5 Channel DC/DC Converters IC with High-Efficiency Step-Up

General Description

The RT9903 is a complete power-supply solution for digital still cameras and other hand-held devices. It integrates a high-efficiency fours step-up DC-DC converters and a charge pump.

The two Step-up DC-DC converters ($\mathrm{CH} 1, \mathrm{CH} 2$) accept inputs from 1.5 V to 5.5 V and regulate a resistoradjustable output up to 17 V . One Step-up DC-DC converter (CH 3) can be regarded as white LED Driver, which reference voltage is 0.2 V and have OVP function. One step-up DC-DC converter (CH 4) regulate a resistoradjustable output up 5 V . An adjustable operating frequency (up to 1.4 MHz) is utilized to get optimum size, cost, and efficiency.

The feature of the charge pump (CH 5) is to deliver few current to CCD negative voltage.

RT9903 is available in VQFN-24L 4×4 package. Each DC-DC converters have independent shutdown inputs.

Applications

- Digital Still Camera
- PDAs
- Portable Device

Ordering Information

RT9903
Package Type
QV : VQFN-24L 4x4 (V-Type)
Operating Temperature Range
P: Pb Free with Commercial Standard
G: Green (Halogen Free with Commer-
cial Standard)

Note :
Richtek Pb -free and Green products are :
\rightarrow RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
Suitable for use in SnPb or Pb -free soldering processes.
-100\% matte tin (Sn) plating.

Marking Information

For marking information, contact our sales representative directly or through a Richtek distributor located in your area, otherwise visit our website for detail.

Features

- Two step-up DC-DC Converters (CH1, CH2) -HV Internal Switches
-50mA Load Current
- One Step-up DC-DC Converter (CH3)
>0.2V Reference Voltage
-HV Internal Switches
LED Brightness Dimming Control
Over Voltage Protection
- One Step-up DC-DC Converter (CH4)

External Switches
External Current Limit Setting

- Step-up Charge Pump (CH5) for CCD Negative Voltage
DHV Internal Switches
- Up to 1.4 MHz Switching Frequency
- $1 \mu \mathrm{~A}$ Supply Current in Shutdown Mode
- External Compensation Network for All Converters
- Programmable Soft Start Function (CH1, CH2, CH3, CH4)
- Independent Enable Pin to Shutdown Each Channel
- 24-Lead VQFN Package
- RoHS Compliant and 100\% Lead (Pb)-Free

Pin Configurations

Typical Application Circuit

2-AA Battery 1.8 V to 3.2 V

Function Block Diagram

Functional Pin Description

Pin No.	Pin Name	
1	CX	Charge Pump External Driver Pin.
2	INCD	Charge Pump Input Pin.
3	FB_CP	Charge Pump Feedback Pin.
4	RT	Frequency Setting Resistor Connection Pin.
5	EXT4	CH4 External Power Switch.
6	CS4	CH4 Current Sense Input Pin.
7	FB4	CH4 Feedback Input.
8	COMP4	CH4 Feedback Compensation Pin.
9	FB3	CH3 Feedback Input.
10	COMP3	CH3 Feedback Compensation Pin.
11	LX3	CH3 Switch Node.
12	EN3	CH3 Enable Input Pin.
13	EN1	CH1 Enable Input Pin.
14	EN2	CH2 Enable Input Pin.
15	EN4	CH4 Enable Input Pin.
16	PGND	Power Ground.
17	VDD	Power Input Pin.
18	LX1	CH1 Switch Node.
19	COMP1	CH1 Feedback Compensation Pin.
20	FB1	CH1 Feedback Input.
21	AGND	Analog Ground.
22	FB2	CH2 Feedback Input.
23	COMP2	CH2 Feedback Compensation Pin.
24	LX2	CH2 Switch Node.
Exposed Pad (25)	GND	The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.
1		

Absolute Maximum Ratings (Note 1)	
- Power Dissipation, PD_{D} @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	
VQFN-24L4x4 --1.923W	
- Package Thermal Resistance (Note 3)	

Recommended Operating Conditions (Note 2)

- Maximum Output Voltage Setting (Vout1 and Vout2) 17 V
- Dimming Control Frequency Range, CH3 200 Hz to 900 Hz

Electrical Characteristics

($\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specification)

Parameter	Symbol	Test Condition	Min	Typ	Max	Units
Supply Voltage						
VDD Operating Voltage	$\mathrm{V}_{\mathrm{VDD}}$	VDD Pin Voltage	2.4	--	5.5	V
VDD Start-up Voltage		VDD Pin Voltage	1.5	--	--	V
VDD Over Voltage Protection	$\mathrm{V}_{\mathrm{DD}(\mathrm{OVP})}$	VDD Pin Voltage	6	--	--	V
Supply Current						
Shutdown Supply Current	IOFF	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {EN1 }}$ to $4=0 \mathrm{~V}$	--	0.01	1	$\mu \mathrm{A}$
CH1 DC/DC Converter Supply Current	IVDD1	$\begin{aligned} & V_{V D D}=3.6 \mathrm{~V}, \\ & V_{F B 1}=V_{R E F}+0.15 \mathrm{~V} \\ & V_{E N 1}=3.3 \mathrm{~V}, V_{E N 2}=0 \mathrm{~V}, \\ & V_{E N 3}=0 \mathrm{~V}, \mathrm{~V}_{\text {EN } 4}=0 \mathrm{~V} \end{aligned}$	--	200	250	$\mu \mathrm{A}$
CH2 DC/DC Converter \& Charge Pump Supply Current	IVDD2	$\begin{aligned} & V_{V D D}=3.6 \mathrm{~V}, \\ & V_{F B 2}=V_{R E F}+0.15 \mathrm{~V} \\ & V_{E N 1}=0 \mathrm{~V}, V_{E N 2}=3.3 \mathrm{~V}, \\ & V_{E N 3}=0 \mathrm{~V}, V_{E N 4}=0 \mathrm{~V} \end{aligned}$	--	210	260	$\mu \mathrm{A}$
CH3 DC/DC Converter Supply Current	IVDD3	$\begin{aligned} & V_{V D D}=3.6 \mathrm{~V}, \\ & V_{\text {FB3 }}=V_{R E F}+0.15 \mathrm{~V} \\ & V_{\text {EN } 1}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN} 2}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {EN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN} 4}=0 \mathrm{~V} \end{aligned}$	--	250	300	$\mu \mathrm{A}$
CH4 DC/DC Converter Supply Current	lvDD4	$\begin{aligned} & V_{V D D}=3.6 \mathrm{~V}, \\ & V_{F B 4}=V_{R E F}+0.15 \mathrm{~V} \\ & V_{E N 1}=0 \mathrm{~V}, V_{E N 2}=0 \mathrm{~V}, \\ & V_{E N 3}=0 \mathrm{~V}, V_{E N 4}=3.3 \mathrm{~V} \end{aligned}$	--	200	250	$\mu \mathrm{A}$

To be continued

Parameter	Symbol	Test Condition	Min	Typ	Max	Units
Oscillator						
Free Running Frequency	Fosc	RT = Open	400	500	600	kHz
CH1, CH2, CH3 Maximum Duty Cycle	$\mathrm{D}_{\text {MAX1,2,3 }}$		93	95	--	\%
CH4 Maximum Duty Cycle	$\mathrm{D}_{\text {MAX4 }}$		75	80	85	\%
Reference Voltage (CH1, CH2, CH3, CH4, CH5)						
Feedback Reference Voltage	$\mathrm{V}_{\mathrm{FB} 1,2,4}$	CH1, CH2, CH4	0.98	1	1.02	V
Feedback Reference Voltage	$\mathrm{V}_{\text {FB3 }}$	CH3	0.18	0.2	0.22	V
Feedback Voltage (Charge Pump)	$V_{\text {FBCP }}$	CH5	-0.02	0	0.02	V
Error Amplifier						
GM		FB1 = COMP	--	200	--	$\mu \mathrm{s}$
Compensation Source Current			--	22	--	$\mu \mathrm{A}$
Compensation Sink Current			--	22	--	$\mu \mathrm{A}$
Power Switch						
CH1 On Resistance of MOSFET	$\mathrm{R}_{\mathrm{DS1} 1}(\mathrm{ON})$	N-MOSFET, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	--	0.6	--	Ω
CH1 Current Limitation			0.7	--	--	A
CH2 On Resistance of MOSFET	$\mathrm{R}_{\mathrm{DS} 2(\mathrm{ON})}$	N-MOSFET, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	--	0.6	--	Ω
CH2 Current Limitation			0.7	--	--	A
CH3 On Resistance of MOSFET	$\mathrm{R}_{\mathrm{DS} 3(\mathrm{ON})}$	N-MOSFET, $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$	--	0.6	--	Ω
CH3 Current Limitation			0.7	--	--	A
Charge Pump On Resistance of N-MOSFET			15	20	25	Ω
Charge Pump On Resistance of P-MOSFET			15	20	25	Ω
CH4 Over Current Threshold Voltage			0.3	0.4	0.5	V
CH4 On Resistance of N-MOSFET			3	6	9	Ω
CH4 On Resistance of P-MOSFET			--	20	--	Ω
Control						
EN1, EN2, EN3, EN4 Input High Level Threshold		$\mathrm{V}_{\text {VDDM }}=3.3 \mathrm{~V}$	--	0.8	1.3	V
EN1, EN2, EN3, EN4 Input Low Level Threshold		$\mathrm{V}_{\text {VDDM }}=3.3 \mathrm{~V}$	0.4	0.8	--	V
External Current Setting (CH4)						
CS4 Sourcing Current	ICS4		8	10	12	$\mu \mathrm{A}$
Thermal Protection						
Thermal Shutdown	$\mathrm{T}_{\text {SD }}$		--	180	--	${ }^{\circ} \mathrm{C}$

Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
Note 2. The device is not guaranteed to function outside its operating conditions.
Note 3. θ_{JA} is measured in the natural convection at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard.
Note 4. Pull low EN1, EN2 and EN4 when they are not enabled. EN3 pin is automatically pulled low when not enabled.

Typical Operating Characteristics

VLx1 \& Output Ripple

VLx1 \& Output Ripple

CH2 Efficiency vs. Output Current

$V_{\text {LX2 }}$ \& Output Ripple

$\mathrm{V}_{\mathrm{Lx} 2}$ \& Output Ripple

VLX4 \& Output Ripple

CH4 Efficiency vs. Output Current

$\mathrm{V}_{\mathrm{LX} 4}$ \& Output Ripple

CH4 Load Transient Response

Frequency vs. R_{RT} Resistor

Application Information

The RT9903 is a five-Channel DC/DC converter for digital still cameras and other hand-held device. The five channels DC/DC converters are as follows:

CH 1 : Step-up, asynchronous voltage mode DC/DC converter with an internal power MOSFET, current limit protection, and over voltage protection. This channel is designed to supply output voltage from 3.3 V to 17 V .

CH2: Step-up, asynchronous voltage mode DC/DC converter with an internal power MOSFET, current limit protection, and over voltage protection. This channel is designed to supply output voltage from 3.3 V to 17 V . At the same time, it supplies the power for charge pump of CH5.

CH3: Step-up, asynchronous current mode DC/DC converter with an internal power MOSFET, current limit protection, and over voltage protection. This channel is designed to light $2 \sim 4$ WLEDs with constant current regulation, and the lightness can be dimming-controlled by the duty of EN3 pin.

CH4: Step-up, asynchronous current mode DC/DC converter with current limit protection. This channel is designed to drive external N-MOS switch for steppingup voltage.

CH5: Charge-pump, to supply negative voltage. This channel is enabled at the same time as CH 2 .

Soft-Start

$\mathrm{CH} 1, \mathrm{CH} 2$, and CH 4 can be soft-started individually every time when the channel is enabled. Soft-start is achieved by ramping up the PWM duty from very small to normal operation. The ramping up PWM duty is achieved by sourcing 1 uA from error amplifier to the compensation capacitor. When the output voltage is regulated, the PWM duty enters the normal operation, and the error amplifier can sink and source up to 22 uA .

The soft-start time is set by the following formula:

$$
\text { TSOFT-START }=\frac{(1 \mathrm{~V}-1 \mathrm{uA} \times \mathrm{RcomP}) \times \mathrm{CcomP}}{1 \mathrm{uA}}
$$

$\mathrm{R}_{\text {COMP }}$ and $\mathrm{C}_{\text {COMP }}$ are compensation components.

Oscillator

The internal oscillator synchronizes $\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3$ and CH 4 PWM operation frequency. The operation frequency is set by a resistor between RT pin to ground, ranging from 500 kHz to 1.4 MHz .

Step-up (Boost) DC/DC Converter (CH1)

The channel (CH 1) is a step-up voltage-modeDC/DC PWM converter with built-in internal power MOS and external schottky diode. Output voltage is regulated and adjustable up to 17 V . This channel is designed to supply several tens mA current.

The maximum duty of the constant frequency is 96% for this channel to prevent high input current drawn from input.

Protection

Current Limit

The current of NMOS is sensed cycle by cycle to prevent over current. When over current limit, then the NMOS is off. This state is latched and then reset automatically at next clock cycle.

Over Voltage

The over voltage protection prevents LX1 voltage going too high. The over-voltage is detected by the junction leakage and the threshold value is around 22 V . This channel is latched shut down when OVP occurs, and can be reset by toggling EN1.

Step-up (Boost) DC/DC Converter (CH2)

The channel (CH2) is a step-up voltage-modeDC/DC PWM converter with built-in internal power MOS and external schottky diode. Output voltage is regulated and adjustable up to 17 V . This channel is designed to supply several tens mA current.

The output voltage of this channel supplies the power of charge-pump of CH5.

The maximum duty of the constant frequency is 96% for this channel to prevent high input current drawn from input.

Protection

Current Limit

The current of NMOS is sensed cycle by cycle to prevent over current. When over current limit, then the NMOS is off. This state is latched and then reset automatically at next clock cycle.

Over Voltage

The over voltage protection prevents LX2 voltage going too high. The over-voltage is detected by the junction leakage and the threshold value is around 22 V . This channel is not latched shut down when OVP occurs.

Step-up (Boost) DC/DC Converter (CH3)

The channel (CH3) is a step-up current-modeDC/DC PWM converter with built-in internal power MOS and external schottky diode. This channel is designed to light 2 to 4 WLEDSs with constant current regulation. The lightness of WLED can be dimming-controlled by the duty of EN3 pin.

The maximum duty of the constant frequency is 96% for this channel to prevent high input current drawn from input.

Protection

Current Limit

The current of NMOS is sensed cycle by cycle to prevent over current. When over current limit, then the NMOS is off. This state is latched and then reset automatically at next clock cycle.

Over Voltage

The over voltage protection prevents LX3 voltage going too high. The over-voltage is detected by the junction leakage and the threshold value is around 22 V . This channel is latched shut down when OVP occurs, and can be reset by toggling EN3.

Step-up (Boost) DCIDC Converter (CH4)

The channel (CH4) is a step-up current-modeDC/DC PWM converter to drive external power N-MOS and external schottky diode.

At light load, efficiency is enhanced by pulse-skipping mode. In this mode, the external NMOS turns on by a constant pulse width. As loading increased, the converter operates at constant frequency PWM mode. The maximum duty of the constant frequency is 80% for the boost to prevent high input current drawn from input.

Protection

Current Limit

The current of NMOS is sensed cycle by cycle to prevent over current. The current is sensed by CS4 pin to determine whether it reaches current limit threshold.

When CS4 voltage is higher than 0.4 V , the external NMOS is off. This state is latched and then reset automatically at next clock cycle.
$V_{(C S 4)}=10 \mu \mathrm{~A} \times \mathrm{R}_{\mathrm{CS}}+\mathrm{I}_{\text {Inductor }} \times \mathrm{R}_{\mathrm{DC}(\mathrm{ON})}$ External_MOS

Current Mode Step-up Compensation

When the step-up converter operates with continuous inductor current, the right-half-plane zero (RHPZ) appears in the loop-gain frequency response. To ensure the stability, the control-loop gain should crossover at the frequency (crossover frequency f_{C}) much less than that of RHPZ.

The inductor (L) and output capacitance (Cout) are chosen first in consideration of performance, size, and cost. The compensation resistor $\left(\mathrm{R}_{\mathrm{C}}\right)$ and capacitor $\left(\mathrm{C}_{\mathrm{C}}\right)$ are then chosen to optimize the control-loop stability.

The useful steps are listed below to calculate loop compensation.

Step-1 Calculate RHPZ

For continuous conduction, the RHPZ is given by
$\mathrm{f}_{\text {RHPZ }}=\frac{\mathrm{V} \text { OUt }(1-\mathrm{D})^{2}}{2 \pi \mathrm{~L} \text { lout }}$
Where D is the duty cycle $=1-\left(\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {OUT }}\right)$, L is the inductor value, and $\mathrm{I}_{\text {LOAD }}$ is the maximum output current. Typical target crossover frequency is $1 / 6$ of RHPZ.

For example, if we assume $\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$, $\mathrm{V}_{\text {OUt }}=3.3 \mathrm{~V}$, and lout $=0.5 \mathrm{~A}$, the R LOAd $=6.6 \Omega$. If we select $\mathrm{L}=4.7 \mathrm{uH}$, then : $\mathrm{f}_{\mathrm{RHPZ}}=66 \mathrm{KHz}$

Step-2 Calculate C_{C}

Choose $\mathrm{f}_{\mathrm{C}}=10 \mathrm{KHz}$, and then C_{c} is calculated from the simplified loop-gain formula.

Loop gain $=$
$G m \times \frac{1+S_{c c} C_{c}}{S_{c}} \times \frac{1}{R_{c s}} \times(1-D) \times \frac{R_{\text {out }}}{1+\text { R }_{\text {out }} \text { Cout }} \times \frac{V_{\text {Fb }}}{V_{\text {out }}}$

Where $G m$ is the transconductance of error amplifier, and R_{CS} is the current sense amplifier transresistance.

In our design, $G m=200$ us, $R_{C S}=0.8 \mathrm{~V} / \mathrm{A}$, and $\mathrm{V}_{\mathrm{FB}}=1 \mathrm{~V}$, and then $C_{C}=4.34 \mathrm{nF}$ from calculation.

Choose $C_{C}=4.7 n F$.

Step-3 Calculate R_{C}

R_{C} is calculated such that transient droop requirements are met.

For example, in our design, if 5% transient droop is allowed, then the error amplifier moves $0.05 \times 1 \mathrm{~V}$, or 50 mV . The error amplifier output drives $50 \mathrm{mV} \times 200$ us, or 10uA across Rc to provide transient gain.

We select $R_{C S}=2.7 \mathrm{k} \Omega$ to meet the requirements.
The output capacitor is chosed 40 uF to cancel the R_{C} C_{c} zero, and can sustain stable $\mathrm{V}_{\text {OUt }}$ voltage at heavy load condition.

Charge Pump DCIDC Converter (CH5)

This is a low quiescent negative-voltage charge pump DC/DC converter, which is enabled by EN2. Output ripple can be easily suppressed by increasing the capacitance ratio of $\mathrm{C}_{\mathrm{OUT}}$ and C_{CP}. This charge pump DC/DC converter can apply to negative voltage of CCD.

The maximum output current is determined by the ratio of C_{CP} and $\mathrm{C}_{\text {OUT }}$. This equation would describe the relationship.

$$
I_{M A X}=\left(V_{I N C D}-2 V_{F}\right) \times C_{C P} \times F_{C P}
$$

- V_{F} : Schottky diode forward voltage
- F_{CP} : Charge pump maximum frequency is 500 kHz .

The negative output voltage is set by R1 and R2. The FBCP threshold voltage is 0 V .

$$
\frac{\mid V_{\text {Out }} \times R_{2}}{V_{\text {DD }} \times R_{1}}=1
$$

Reference

The chip has an internal 1 V reference voltage, which is the inputs of the error amplifiers of the $\mathrm{CH} 1, \mathrm{CH} 2$, and CH 4 to compare the difference of feedback voltage. The reference voltage of CH 3 is 0.2 V for WLEDs application. The reference voltage can be set up stably when the supplied power (VDD) is above 1.5 V , and EN1 (or EN2, EN3, EN4 either one) goes high.

Thermal Protection

Thermal protection function is integrated in the chip. When the chip temperature is higher than $180^{\circ} \mathrm{C}$, the controllers of all channels are shutdown. When the thermal protection is relieved, the chip operates well again.

Outline Dimension

Note : The configuration of the Pin \#1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions In Millimeters		Dimensions In Inches				
	Min		Max	Min			
A	0.800	1.000	0.031	0.039			
A1	0.000	0.050	0.000	0.002			
A3	0.175	0.250	0.007	0.010			
b	0.180	0.300	0.007	0.012			
D	3.950	4.050	0.156	0.159			
D2	2.300	2.750	0.091	0.108			
E	3.950	4.050	0.156	0.159			
E2	2.300	2.750	0.091	0.108			
e	0.500						0.020
L	0.350	0.450	0.014	0.018			

V-Type 24L QRN 4x4 Package

Richtek Technology Corporation

Headquarter
5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing)
8F, No. 137, Lane 235, Paochiao Road, Hsintien City
Taipei County, Taiwan, R.O.C.
Tel: (8862)89191466 Fax: (8862)89191465
Email: marketing@richtek.com

