austriamicrosystems

Telephone Line Interface and
Speakerphone Circuit
AS2522B

Key Features

Line/Speech circuit, DTMF dialer, FSK transmitter and tone ringer on a 32-pin CMOS-IC
Enhanced voice switching
Background noise monitoring
DTMF tone generator
FSK Transmitter V.23, BELL202, V.21, BELL 103
Ringer tone programmable
Tx- and Rx-gain programmable
Digital volume control of $R x$ signals
DC characteristic programmable
Dual softclipping in handset mode
Tx-softclipping in handsfree mode
Common monitor amplifier for loudhearing, handsfree and ringing
Supply voltage generation for external circuitry
Automatic line loss compensation (LLC)
Real and complex impedance selectable by external components
Side tone adaptation selectable by external components Unique EMC performance
Operating range from 15 mA to 100 mA (down to 5 mA
with reduced performance)
Few external components

General Description

AS2522 is a CMOS integrated circuit that incorporates DC and AC line adaptation (DC-mask and synthesized ACimpedance of 1000Ω) as well as a speech circuit with softclipping, line loss compensation and Rx-volume control for handset and handsfree operation. It shall act as an a/bline powered device, which is controlled by a CPU via a serial interface. Furthermore the AS2522 incorporates a DTMF, FSK transmitter, single tone and ringer tone generator.

AS2522 allows to use an off-the-shelf microprocessor without special blocks and functions for telephone applications. DTMF, FSK transmitter, single tone and ringer tone generator can be controlled via the serial interface as well as the gain settings in handset and handsfree mode.

Applications

Enhanced handsfree feature phones with CallerID and extended displays.

Package

Available in 32 -pin TQFP

Block Diagram

Pin description

Pin \#	Symbol	Function
13	LS	Line Current Sense Input Analog input for sensing the line current
10	LI	Line Input Analog input used for power extraction and line current sensing
11	RI	Receive Input Analog input for ac-separated receive signal
7	STB	Side Tone Balance Input Analog input for side tone cancellation network
8	CS	Current Shunt Control Output N -channel open drain output to control the external high power shunt transistor for synthesizing AC- and DC-impedance, modulation of line voltage and shorting the line during make periods of pulse dialing
14	Cl	Complex Impedance Input Analog input pin for the capacitor to program a complex impedance
12	SS	Supply Source Control Output N-channel open drain output to control the external high power source transistor for supplying (Vpp) the loudspeaker amplifier in off-hook loudspeaking/handsfree mode
9	VSS	Voltage Source Source Negative Analog Power Supply
18	VDD	Voltage Drain Drain Positive Analog Power Supply
19	AGND	Analog Ground Special ground for the internal amplifiers
6	M1	Microphone Input 1 Differential input for the handset microphone (electret)
4	M2	Microphone Input 2 Differential input for the handset microphone (electret)
5	M3	Microphone Input 3 Differential input for the handsfree microphone (electret)
3	M4	Microphone Input 4 Differential input for the handsfree microphone (electret)
17	Ro	Receive Output to Handset Output for driving a dynamic earpiece with an impedance from 150Ω to 300Ω
31	OSC	Oscillator Input Input for ceramic resonator 3.58 MHz .

Pin \#	Symbol			
22	VPP	Loudspeaker Power Supply High power supply for the output driver stage		
21	CM	Converter Make Output This is an output for controlling the external switching converter. During ringing it converts the ring signal into a 4V supply voltage		
27	xCS	Chip Select Chip select input of the serial interface. Internal pull-up resistor (100kOhm)		
29	DI	Data Input Data input of the serial interface. Internal pull-up resistor (100kOhm)		
30	CLK	Clock Clock input of the serial interface. Internal pull-up resistor (100kOhm)		
28	DO	Data Output Data output of the serial interface. If xCS=1 DO is in HI-Z state		
24	LO1	Loudspeaker Output 1 and 2 Output pins for a 50ת loudspeaker		
23	LO2	FT1		Analog input pin for connecting a capacitor for offset cancellation.
:---				
1				

Detailed Block Diagram

Functional Description

DC conditions

The normal operating mode is from 15 mA to 100 mA . An operating mode with reduced performance is from 5 mA to 15 mA . In the line hold range from 0 mA to 5 mA the device is in a power down mode.

The DC characteristic is determined by the voltage at LIpin and a 30Ω resistor between LI- and LS-pin. It can be calculated by the following equation: VLS = VLI + ILine * 30Ω. VLI can be programmed to be 3.5 V or 4.5 V .

$2 / 4$ wire conversion

AS2522 has a built-in dual Wheatstone bridge with one common ground. This provides a maximum of independence of AC-impedance and side tone from each other. One can adapt side tone without changing the ACimpedance.

AC-impedance

The AC-impedance of AS2522 is set to t.m. 1000Ω. With the external capacitor at Cl -pin it can be programmed complex. With an external resistor of approx. $1.5 \mathrm{k} \Omega$ connected to the LS-pin it can be programmed to 600Ω.

Side Tone

A good side tone cancellation can be achieved by using the following equation:
ZBAL/ZLINE = 10

Transmit path

The gain of the M1/M2 \rightarrow LS is set to +37 dB . This gain can be changed by programming from +30 dB to +45 dB in 1 dB steps (Register Txgain). The input is differential with an impedance of $10 \mathrm{k} \Omega$. The soft clip circuit limits the output voltage at LS to 2 V . There is LLC for this path.

The gain of the M3/M4 \rightarrow LS is set to +46 dB .
This gain can be changed by programming from +39 dB to +54 dB in 1 dB steps. The input is differential with an impedance of $10 \mathrm{k} \Omega$. The soft clip circuit limits the output voltage at LS to 2 Vp . There is no LLC for this path.

Receive path

The gain of the $L S \rightarrow R O$ receive path is set to $+1 d B$. This gain can be changed by programming from -6 dB to +9 dB in 1dB steps (Register Rxgain). The receive input is the differential signal of RI and STB. The soft clip circuit
limits the output voltage at RO to 1 Vp . It prevents harsh distortion and acoustic shock. There is LLC for this path.

The gain of the LS \rightarrow LO1/LO2 receive path is set to +29 dB . This gain can be changed by programming from +22 dB to -37 dB in 1 dB steps. The user can also change the gain via Register VOL (See section "Handsfree"). The receive input is the differential signal of RI and STB. The soft clip circuit limits the output voltage at LO1 of LO2 to 1 Vp . It prevents harsh distortion and acoustic shock. There is optional LLC for this path.

Line Loss Compensation

The line loss compensation is programmable (Register $0 \times 0 \mathrm{C}$). When it is activated, the transmit and receive gains for both I/O's are decreased by 6 dB at line currents from 20 mA to 50 mA or from 45 mA to 75 mA .

Handsfree

The handsfree function allows voice communication without using the handset (full 2-way speaker phone). Two voice controlled attenuators prevent acoustic coupling between the loudspeaker and the microphone. The voice switching circuit has three states, namely idle, transmit or receive. In receive mode the attenuation of the receive path and the transmit path can be controlled by Register VOL between 0 dB and -20 dB . The following table shows how voice switching is controlled

	Speech	Mode	Rx-gain	Tx-gain	
Remark					
Rx > Tx_atten	X	Receive	0 db to -20 dB	-50 dB to -30dB	adjustable with VOL-setting
Tx_atten > Rx	NO	Idle	-25	-25	middle position
Tx_atten > Rx	YES	Transmit	-50 dB	0 dB	independent of VOL-setting

IDLE-mode

Serial Interface

Registers

The settings of the AS2522 are stored in 16 registers. Each register has 4 bit data width. Writing data into the AS2522 also causes the sending of the AS2522 status information on Pin D0. This information consists of the DC-current information (from the Line Loss Compensation circuit) and the status of the power-on reset circuit to test if AS2522 has already powered up.

D7	D6	D5	D4	D3	D2	D1	D0
LLC5	LLC4	LLC3	LLC2	LLC1	LLC0	xPOR	POR

Power on reset information in Statusbits D1 and D0

D1	D0	
0	0	
0	1	AS2522 is in POR state
1	0	AS2522 is active
1	1	

DC-current information in Statusbits D7 - D2

D[7:2]	LLC-bit LO	LLC-bit HI
000000	$<20 \mathrm{~mA}$	$<45 \mathrm{~mA}$
000001	$20-26 \mathrm{~mA}$	$45-51 \mathrm{~mA}$
000011	$26-32 \mathrm{~mA}$	$51-57 \mathrm{~mA}$
000111	$32-38 \mathrm{~mA}$	$57-63 \mathrm{~mA}$
001111	$38-44 \mathrm{~mA}$	$63-69 \mathrm{~mA}$
011111	$44-50 \mathrm{~mA}$	$69-75 \mathrm{~mA}$
111111	$>50 \mathrm{~mA}$	$>75 \mathrm{~mA}$

Timing
The data format for writing to a register has the following form:

Note: The pins $\mathrm{xCS}, C L K, D I$ have internal pull-up resistors.

Parameter	Symbol	MIN	TYP	MAX
CLK Pulse width HIGH	t6	100 ns		
CLK Pulse width LOW	t 5	100 ns		
xCS to first falling CLK- edge setup time	t 1	50 ns		
CLK to DOUT delay	t 2		50 ns	
DIN to CLK setup time	t 3	50 ns		
DIN to CLK hold time	t 4	50 ns		

Serial interface Registers

The following table shows the content of the 16 control registers.
For a detailed description of the commands see Application note AN522.

Address	Data	Control registers AS2522A, AS2522B		Default value after reset
A A A A 3 2 1 0	$\begin{array}{llll}D & D & D & D \\ 3 & 2 & 1 & 0\end{array}$			
0	Nop	No operation. Write to this location to get AS2522-Satus information without altering any other setting.		na
0	DTMFpair	Frequency select depending on Tone Generator mode		0000
			Dataf[3:0] Frequency 0000 0 Hz 0001 800 Hz (ring) 0010 1067 Hz (ring) 0011 1333 Hz (ring) 0100 1300 Hz $(\mathrm{~V} .23)$ 0101 2100 Hz (V.23) 0110 1200 Hz (Bell 202) 0111 2200 Hz (Bell 202) 1000 980 Hz $(\mathrm{~V} .21)$ 1001 1180 Hz (V.21) 1010 1070 Hz (Bell 103) 1011 1270 Hz (Bell 103) 1100 1650 Hz (V.21) 1101 1850 Hz (V.21) 1110 2025 Hz (Bell 103) 1111 2225 Hz (Bell 103)	
0 00010	DTMFLevel	$\begin{array}{\|l} \hline \text { DTMF-Level } 13 \text { steps, 1dB stepsize } \\ \text { Data } \\ 0 \times 0 \\ \text { DTMF-level LOW GROUP at pin LS } \\ : \\ 0 \times \mathrm{xC} \end{array}$		1100
$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$		DTMF-settingsTone:DTMF-signal pathpreemph:DTMF-preempahsisCT1CT0:0		0101
$\begin{array}{llll}0 & 1 & 0 & 0\end{array}$	$x \quad x \quad x \quad x$	Single Tone frequencies if FSK=0 (Addr. 12) and RING/Beep Volume [4]		0000
$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$		Tone Generator mode, single tone path BURS: Analog tone at RO $0 \ldots$ OFF, $1 \ldots$ ON BURL: Analog tone at LO1/LO2 $0 \ldots$ OFF, $1 \ldots$ ON M1 m0: Tone generator mode select 0 0 Tone generator OFF 0 1 DTMF generator mode 1 0 Single tone Analog mode 1 1 Single tone Digital mode (RING)		0000
$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$		Softclip-settings, Noise monitoring RING: RING-path $0 \ldots$ OFF, $1 \ldots$ ON BNON: Noise monitor $0 \ldots$ OFF, $1 \ldots$ ON SOFTRX: Softclip RX $0 \ldots$ OFF, $1 \ldots$ ON SOFTTX: Softclip TX $0 \ldots$ SFF, $1 \ldots$ ON		0000
$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$		DC/DC-Converter ON/OFF,Mask ldbr: Digital tone at RO $0 \ldots$ OFF, $1 \ldots$ ON ldbl: Digital tone at LO1/LO2 $0 \ldots$ OFF, $1 \ldots$ ON MASK: Mask function $0 \ldots O F F$, $1 \ldots$ ON DC/DC: DC/DC-converter $0 \ldots$ OFF, $1 \ldots$ ON		0000

Address	Data	Control registers AS2522A, AS2522B	Default value after reset
A A A A 3 2 1 0	$\begin{array}{\|llll} \hline D & D & D & D \\ 3 & 2 & 1 & 0 \\ \hline \end{array}$		
1 0 0 0	16 gains	Handsfree receive endgain Data RXgain TXgain 0×0 -20 dB -30 dB Min. receive volume $:$ $:$ 0 xF 0 dB -50 dB Max. receive volume	0111
1 0 0 1	$x \times x \quad x$ 둥 응 $\frac{\bar{n}}{\underline{1}} \frac{8}{\underline{5}}$	Handsfree switching characteristic off1 off0: BGN-offset 0 0 120 mV 0 1 180 mV 1 0 240 mV 1 1 300 mV Hfs1 HFs0 Speed of voice switching 0 0 max speed 0 1 1 0 1 1 min speed	1000
1 0 1 0	16 gains	Transmit gain [16], 16 steps, 1 dB stepsize Data HS-mode HF-mode 0×0 30 dB 39 dB $:$ \vdots $:$ $0 \times F$ 45 dB 54 dB	0111
$\begin{array}{lllll}1 & 0 & 1 & 1\end{array}$	16 gains	Receive gain [16], 16 steps, 1dB stepsize Data HS-mode HF-mode 0×0 -6 dB 22 dB $:$ \vdots \vdots 0 xF +9 dB 37 dB	0111
1 1 0 0	$\text { 휸 } \geq$	```FSK-mode, LLC[2], LI-Voltage AS2522B: FSK: Frequency select in single tone mode AS2522B ONLY FSK: 0 Single Tone frequencies are read from Addr. 4: frequ1, frequo 1 Single Tone frequencies are read from Addr. 1: f4,f3,f2,f1 AS2522A FSK: For factory test only ! LIV: Voltage at pin LI 0...3.5v, 1...4.5V LLC1 LLC0: Line loss compensation setting 0 0 20mA-50mA 0 1 NO Line loss compensation 1```	0111
1 1 0 1	$x \times x \quad x$ $\frac{0}{\sum} \leftrightharpoons \pm \frac{\infty}{\Sigma}$		0000
1 1 1 0		Krat5,Test3,Test2,Test1: For factory test only !	0000
1 1 1 1		Reset to defaults	na

Electrical characteristics

Electrical characteristics are measured with the Test Circuit application. Typical mean values will not be tested.

Absolute maximum ratings

Positive Supply Voltage	$-0.3 \mathrm{~V}<=\mathrm{VDD}<=7 \mathrm{~V}$
Input Current	$+/-25 \mathrm{~mA}$
Input Voltage (LS)	$-0.3 \mathrm{~V}<=$ Vin $<=12 \mathrm{~V}$
Input Voltage (LI, CS)	$-0.3 \mathrm{~V}<=$ Vin $<=8 \mathrm{~V}$
Input Voltage (STB, RI)	$-2 \mathrm{~V}<=\mathrm{Vin}<=\mathrm{VDD}+0.3 \mathrm{~V}$
Digital Input Voltage	$-0.3 \mathrm{~V}<=$ Vin $<=\mathrm{VDD}+0.3 \mathrm{~V}$
Electrostatic Discharge (HBM 1.5k $\Omega-100 \mathrm{pF})$	$+65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	

Recommended operating conditions

Supply Voltage (generated internally)	$3 \mathrm{~V}<=\mathrm{VDD}<=5 \mathrm{~V}$
Operating Temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

DC characteristics

ILine=15mA w/o operation of any additional external
circuitry, unless other specified

| Symbol | Parameter | Conditions | Min | Type | Max | Units | Test |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| IDDS | Operating Current | Speech Mode | | 3 | 6 | mA | Y |
| IDDH | Operating Current | Handsfree Mode | | 7 | 10 | mA | Y |
| VLI | Line Voltage LIVolt=0
 Line Voltage LIVolt=1 | 15mA<=ILINE<=100mA | 3.2 | 3.5 | 3.8 | V | Y |
| | | 4.2 | 4.5 | 4.8 | V | Y | |
| IOL | Output Current, Sink
 CS,SS | VOL=0.4V | | | | mA | N |

Transmit characteristics

ILine $=15 \mathrm{~mA} \mathrm{f}=800 \mathrm{~Hz}$, default settings unless other specified

Symbol	Parameter	Conditions	Min	Type	Max	Units	Test
Am1/2TX	Transmit Gain M1/M2 \rightarrow LS	ZAC(syn) $=1000 \Omega$	35	+36.5	38	dB	Y
Am3/4TX	Transmit Gain M3/M4 \rightarrow LS	$Z A C(s y n)=1000 \Omega$	43	+45.0	47	dB	Y
$\Delta \mathrm{ATX}$	Variation with frequency	$\mathrm{f}=500 \mathrm{~Hz} \ldots 3.4 \mathrm{kHz}$		± 0.8		dB	N
AVRM12	Control range $\text { M1/M2 } \rightarrow \text { LS }$	16 steps		-71+8		dBr	N
AVRM34	Control range $\text { M2/M4 } \rightarrow \text { LS }$	16 steps		-71+8		dBr	N
THD	Distortion	VLS $=0.25 \mathrm{VRMS}$			2	\%	Y
VAGC1	Soft Clip Level M1/M2 \rightarrow LS at LS			2		VP	N
VAGC2	Soft Clip Level M3/M4 \rightarrow LS at LS			2		VP	N
Asco	Soft Clip Overdrive M1/M2 - M3/M4			20		dB	N
tattack	Attack time			70		us/6dB	N
tdecay	Decay time			100		$\mathrm{ms} / 6 \mathrm{~dB}$	N
ZIN-M1/2	Input Impedance M1/M2			10		k Ω	N
ZIN-M3/4	Input Impedance M3/M4			10		k Ω	N
VINmax	Input Voltage Range M1/2-M3/4	differential		± 1		Vp	N
Vno	Noise Output Voltage LS	TAMP $=25^{\circ} \mathrm{C}$ Handset mode Gain $=36.5 \mathrm{~dB}$			-72	dBmp	Y
Amute	Mute Attenuation	Mute activated	60			dB	Y

Receive characteristics

ILine $=15 \mathrm{~mA} \mathrm{f}=800 \mathrm{~Hz}$, default settings unless other specified

Symbol	Parameter	Conditions	Min	Type	Max	Units	Test
Aro	Receive Gain $\mathrm{LS} \rightarrow \mathrm{RO}$	$\text { ZAC(syn) }=1000 \Omega$ Vol default	-2	-0.5	1	dB	Y
ALO12	Receive Gain $\text { LS } \rightarrow \text { LO1/LO2 }$	$\text { ZAC(syn) }=1000 \Omega$ Vol maximum	+28	+29.0	+31	dB	Y
$\triangle \mathrm{ARX}$	Variation with frequency	$\mathrm{f}=500 \mathrm{~Hz}$ to 3.4 kHz		± 0.8		dB	N
AvRro	Control range $\mathrm{LS} \rightarrow \mathrm{RO}$	16 steps		-71+8		dBr	N
AVRLS	Control range $\mathrm{LS} \rightarrow \mathrm{LS} 1 / \mathrm{LS} 2$	16 steps		-71+8		dBr	N
THDLS	Distortion LS1/LS2	VLS $=0.25 \mathrm{VRMS}$			5	\%	Y
THDRo	Distortion RO	VLS $=0.25 \mathrm{VRMS}$			2	\%	Y
VUFC	Unwanted Freq. Cmp.	$\mathrm{f}=200 \ldots 20 \mathrm{kHz}$			-60	dBm	Y
Vagcro	Soft Clip Level RO			1		VP	N
VAGCLS	Soft Clip Level LS1/2			2		VP	N
Ascls	Soft Clip Overdrive LS1/2			10		dB	N
tattack	Attack time			70		us/6dB	N
tdecay	Decay time			100		ms/6dB	N
Vno	Noise Output Voltage RO	$\begin{aligned} & \text { TAMP }=25^{\circ} \mathrm{C} \\ & \text { Gain }=3 \mathrm{~dB} \end{aligned}$			-72	dBmp	Y
ZIN-RI VINmax	Input Imp. RI Input Voltage Range RI			$\begin{gathered} 8 \\ \pm 2 \end{gathered}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{Vp} \end{aligned}$	N
ZIN-STB VINmax	Input Imp. STB Input Volt. Range STB			$\begin{aligned} & 80 \\ & \pm 2 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{Vp} \end{aligned}$	N
ST	Side tone	VRI< $=0.25$ VRMS	26			dB	Y
RL $\Delta \mathrm{ZAC} /{ }^{\circ} \mathrm{C}$	Return Loss Temp. Variation	ZAC(syn) $=1000 \Omega$	18	0.5		$\begin{gathered} \mathrm{dB} \\ \Omega /{ }^{\circ} \mathrm{C} \end{gathered}$	Y

DTMF characteristics

ILine $=15 \mathrm{~mA}$ w/o operation of any additional external circuitry, unless other specified, default settings

Symbol	Parameter	Conditions	Min	Type	Max	Units	Test
VmFlow	Tone level low group at LS	Default	-7	-6	-5	dBm	Y
MFrange	DTMF level range low group at LS	13 steps Prg. in Service mode		-18/-6		dBm	N
$\Delta \mathrm{VL}-\mathrm{H}$	Preemphasis L-H	Preemphasis=1	2.7	3.2	3.7	dB	Y
UFC	Unwanted frequency components	$\begin{aligned} & 300 \mathrm{~Hz}-4.3 \mathrm{kHz} \\ & 4.3 \mathrm{kHz}-7 \mathrm{kHz} \\ & 7 \mathrm{kHz}-10 \mathrm{kHz} \\ & 10 \mathrm{kHz}-14 \mathrm{kHz} \\ & 14 \mathrm{kHz}-28.5 \mathrm{kHz} \\ & 28.5 \mathrm{kHz}-40 \mathrm{kHz} \end{aligned}$			$\begin{aligned} & -40 \\ & -46 \\ & -52 \\ & -58 \\ & -70 \\ & -80 \end{aligned}$	dBm dBm dBm dBm dBm dBm	$\begin{aligned} & Y \\ & Y \end{aligned}$
Δf	Frequency deviation				1.2	\%	Y
$\mathrm{V}_{\text {ct- }}$	Comfort tone handset	Rel to LS programmable in service mode		$\begin{aligned} & -36 \\ & -30 \\ & -24 \\ & -18 \end{aligned}$		dBr dBr dBr dBr	$\begin{aligned} & N \\ & N \\ & N \\ & N \end{aligned}$
$V_{\text {ct-L }}$	Comfort tone Loudspeaker	Rel to LS programmable in service mode		$\begin{gathered} -15 \\ -9 \\ -3 \\ +3 \end{gathered}$		dBr dBr dBr dBr	N N N N

Ringer

Symbol	Parameter	Conditions	Min	Type	Max	Units	Test
F0	Frequency 0			0		Hz	N
F1	Frequency 1		770	800	830	Hz	Y
F2	Frequency 2		1025	1067	1110	Hz	Y
F3	Frequency 3		1280	1333	1385	Hz	Y
F4	Frequency 4			1300		Hz	N
F5	Frequency 5			2100		Hz	N
F6	Frequency 6			1200		Hz	N
F7	Frequency 7			2200		Hz	N
F8	Frequency 8			980		Hz	N
F9	Frequency 9			1180		Hz	N
F10	Frequency 10			1070		Hz	N
F11	Frequency 11			1270		Hz	N
F12	Frequency 12			1650		Hz	N
F13	Frequency 13			1850		Hz	N
F14	Frequency 14			2025		Hz	N
F15	Frequency 15			2225		Hz	N

Miscellaneous

| Symbol | Parameter | Conditions | Min | Type | Max | Units | Test |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| VPARO | Pacifier level at RO | RL $=150$ Ohm | | 30 | | mVpp | N |
| VpaLS | Pacifier level at LS $1 / 2$ | RL $=50$ Ohm | | 100 | | mVpp | N |

Test circuit

Typical application

Bonding Diagram

32 Lead 7x7mm TQFP dimensions

	MILLIMETER			INCH		
	SMMBOL	MIN	NOM	MAX	MIN	NOM
A	1.00	1.10	1.20	.039	.043	.047
A1	0.05	0.10	0.15	.002	.004	.006
A2	0.95	1.00	1.05	.037	.039	.041
D	8.80	9.00	9.20	.346	.354	.362
D1	6.90	7.00	7.10	.272	.276	.280
E	8.80	9.00	9.20	.346	.354	.362
E1	6.90	7.00	7.10	.272	.276	.280
L	0.45	0.60	0.75	.018	.024	.030
e	0.80			BSC.	.0315	BSC.
b	0.30	0.37	0.45	.012	.015	.018
c	0.13	0.16	0.20	.005	.006	.008

Packaging

32-pin plastic TQFP (suffix Q)
For exact mechanical package dimensions please see austriamicrosystemsag packaging information.

Pin-out, Marking

Ordering Information

Number	Package	Description
AS2522B Q	TQFP	plastic thin quad flat package - 32 leads (suffix T)
AS2522B F	DOF	Dice-on-Foil

Devices sold by austriamicrosystems AG are covered by the warranty and patent identification provisions appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for each application.

Copyright

Copyright © 1997-2002, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of austriamicrosystems AG rendering of technical or other services.

Contact

Headquarters

austriamicrosystems AG
Communications Business Unit
A 8141 Schloss Premstätten, Austria
T. +43 (0) 31365000
F. +43 (0) 313652501
www.austriamicrosystems.com

Sales Offices

Germany

austriamicrosystems Germany GmbH
Tegernseer Landstrasse 85
D-81539 München, Germany
Phone: +49/89/693643-0
Fax: +49/89/693643-66

France
austriamicrosystems France S.a.r.I.
124, Avenue de Paris
F-94300 Vincennes, France
Phone: +33/1/43 740090
Fax: +33/1/43 742098
Italy
austriamicrosystems Italy S.r.I.
Via Leone Tolstoi, 64
I-20146 Milano, Italy
Phone: +39/0242/36713
Fax: +39/0242/290889

Switzerland

austriamicrosystems Switzerland AG
Rietstrasse 4
CH-8640 Rapperswil, Switzerland
Phone: +41/55/220 9000
Fax: +41/55/220 9001

USA (west)
austriamicrosystems USA, Inc.
Suite 116, 4030 Moorpark Ave, San Jose, CA 95117, USA
Phone: +1/408/345 1790
Fax: +1/408/345 1795

USA (east)

austriamicrosystems USA, Inc.
Suite 400, 8601 Six Forks Road
Raleigh, NC 27615, USA
Phone: +1/919/676 5292
Fax: +1/919/676 5305

United Kingdom

austriamicrosystems UK, Ltd.
Coliseum Business Centre, Watchmoor Park
Camberley, Surrey, GU15 3YL, UK
Phone: +44/1276/23 399
Fax: +44/1276/29 353

Japan

austriamicrosystems AG
Shin Yokohama Daini, Center Bldg. 10F
3-19-5, Shin Yokohama
Kohoku-ku, Yokohama 222-0033, Japan
Phone: +81/45/474 0962
Fax: +81/45/472 9845

Distributors \& Representatives

austriamicrosystems AG is represented by distributors in the following countries. Please contact your nearest regional sales office for the distributor address:

Spain, Israel, Korea, Hong-Kong, Taiwan, Malaysia, Singapore, India, Brazil

Application Support

Please contact your local sales office or your distributor.

