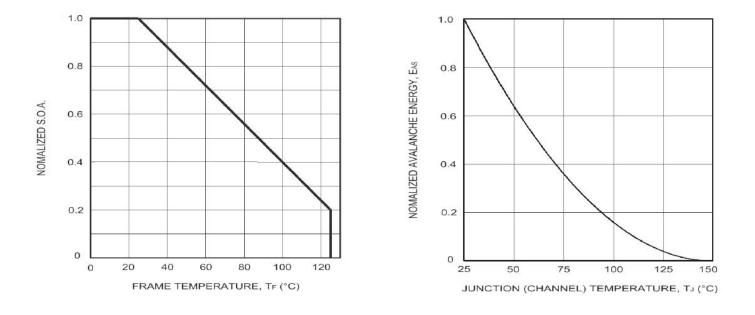

	Pin				Ratings	;	
Characteristic	No.	Symbol	Test Conditions	Min	Тур	Max	Units
Drain-to-Source Breakdown Volt.	8 - 1	V _{(BR)DSS}	I _D = 300 μA,	650	-	-	V
			$V_1 - V_3 = 0 V$ (short)				
Drain Leakage Current	8	I _{DSS}	V _{DS} = 650 V,	-	-	300	μA
			$V_1 - V_3 = 0 V$ (short)				
On-State Resistance	8 - 1	r _{DS(on)}	I _D = 0.4 A	-	-	3.95	Ω
MOSFET Switching Time	8 - 3	t _f	-	-	-	250	ns
Operation-Start Voltage	5 - 3	V _{CC(ON)}	V _{CC} = 0 → 15.7 V	12.9	14.3	15.7	V
Operation-Stop Voltage	5 - 3	$V_{CC(OFF)}$	V _{CC} = 15.7 → 9 V	9.0	10	11	V
Maximum Switching Frequency	8 - 3	f _{osc(max)}	-	60	67	74	kHz
Frequency-Jitter Deviation	8 - 3	Δf_{osc}	-	4.0	6.7	9.4	kHz
Maximum ON Duty Cycle	8 - 3	D max	-	70	76	82	%
Circuit Current in Operation	5	I _{CC(ON)}	-	-	-	4.0	mA
Circuit Current in Non-Operation	5	I _{CC(OFF)}	V _{CC} = 12 V	-	14	25	μA
FM Voltage	2 - 3	V _{FMH}	fosc = f _{osc(max)}	4.0	4.5	5.0	V
		V _{FML}	fosc < f _{osc(max)}	3.2	3.6	4.0	V
FM Current	2	I _{FMH}		-7.7	-11.0	-15.4	μA
		I _{FML}		7.7	11.0	15.4	μA
OCP Threshold Voltage	1 - 3	V _{OCP}	-	0.67	0.74	0.81	V
Leading Edge Blanking Time	8 - 3	t _{bw}	-	240	350	460	ns
Burst Threshold Voltage	4 - 3	V _{burst}	-	1.00	1.12	1.24	V
OLP Threshold Voltage	4 - 3	V _{OLP}	-	7.3	8.6	9.9	V
Current at OLP Operation	4	I _{OLP}	-	-12	-18	-25	μA
OLP Delay Time	4 - 3	t _{OLP}	-	0.84	1.20	1.56	S
Maximum FB Current	4	I _{FB(MAX)}	-	220	310	430	μA
CC Set Voltage	4 - 3	V _{SET(CC)}	-	4.9	5.8	6.7	V
CC Reset Voltage	4 - 3	V _{RES(CC)}	V _{CC} = 25 V	3.5	3.9	4.3	V
Start-Up Current	5	I _{startup}	V _{CC} = 13 V	0.84	1.20	1.56	mA
OVP Operation Voltage	5 - 3	V _{CC(OVP)}	V _{CC} = 18 → 35.2 V	28.8	32.0	35.2	V
OVP/TSD Latch Sustaining Current	5	I _{CC(H)}	V _{CC} =35.2 → 8.6 V	-	-	270	μA
OVP/TSD Latch Release Voltage	5 - 3	V _{CC}	V _{CC} =35.2 → 5.9 V	5.9	7.2	8.6	V
Thermal Shutdown	-	TJ	-	125	140	-	°C
Thermal Resistance	-	$R_{ ext{ heta}JF}$	-	-	-	52	°C/W

Typical values are given for circuit design information only.

Negative current is defined as coming out of (sourcing) the specified terminal.

Switchind Switchind

MOSFET TYPICAL CHARACTERISTICS

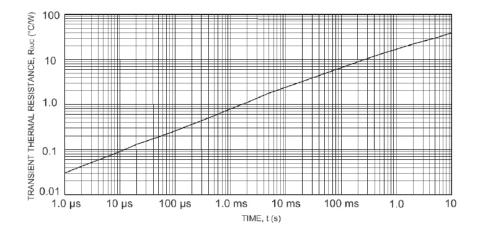


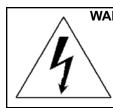
Avalanche energy is measured at V_{DD} = 99 V, L = 20 mH, I_L = 2.5 A.

Recommended Operating Conditions

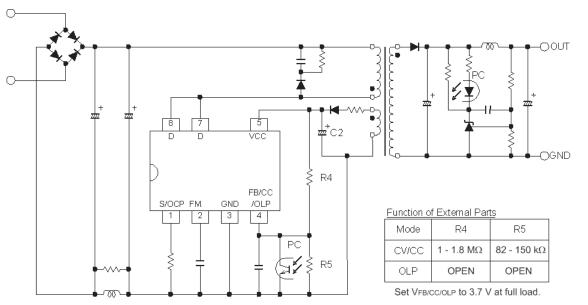
Operating Ambient Temperature	20°C to +100°C
Operating Junction Temperature	20°C to +125°C
Maximum Frame Temperature	+115°C

For the availability of parts meeting -40°C requirements, contact Allegro's Sales Representative.


115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036



4


MOSFET TYPICAL CHARACTERISTICS (cont'd)

WARNING — These devices are designed to be operated at lethal voltages and energy levels. Circuit designs that embody these components must conform with applicable safety requirements. Precautions must be taken to prevent accidental contact with power-line potentials. Do not connect grounded test equipment.

The use of an isolation transformer is recommended during circuit development and breadboarding.

APPLICATIONS INFORMATION

Typical Application

NOTE: The start-up performance of the IC can only be guaranteed for values of C2 greater than 22 μ F. This value is required to keep the internal supply voltage within regulation is a local distribution.

Complete product description and applications information is provided in Application Note 28103.40, *Series STR-A6200 Flyback Switching Regulators*.

Switching Regulators

lation during IC initialization.

The products described herein are manufactured in Japan by Sanken Electric Co., Ltd. for sale by Allegro MicroSystems, Inc.

Sanken and Allegro reserve the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Therefore, the user is cautioned to verify that the information in this publication is current before placing any order.

When using the products described herein, the applicability and suitability of such products for the intended purpose shall be reviewed at the users responsibility.

Although Sanken undertakes to enhance the quality and reliability of its products, the occurrence of failure and defect of semiconductor products at a certain rate is inevitable.

Users of Sanken products are requested to take, at their own risk, preventative measures including safety design of the equipment or systems against any possible injury, death, fires or damages to society due to device failure or malfunction. Sanken products listed in this publication are designed and intended for use as components in general-purpose electronic equipment or apparatus (home appliances, office equipment, telecommunication equipment, measuring equipment, etc.). Their use in any application requiring radiation hardness assurance (e.g., aerospace equipment) is not supported.

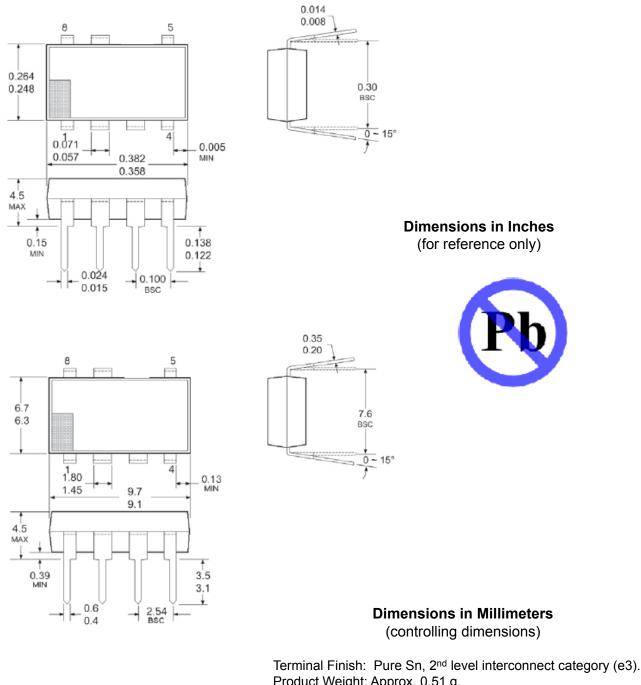
When considering the use of Sanken products in applications where higher reliability is required (transportation equipment and its control systems or equipment, fire- or burglar-alarm systems, various safety devices, etc.), contact a company sales representative to discuss and obtain written confirmation of your specifications.

The use of Sanken products without the written consent of Sanken in applications where extremely high reliability is required (aerospace equipment, nuclear power-control stations, life-support systems, etc.) is strictly prohibited.

The information included herein is believed to be accurate and reliable. Application and operation examples described in this publication are given for reference only and Sanken and Allegro assume no responsibility for any infringement of industrial property rights, intellectual property rights, or any other rights of Sanken or Allegro or any third party that may result from its use.

This data sheet is based on Sanken data sheet SSE-23420.

115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036



Copyright © 2005-2007 Allegro MicroSystems, Inc.

6

PACKAGE DIMENSIONS

Product Weight: Approx. 0.51 g. Frame temperature, T_F , is measured at the root of pin 3. For more efficient heat radiation, connect a broad PCB pattern at pins 7 and 8.

Switching Reductors

Worldwide Contacts

Asia-Pacific

China

Sanken Electric Hong Kong Co., Ltd.

Suite 1026, Ocean Centre Canton Road, Tsimshatsui Kowloon, Hong Kong Tel: 852-2735-5262, Fax: 852-2735-5494

Sanken Electric (Shanghai) Co., Ltd.

Room 3202, Maxdo Centre Xingyi Road 8, Changning District Shanghai, China Tel: 86-21-5208-1177, Fax: 86-21-5208-1757

Taiwan Sanken Electric Co., Ltd.

Room 1801, 18th Floor 88 Jung Shiau East Road, Sec. 2 Taipei 100, Taiwan R.O.C. Tel: 886-2-2356-8161, Fax: 886-2-2356-8261

Japan

Sanken Electric Co., Ltd. Overseas Sales Headquarters

Metropolitan Plaza Building 1-11-1 Nishi-Ikebukuro, Toshima-ku Tokyo 171-0021, Japan Tel: 81-3-3986-6164, Fax: 81-3-3986-8637

Korea

Sanken Electric Korea Co., Ltd.

Samsung Life Yeouido Building 16F 23-10, Yeouido-Dong, Yeongdeungpo-gu Seoul 150-734, Korea Tel: 82-2-714-3700, Fax: 82-2-3272-2145

Singapore

Sanken Electric Singapore Pte. Ltd.

150 Beach Road, #14-03 The Gateway West Singapore 189720 Tel: 65-6291-4755, Fax: 65-6297-1744

Europe

Sanken Power Systems (UK) Limited Pencoed Technology Park Pencoed, Bridgend CF35 5HY, United Kingdom Tel: 44-1656-869-100, Fax: 44-1656-869-162

North America

United States

Allegro MicroSystems, Inc. 115 Northeast Cutoff Worcester, Massachusetts 01606, U.S.A. Tel: 1-508-853-5000, Fax: 1-508-853-7895

Allegro MicroSystems, Inc.

14 Hughes Street, Suite B105 Irvine, California 92618, U.S.A. Tel: 1-949-460-2003, Fax: 1-949-460-7837