FEATURES

Enhanced system-level ESD performance per IEC 61000-4-x
High temperature operation: $125^{\circ} \mathrm{C}$
Default low output
Narrow body, RoHS-compliant, 8-lead SOIC
Low power operation
5 V operation
1.6 mA per channel maximum @ 0 Mbps to 2 Mbps
3.7 mA per channel maximum @ 10 Mbps

3 V operation
1.4 mA per channel maximum @ 0 Mbps to 2 Mbps
2.4 mA per channel maximum @ 10 Mbps
$3 \mathrm{~V} / 5 \mathrm{~V}$ level translation
High data rate: dc to 10 Mbps (NRZ)
Precise timing characteristics
3 ns maximum pulse width distortion
3 ns maximum channel-to-channel matching
High common-mode transient immunity: $\mathbf{> 2 5} \mathbf{~ k V} / \mu \mathrm{s}$
Safety and regulatory approvals
UL recognition: $\mathbf{2 5 0 0}$ V rms for 1 minute per UL 1577
CSA Component Acceptance Notice \#5A
VDE Certificate of Conformity
DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12
$V_{\text {IORM }}=560$ V peak

APPLICATIONS

Size-critical multichannel isolation
Plasma display panels

GENERAL DESCRIPTION

The ADuM3210 ${ }^{1}$ is a dual-channel, digital isolator based on Analog Devices, Inc., i Coupler ${ }^{\circ}$ technology. Combining high speed CMOS and monolithic transformer technology, this isolation component provides outstanding performance characteristics superior to alternatives such as optocoupler devices.
By avoiding the use of LEDs and photodiodes, i Coupler devices remove the design difficulties commonly associated with optocouplers. The typical optocoupler concerns regarding uncertain current transfer ratios, nonlinear transfer functions, and temperature and lifetime effects are eliminated with the simple iCoupler digital interfaces and stable performance characteristics. The need for external drivers and other discrete components is eliminated with these i Coupler products. Furthermore, iCoupler devices consume one-tenth to onesixth the power of optocouplers at comparable signal data rates.

The ADuM3210 isolator provides two independent isolation channels. It operates with the supply voltage on either side ranging from 2.7 V to 5.5 V , providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier. The ADuM3210 has a default output low characteristic in comparison to the ADuM3200/ADuM3201 models that have a default output high characteristic. The ADuM 3210 is also available in $125^{\circ} \mathrm{C}$ temperature grade.

In comparison to the ADuM1210 isolator, the ADuM3210 isolator contains various circuit and layout changes providing increased capability relative to system-level IEC 61000-4-x testing (ESD, burst, and surge). The precise capability in these tests for either the ADuM1210 or ADuM3210 products is strongly determined by the design and layout of the user's board or module. For more information, see AN-793 Application Note, ESD/Latch-Up Considerations with iCoupler Isolation Products.

FUNCTIONAL BLOCK DIAGRAM

${ }^{1}$ Protected by U.S. Patents $5,952,849 ; 6,873,065 ; 7,075,239$. Other patents pending.

Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2007-2008 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features 1
Applications 1
General Description1
Functional Block Diagram 1
Revision History 2
Specifications 3
Electrical Characteristics-5 V, $105^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$ Operation. 3
Electrical Characteristics-3 V, $105^{\circ} \mathrm{C}$ Operation 4
Electrical Characteristics- $3 \mathrm{~V}, 125^{\circ} \mathrm{C}$ Operation 5
Electrical Characteristics-Mixed $5 \mathrm{~V} / 3 \mathrm{~V}$ or $3 \mathrm{~V} / 5 \mathrm{~V}$, $105^{\circ} \mathrm{C}$ Operation 6
Electrical Characteristics—Mixed $5 \mathrm{~V} / 3 \mathrm{~V}$ or $3 \mathrm{~V} / 5 \mathrm{~V}$, $125^{\circ} \mathrm{C}$ Operation 8
Package Characteristics 10
Regulatory Information 10
Insulation and Safety-Related Specifications 10
REVISION HISTORY
9/08-Rev. Sp0 to Rev. A
Changes to Features and General Description Sections 1
Changes to Specifications Section 3
Changes to Recommended Operating Conditions Section 11
Changes to Ordering Guide 18
7/07—Revision Sp0: Initial Version
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation Characteristics 11
Recommended Operating Conditions 11
Absolute Maximum Ratings 12
ESD Caution 12
Pin Configuration and Function Descriptions. 13
Typical Performance Characteristics 14
Applications Information 15
PC Board Layout 15
System-Level ESD Considerations and Enhancements 15
Propagation Delay-Related Parameters. 15
DC Correctness and Magnetic Field Immunity 15
Power Consumption 16
Insulation Lifetime 17
Outline Dimensions 18
Ordering Guide 18

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS— $5 \mathrm{~V}, 105^{\circ} \mathrm{C}$ AND $125^{\circ} \mathrm{C}$ OPERATION

All voltages are relative to their respective ground. $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$.

Table 1.

ADuM3210

ELECTRICAL CHARACTERISTICS—3 V, $\mathbf{1 0 5}^{\circ} \mathrm{C}$ OPERATION

All voltages are relative to their respective ground. $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DDI}}=\mathrm{V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$.

Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
Input Supply Current, per Channel, Quiescent	$\mathrm{IDDI}_{\text {(Q) }}$		0.3	0.5	mA	
Output Supply Current, per Channel, Quiescent	IDDO (Q)		0.3	0.5	mA	
ADuM3210BR, Total Supply Current, Two Channels ${ }^{1}$						
DC to 2 Mbps						
$V_{\text {DD1 }}$ Supply Current	l D11 (0)		0.8	1.3	mA	DC to 1 MHz logic signal freq.
VDD2 Supply Current	ldD2 (Q)		0.7	1.0	mA	DC to 1 MHz logic signal freq.
10 Mbps						
VDD1 Supply Current	IDD1 (10)		2.0	3.2	mA	5 MHz logic signal freq.
VDD2 Supply Current	$\mathrm{I}_{\text {DD2 (10) }}$		1.1	1.7	mA	5 MHz logic signal freq.
Input Currents	$l_{1 A}, l_{\text {I }}$	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\mathrm{IA}}, \mathrm{V}_{\mathrm{IB}}, \leq \mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}$
Logic High Input Threshold	V_{IH}	$\begin{aligned} & 0.7 \times\left(\mathrm{V}_{\mathrm{DD} 1}\right. \text { or } \\ & \left.\mathrm{V}_{\mathrm{DD} 2}\right) \end{aligned}$			V	
Logic Low Input Threshold	VIL			$\begin{aligned} & 0.3 \times\left(\mathrm{V}_{\mathrm{DD} 1}\right. \text { or } \\ & \left.\mathrm{V}_{\mathrm{DD} 2}\right) \end{aligned}$	V	
Logic High Output Voltages	$\mathrm{V}_{\text {OAH }}$	$\begin{array}{ll}\left(V_{D D 1} \text { or }\right. & 3.0 \\ \left.V_{D D 2}\right)-0.1 & \end{array}$			V	$\mathrm{l}_{0 \mathrm{x}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \mathrm{xH}}$
	$\mathrm{V}_{\text {ObH }}$	($\mathrm{V}_{\mathrm{DD} 1}$ or $\left.V_{\mathrm{DD} 2}\right)-0.5$	2.8		V	$\mathrm{I}_{\mathrm{Ox}}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \times}=\mathrm{V}_{\text {IXH }}$
Logic Low Output Voltages	Voal		0.0	0.1	V	$\mathrm{l}_{\mathrm{ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\text {IxL }}$
	$V_{\text {OBL }}$		0.04	0.1	V	$\mathrm{I}_{\text {Ox }}=400 \mu \mathrm{~A}, \mathrm{~V}_{\text {Ix }}=\mathrm{V}_{\text {IxL }}$
			0.2	0.4	V	$\mathrm{l}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxL}}$
SWITCHING SPECIFICATIONS						
Minimum Pulse Width ${ }^{2}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Maximum Data Rate ${ }^{3}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLL }}$	20		60	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Pulse Width Distortion, $\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|^{4}$	PWD			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Propagation Delay Skew ${ }^{5}$	tPSK			22	ns	$\mathrm{CL}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Channel-to-Channel Matching ${ }^{6}$	$\mathrm{t}_{\text {PSKCD }}$			3	ns	$\mathrm{C}_{L}=15 \mathrm{pF}$, CMOS signal levels
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		3.0		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	\|CM ${ }^{\text {H }}$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	\|CM ${ }^{\text {L }}$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.1		Mbps	
Input Dynamic Supply Current, per Channel ${ }^{8}$	IDDI (D)		0.10		mA/Mbps	
Output Dynamic Supply Current, per Channel ${ }^{8}$	IDDO (D)		0.03		mA/Mbps	

${ }^{1}$ The supply current values for both channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 4 through Figure 6 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 7 and Figure 8 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{1 \times}$ signal to the 50% level of the falling edge of the $V_{\text {Ox }}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $\mathrm{V}_{1 \times}$ signal to the 50% level of the rising edge of the $\mathrm{V}_{0 \times}$ signal.
${ }^{5} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $t_{\text {PHL }}$ and/or $t_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{\mathrm{H}}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 4 through Figure 6 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply current for a given data rate.

ELECTRICAL CHARACTERISTICS—3 V, $\mathbf{1 2 5}^{\circ} \mathrm{C}$ OPERATION

All voltages are relative to their respective ground. $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD1}}=\mathrm{V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$.

Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
DC SPECIFICATIONS							
Input Supply Current, per Channel, Quiescent	IDDI (Q)		0.3	0.5	mA		
Output Supply Current, per Channel, Quiescent	IDDO (Q)		0.3	0.5	mA		
ADuM3210TR, Total Supply Current, Two Channels ${ }^{1}$							
DC to 2 Mbps							
$V_{\text {DD1 }}$ Supply Current	$\mathrm{l} \mathrm{DDI}_{1}$ (Q)		0.8	1.3	mA	DC to 1 MHz logic signal freq.	
$V_{\text {DD2 } 2}$ Supply Current	$\mathrm{ldD2}$ (Q)		0.7	1.0	mA	DC to 1 MHz logic signal freq.	
10 Mbps							
$V_{\text {DD1 }}$ Supply Current	$\mathrm{I}_{\text {DD1 (10) }}$		2.0	3.2	mA	5 MHz logic signal freq.	
VDD2 Supply Current	$\mathrm{I}_{\text {DD2 (10) }}$		1.1	1.7	mA	5 MHz logic signal freq.	
Input Currents	$l_{\text {la, }} \mathrm{l}_{\text {b }}$	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IA }}, \mathrm{V}_{\mathrm{IB}} \leq \mathrm{V}_{\text {DD } 1}$ or $\mathrm{V}_{\text {DD } 2}$	
Logic High Input Threshold	V_{IH}	$\begin{aligned} & 0.7 \times\left(\mathrm{V}_{\mathrm{DD} 1}\right. \\ & \text { or } \left.\mathrm{V}_{\mathrm{DD} 2}\right) \end{aligned}$			V		
Logic Low Input Threshold	VIL			$\begin{aligned} & 0.3 \times\left(V_{\mathrm{DD} 1}\right. \\ & \text { or } \left.\mathrm{V}_{\mathrm{DD} 2}\right) \end{aligned}$	V		
Logic High Output Voltages	Voah	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{DD} 1}\right. \text { or } \\ & \left.\mathrm{V}_{\mathrm{DD} 2}\right)-0.1 \end{aligned}$			V	$\mathrm{l}_{\mathrm{x}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \mathrm{xH}}$	
	$\mathrm{V}_{\text {ObH }}$	$\left.V_{D D 2}\right)-0.5$	2.8		V	$\mathrm{l}_{\mathrm{x}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\text {IxH }}$	
Logic Low Output Voltages	$V_{\text {OAL }}$		0.0	0.1	V	$\mathrm{I}_{\mathrm{ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {IxL }}$	
	Vobl		0.04	0.1	V	lox $=400 \mu \mathrm{~A}, \mathrm{~V}_{\text {Ix }}=\mathrm{V}_{\text {IxL }}$	
			0.2	0.4	V	$\mathrm{l}_{0 \mathrm{x}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxL}}$	
SWITCHING SPECIFICATIONS							
Minimum Pulse Width ${ }^{2}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Maximum Data Rate ${ }^{3}$		10			Mbps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Propagation Delay ${ }^{4}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	20		60	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Pulse Width Distortion, $\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|^{4}$	PWD			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Propagation Delay Skew ${ }^{5}$	$t_{\text {PSK }}$			22	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Channel-to-Channel Matching ${ }^{6}$	$\mathrm{t}_{\text {PSKCD }}$			3	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		3.0		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	\|CMH		25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IX}}=\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	\|CML		25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.1		Mbps		
Input Dynamic Supply Current, per Channel ${ }^{8}$	$\mathrm{IDDI}_{\text {(})^{\prime}}$		0.10		mA/Mbps		
Output Dynamic Supply Current, per Channel ${ }^{8}$	IdDo (D)		0.03		mA/Mbps		

${ }^{1}$ The supply current values for both channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 4 through Figure 6 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 7 and Figure 8 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4} t_{\text {PнL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{1 \times}$ signal to the 50% level of the falling edge of the $V_{\text {Ox }}$ signal. tpLн propagation delay is measured from the 50% level of the rising edge of the $\mathrm{V}_{1 \times}$ signal to the 50% level of the rising edge of the $\mathrm{V}_{0 \times}$ signal.
${ }^{5}$ tpsk is the magnitude of the worst-case difference in $t_{\text {PHL }}$ and/or tpLH that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}>0.8 \mathrm{~V}_{\mathrm{DD2}}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 4 through Figure 6 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply current for a given data rate.

ADuM3210

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V, 105º

All voltages are relative to their respective ground. $5 \mathrm{~V} / 3 \mathrm{~V}$ operation: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V} .3 \mathrm{~V} / 5 \mathrm{~V}$ operation: $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD} 1}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}$; or $\mathrm{V}_{\mathrm{DD} 1}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$.

Table 4.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	\|CM ${ }^{\text {\| }}$	25	35		kV/ $\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}$, transient magnitude $=800 \mathrm{~V}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	\|CM ${ }^{\text {\| }}$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{lx}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.2		Mbps	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.1		Mbps	
Input Dynamic Supply Current, per Channel ${ }^{8}$	$\mathrm{IDDI}_{\text {(})^{\prime}}$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.19		mA/Mbps	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.10		mA/Mbps	
Output Dynamic Supply Current, per Channel ${ }^{8}$	IDDO (D)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.03		mA/Mbps	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.05		mA/Mbps	

${ }^{1}$ The supply current values for both channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 4 through Figure 6 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 7 and Figure 8 for total $\mathrm{V}_{\mathrm{DD} 1}$ and $\mathrm{V}_{\mathrm{DD} 2}$ supply currents as a function of data rate.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{\text {IX }}$ signal to the 50% level of the falling edge of the $V_{\text {Ox }}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the $V_{0 x}$ signal.
${ }^{5} \mathrm{t}_{\text {PSK }}$ is the magnitude of the worst-case difference in $\mathrm{t}_{\text {PHL }}$ and/or $\mathrm{t}_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CML is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 4 through Figure 6 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply current for a given data rate.

ADuM3210

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V, 125º

All voltages are relative to their respective ground. $5 \mathrm{~V} / 3 \mathrm{~V}$ operation: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V} .3 \mathrm{~V} / 5 \mathrm{~V}$ operation: $3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$. All minimum/maximum specifications apply over the entire recommended operating range, unless otherwise noted. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD} 1}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}$; or $\mathrm{V}_{\mathrm{DD} 1}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$.

Table 5.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Common-Mode Transient Immunity at Logic High Output ${ }^{7}$	\|CM ${ }^{\text {\| }}$	25	35		kV/ $\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}$, transient magnitude $=800 \mathrm{~V}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{7}$	\|CM ${ }^{\text {\| }}$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{lx}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.2		Mbps	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.1		Mbps	
Input Dynamic Supply Current, per Channel ${ }^{8}$	$\mathrm{IDDI}_{\text {(})^{\prime}}$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.19		mA/Mbps	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.10		mA/Mbps	
Output Dynamic Supply Current, per Channel ${ }^{8}$	IDDO (D)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.03		mA/Mbps	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			0.05		mA/Mbps	

${ }^{1}$ The supply current values for both channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 4 through Figure 6 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 7 and Figure 8 for total $\mathrm{V}_{\mathrm{DD} 1}$ and $\mathrm{V}_{\mathrm{DD} 2}$ supply currents as a function of data rate.
${ }^{2}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{3}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{4} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{\text {IX }}$ signal to the 50% level of the falling edge of the $V_{\text {Ox }}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $V_{1 x}$ signal to the 50% level of the rising edge of the $V_{0 x}$ signal.
${ }^{5} \mathrm{t}_{\text {PSK }}$ is the magnitude of the worst-case difference in $\mathrm{t}_{\text {PHL }}$ and/or $\mathrm{t}_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{6}$ Channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{7} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CML is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{8}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in the signal data rate. See Figure 4 through Figure 6 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating per-channel supply current for a given data rate.

ADuM3210

PACKAGE CHARACTERISTICS

Table 6.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Resistance (Input-to-Output) ${ }^{1}$	R-O		10^{12}		Ω	
Capacitance (Input-to-Output) ${ }^{1}$	Cl-o		1.0		pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance	C_{1}		4.0		pF	
IC Junction-to-Case Thermal Resistance, Side 1	θ_{JcI}		46		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at center of package underside
IC Junction-to-Case Thermal Resistance, Side 2	$\theta_{\text {лсо }}$		41		${ }^{\circ} \mathrm{C} / \mathrm{W}$	

${ }^{1}$ The device is considered a 2-terminal device; Pin 1 through Pin 4 are shorted together, and Pin 5 through Pin 8 are shorted together.

REGULATORY INFORMATION

The ADuM3210 is approved by the organizations listed in Table 7.
Table 7.

UL	CSA	VDE
Recognized under UL 1577 Component Recognition Program ${ }^{1}$	Approved under CSA Component Acceptance Notice \#5A	Certified according to DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 ${ }^{2}$
Single/Basic 2500 V rms Isolation Voltage	Basic insulation per CSA 60950-1-03 and IEC 60950-1, 400 V rms (566 V peak) maximum working voltage Functional insulation per CSA 60950-1-03 and IEC 60950-1, 800 V rms(1131 V peak) maximum working voltage	Reinforced insulation, 560 V peak
File E214100	File 205078	File 2471900-4880-0001

${ }^{1}$ In accordance with UL 1577 , each ADuM3210 is proof tested by applying an insulation test voltage $\geq 3000 \mathrm{Vrms}$ for 1 second (current leakage detection limit $=5 \mu \mathrm{~A}$).
${ }^{2}$ In accordance with DIN V VDE V 0884-10, each ADuM3210 is proof tested by applying an insulation test voltage ≥ 1050 V peak for 1 second (partial discharge detection limit $=5 \mathrm{pC}$). An asterisk (*) marking branded on the component designates DIN V VDE V 0884-10 approval.

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 8.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage	L(I01)	2500	4.90 min	Vm rms
Minimum External Air Gap (Clearance)	L(I02)	4.01 min	mm	Measured from input terminals to output terminals, shortest distance through air Measured from input terminals to output terminals, shortest distance path along body
Minimum External Tracking (Creepage)		0.017 min	mm	Insulation distance through insulation
Minimum Internal Gap (Internal Clearance)	CTI	>175	V	DIN IEC 112/VDE 0303 Part 1 Material Group (DIN VDE 0110, 1/89, Table 1)
Tracking Resistance (Comparative Tracking Index) Isolation Group				

DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The asterisk $\left(^{*}\right)$ marking on the package denotes DIN V VDE V 0884-10 approval for a 560 V peak working voltage.

Table 9.

Description	Conditions	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage $\leq 150 \mathrm{~V}$ rms			I to IV	
For Rated Mains Voltage $\leq 300 \mathrm{~V}$ rms			I to III	
For Rated Mains Voltage $\leq 400 \mathrm{~V}$ rms			I to II	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Working Insulation Voltage		$V_{\text {Iorm }}$	560	Vpeak
Input-to-Output Test Voltage, Method B1	$V_{\text {IORM }} \times 1.875=V_{\text {PR, }}, 100 \%$ production test, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1050	Vpeak
Input-to-Output Test Voltage, Method A After Environmental Tests Subgroup 1	$\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	896	Vpeak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$		672	Vpeak
Highest Allowable Overvoltage	Transient overvoltage, $\mathrm{t}_{\text {TR }}=10 \mathrm{sec}$	$\mathrm{V}_{\text {TR }}$	4000	V peak
Safety-Limiting Values	Maximum value allowed in the event of a failure (see Figure 2)			
Case Temperature		Ts	150	${ }^{\circ} \mathrm{C}$
Side 1 Current		$\mathrm{I}_{\mathrm{s} 1}$	150	mA
Side 2 Current		$\mathrm{I}_{\text {S } 2}$	160	mA
Insulation Resistance at T_{5}	$\mathrm{V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

Figure 2. Thermal Derating Curve, Dependence of Safety-Limiting Values on Case Temperature, per DIN V VDE V 0884-10

RECOMMENDED OPERATING CONDITIONS

Table 10.

Parameter	Symbol	Min	Max	Unit
Operating Temperature				
ADuM3210BR	T_{A}	-40	+105	${ }^{\circ} \mathrm{C}$
ADuM3210TR	T_{A}	-40	+125	${ }^{\circ} \mathrm{C}$
Supply Voltages ${ }^{1}$				
ADuM3210BR	$V_{D D 1}$, $V_{D D 2}$	2.7	5.5	V
ADuM3210TR	$V_{D D 1}$, $V_{D D 2}$	3	5.5	V
Input Signal Rise and Fall Times			1	ms

ADuM3210

ABSOLUTE MAXIMUM RATINGS

Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 11.

Parameter	Symbol	Min	Max	Unit
Storage Temperature	T ${ }_{\text {st }}$	-55	+150	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature	T_{A}	-40	+105	${ }^{\circ} \mathrm{C}$
Supply Voltages ${ }^{1}$	$V_{D D 1}$, $V_{D D 2}$	-0.5	+7.0	V
Input Voltage ${ }^{1,2}$	$V_{\text {IA }}, \mathrm{V}_{\text {IB }}$	-0.5	$V_{\text {DDI }}+0.5$	V
Output Voltage ${ }^{1,2}$	$V_{\text {oa }}, \mathrm{V}_{\text {ob }}$	-0.5	$\mathrm{V}_{\text {DDO }}+0.5$	V
Average Output Current, per Pin^{3}	Io	-35	+35	mA
Common-Mode Transients ${ }^{4}$	$\begin{aligned} & \mathrm{CM}_{\mathrm{H}}, \\ & \mathrm{CML} \end{aligned}$	-100	+100	kV/ $\mu \mathrm{s}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.
${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2} V_{D D I}$ and $V_{D D O}$ refer to the supply voltages on the input and output sides of a given channel, respectively.
${ }^{3}$ See Figure 2 for information on maximum allowable current for various temperatures.
${ }^{4}$ Refers to common-mode transients across the insulation barrier. Commonmode transients exceeding the Absolute Maximum Rating can cause latch-up or permanent damage.

Table 12. Maximum Continuous Working Voltage ${ }^{1}$

Parameter	Max	Unit	Constraint
AC Voltage, Bipolar Waveform	565	V peak	50-year minimum lifetime
AC Voltage, Unipolar Waveform			
\quad Functional Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
\quad Basic Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10
DC Voltage			
\quad Functional Insulation	1131	V peak	Maximum approved working voltage per IEC 60950-1
Basic Insulation	560	V peak	Maximum approved working voltage per IEC 60950-1 and VDE V 0884-10

${ }^{1}$ Refers to continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.

Table 13. Truth Table (Positive Logic)

$\mathrm{V}_{\text {IA }}$ Input	$V_{\text {IB }}$ Input	$\mathrm{V}_{\mathrm{DD} 1}$ State	$\mathrm{V}_{\mathrm{DD} 2}$ State	V_{OA} Output	V oB Output	Notes
H	H	Powered	Powered	H	H	
L	L	Powered	Powered	L	L	
H	L	Powered	Powered	H	L	
L	H	Powered	Powered	L	H	
X	X	Unpowered	Powered	L	L	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $V_{\text {DDI }}$ power restoration
X	x	Powered	Unpowered	Indeterminate	Indeterminate	Outputs return to the input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\text {DDO }}$ power restoration

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 14. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	$\mathrm{~V}_{\mathrm{DD} 1}$	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.
2	$\mathrm{~V}_{I A}$	Logic Input A.
3	$\mathrm{~V}_{\mathrm{IB}}$	Logic Input B.
4	GND_{1}	Ground 1. Ground reference for Isolator Side 1.
5	GND_{2}	Ground 2. Ground reference for Isolator Side 2.
6	$\mathrm{~V}_{\mathrm{OB}}$	Logic Output B.
7	$\mathrm{~V}_{\mathrm{OA}}$	Logic Output A.
8	$\mathrm{~V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Typical Input Supply Current per Channel vs.
Data Rate for 5 V and 3 V Operation

Figure 5. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (No Output Load)

Figure 6. Typical Output Supply Current per Channel vs. Data Rate for 5 V and 3 V Operation (15 pF Output Load)

Figure 7. Typical VDD1 Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 8. Typical VDD2 Supply Current vs.
Data Rate for 5 V and 3 V Operation

APPLICATIONS INFORMATION

PC BOARD LAYOUT

The ADuM3210 digital isolator requires no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins. The capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm .

SYSTEM-LEVEL ESD CONSIDERATIONS AND ENHANCEMENTS

System-level ESD reliability (for example, per IEC 61000-4-x) is highly dependent on system design, which varies widely by application. The ADuM3210 incorporates many enhancements to make ESD reliability less dependent on system design. The enhancements include:

- ESD protection cells added to all input/output interfaces.
- Key metal trace resistances reduced using wider geometry and paralleling of lines with vias.
- The SCR effect inherent in CMOS devices minimized by use of guarding and isolation technique between PMOS and NMOS devices.
- Areas of high electric field concentration eliminated using 45° corners on metal traces.
- Supply pin overvoltage prevented with larger ESD clamps between each supply pin and its respective ground.

While the ADuM3210 improves system-level ESD reliability, it is no substitute for a robust system-level design. For detailed recommendations on board layout and system-level design, see AN-793 Application Note, ESD/Latch-Up Considerations with iCoupler Isolation Products.

PROPAGATION DELAY-RELATED PARAMETERS

Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. The propagation delay to a logic low output can differ from the propagation delay to a logic high output.

Figure 9. Propagation Delay Parameters
Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal timing is preserved.
Channel-to-channel matching refers to the maximum amount that the propagation delay differs between channels within a single ADuM3210 component.

Propagation delay skew refers to the maximum amount that the propagation delay differs between multiple ADuM3210 components operating under the same conditions.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow ($\sim 1 \mathrm{~ns}$) pulses to be sent to the decoder via the transformer. The decoder is bistable and is, therefore, either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions of more than $2 \mu \mathrm{~s}$ at the input, a periodic set of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output. If the decoder receives no internal pulses for more than about $5 \mu \mathrm{~s}$, the input side is assumed to be unpowered or nonfunctional, in which case, the isolator output is forced to a default state (see Table 13) by the watchdog timer circuit.

The ADuM3210 is immune to external magnetic fields. The limitation on the ADuM3210 magnetic field immunity is set by the condition in which induced voltage in the transformer receiving coil is sufficiently large to either falsely set or reset the decoder. The following analysis defines the conditions under which this can occur. The 3 V operating condition of the ADuM3210 is examined because it represents the most susceptible mode of operation.

ADuM3210

The pulses at the transformer output have an amplitude greater than 1.0 V . The decoder has a sensing threshold at about 0.5 V , therefore establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

$$
V=(-\mathrm{d} \beta / d t) \sum \pi r_{n}^{2}, n=1,2, \ldots, N
$$

where:
β is the magnetic flux density (gauss).
N is the number of turns in the receiving coil.
r_{n} is the radius of the nth turn in the receiving coil (cm).
Given the geometry of the receiving coil in the ADuM3210 and an imposed requirement that the induced voltage is at most 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field is calculated, as shown in Figure 10.

Figure 10. Maximum Allowable External Magnetic Flux Density
For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event were to occur during a transmitted pulse (and had the worst-case polarity), it would reduce the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V , which is still well above the 0.5 V sensing threshold of the decoder.

The preceding magnetic flux density values correspond to specific current magnitudes at given distances away from the ADuM3210 transformers. Figure 11 expresses these allowable current magnitudes as a function of frequency for selected distances. As shown, the ADuM3210 is immune and can be affected only by extremely large currents operated at a high frequency and very close to the component. For the 1 MHz example, one would have to place a 0.5 kA current 5 mm away from the ADuM3210 to affect the component's operation.

Figure 11. Maximum Allowable Current for Various Current-to-ADuM3210 Spacings

Note that at combinations of strong magnetic fields and high frequencies, any loops formed by PCB traces may induce sufficiently large error voltages to trigger the threshold of succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

POWER CONSUMPTION

The supply current at a given channel of the ADuM3210 isolator is a function of the supply voltage, channel data rate, and channel output load.
For each input channel, the supply current is given by

$$
\begin{array}{ll}
I_{D D I}=I_{D D I}(Q) & f \leq 0.5 f_{r} \\
I_{D D I}=I_{D D I(D)} \times\left(2 f-f_{r}\right)+I_{D D I}(Q) & f>0.5 f_{r}
\end{array}
$$

For each output channel, the supply current is given by

$$
\begin{array}{rr}
I_{D D O}=I_{D D O}(Q) & f \leq 0.5 f_{r} \\
I_{D D O}=\left(I_{D D O(D)}+\left(0.5 \times 10^{-3}\right) \times C_{L} V_{D D O}\right) \times\left(2 f-f_{r}\right)+I_{D D O(Q)} \\
& f>0.5 f_{r}
\end{array}
$$

where:
$I_{D D I(D)}, I_{D D O(D)}$ are the input and output dynamic supply currents per channel ($\mathrm{mA} / \mathrm{Mbps}$).
C_{L} is the output load capacitance (pF).
$V_{D D O}$ is the output supply voltage (V).
f is the input logic signal frequency (MHz , half of the input data rate, NRZ signaling).
f_{r} is the input stage refresh rate (Mbps).
$I_{D D I(Q)}, I_{D D O(Q)}$ are the specified input and output quiescent supply currents (mA).
To calculate the total $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ supply current, the supply currents for each input and output channel corresponding to $\mathrm{I}_{\mathrm{DD} 1}$ and $\mathrm{I}_{\mathrm{DD} 2}$ are calculated and totaled.
Figure 4 provides per-channel input supply currents as a function of data rate. Figure 5 and Figure 6 provide per-channel output supply currents as a function of data rate for an unloaded output condition and for a 15 pF output condition, respectively. Figure 7 and Figure 8 provide total $I_{D D 1}$ and $I_{D D 2}$ supply current as a function of data rate.

INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation. In addition to the testing performed by the regulatory agencies, Analog Devices carries out an extensive set of evaluations to determine the lifetime of the insulation structure within the ADuM3210.
Analog Devices performs accelerated life testing using voltage levels higher than the rated continuous working voltage. Acceleration factors for several operating conditions are determined. These factors allow calculation of the time to failure at the actual working voltage.

The values shown in Table 12 summarize the peak voltage for 50 years of service life for a bipolar ac operating condition, and the maximum CSA/VDE approved working voltages. In many cases, the approved working voltage is higher than 50 -year service life voltage. Operation at these high working voltages can lead to shortened insulation life in some cases.
The insulation lifetime of the ADuM3210 depends on the voltage waveform type imposed across the isolation barrier. The iCoupler insulation structure degrades at different rates depending on whether the waveform is bipolar ac, unipolar ac, or dc. Figure 12, Figure 13, and Figure 14 illustrate these different isolation voltage waveforms.
A bipolar ac voltage environment is the most stringent. The goal of a 50 -year operating lifetime under the ac bipolar condition determines the Analog Devices recommended maximum working voltage.

In the case of unipolar ac or dc voltage, the stress on the insulation is significantly lower. This allows operation at higher working voltages while still achieving a 50 -year service life. The working voltages listed in Table 12 can be applied while maintaining the 50 -year minimum lifetime provided that the voltage conforms to either the unipolar ac or dc voltage cases. Any cross-insulation voltage waveform that does not conform to Figure 13 or Figure 14 should be treated as a bipolar ac waveform, and its peak voltage should be limited to the 50 -year lifetime voltage value listed in Table 12.

Note that the voltage presented in Figure 13 is shown as sinusoidal for illustration purposes only. It is meant to represent any voltage waveform varying between 0 V and some limiting value. The limiting value can be positive or negative, but the voltage cannot cross 0 V .

RATED PEAK VOLTAGE

Figure 13. Unipolar AC Waveform

RATED PEAK VOLTAGE

Figure 14. DC Waveform

ADuM3210

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 15. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)
Dimensions shown in millimeters (inches)

ORDERING GUIDE

Model	Number of Inputs, $V_{D D 1}$ Side	Number of Inputs, $V_{D D 2}$ Side	Maximum Data Rate (Mbps)	Maximum Propagation Delay, 5 V (ns)	Maximum Pulse Width Distortion (ns)	Temperature Range	Package Option ${ }^{1}$
ADuM3210BRZ ${ }^{2}$	2	0	10	50	40	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	R-8
ADuM3210BRZ-RL7 ${ }^{2}$	2	0	10	50	40	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	R-8
ADuM3210TRZ ${ }^{2}$	2	0	10	50	40	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	R-8
ADuM3210TRZ-RL7 ${ }^{2}$	2	0	10	50	40	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	R-8

${ }^{1}$ R-8 = 8-lead narrow body SOIC_N.
${ }^{2} Z=$ RoHS Compliant Part.

NOTES

NOTES

