International Rectifier

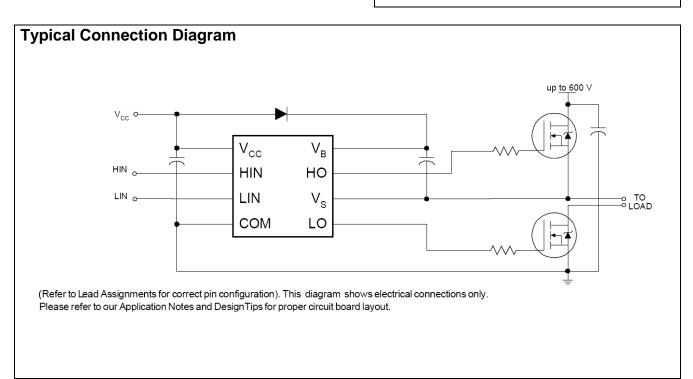
Automotive Grade AUIRS2301S

HIGH AND LOW SIDE DRIVER

Features

- Floating channel designed for bootstrap operation
- Fully operational to +600V
- Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 5V to 20V
- Undervoltage lockout for both channels
- 3.3V, 5V and 15V input logic compatible
- Matched propagation delay for both channels
- Outputs in phase with inputs
- · Lower di/dt gate driver for better noise immunity
- · Leadfree, RoHS compliant
- Automotive qualified*

Typical Applications


- Automotive motor drives
- Servo drives
- Micro inverter drives
- General purpose three phase inverters

Product Summary

V _{OFFSET}	600V Max			
V _{OUT}	5V – 20V			
I _{o+} & I _{o-} (min)	120mA / 250mA			
t _{ON} & t _{OFF} (typical)	220ns / 200ns			
Delay Matching	50ns			

Package Options

International **IOR** Rectifier

AUIRS2301S

Table of Contents	Page
Typical Connection Diagram	1
Description	3
Feature Comparison	3
Qualification Information	4
Absolute Maximum Ratings	5
Recommended Operating Conditions	5
Dynamic Electrical Characteristics	6
Static Electrical Characteristics	6
Functional Block Diagram	7
Input/output Timing Diagram	8
Lead Definitions	9
Lead Assignments	9
Application Information and Additional Details	10
Package Details	12
Tape and Reel Details	13
Part Marking Information	14
Ordering Information	15

International **TOR** Rectifier

AUIRS2301S

Description

The AUIRS2301S is a high voltage, high speed power MOSFET and IGBT driver with independent high- and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600V.

Qualification Information[†]

Qualification inform	<u>u.i.o.i.</u>					
Qualification Level		Automotive (per AEC-Q100 ^{††})				
		Comments: This family of ICs has passed an Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.				
Moisture Sensitivity Le	evel	MSL3 ^{†††} 260°C (per IPC/JEDEC J-STD-020)				
Machine Model		Class M2 (per AEC-Q100-003)				
ESD	Human Body Model	Class H1C (per AEC-Q100-002)				
Charged Device Model		Class C5 (per AEC-Q100-011)				
IC Latch-Up Test		Class II , Level B (per AEC-Q100-004)				
RoHS Compliant		Yes				

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Exceptions to AEC-Q100 requirements are noted in the qualification report.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units		
V _B	High-side floating absolute voltage	-0.3	625			
Vs	High-side floating supply offset voltage	upply offset voltage $V_B - 25 V_B + 0.3$				
V_{HO}	High-side floating output voltage	V _S - 0.3	V _B + 0.3	V		
V _{CC}	Low-side and logic fixed supply voltage -0.3 25					
V_{LO}	Low-side output voltage	-0.3	V _{CC} + 0.3			
V_{IN}	Logic input voltage (HIN & LIN)	COM -0.3	$V_{CC} + 0.3$			
dV _S /dt	Allowable offset supply voltage transient	_	50 V/ns			
P_{D}	Package power dissipation @ TA ≤ 25°C	_	0.625 W			
Rth _{JA}	Thermal resistance, junction to ambient	_	200 °C/W			
TJ	Junction temperature	_	150	0 °C		
Ts	Storage temperature -50 150					
T _L	Lead temperature (soldering, 10 seconds)	_	300			

Recommended Operating Conditions

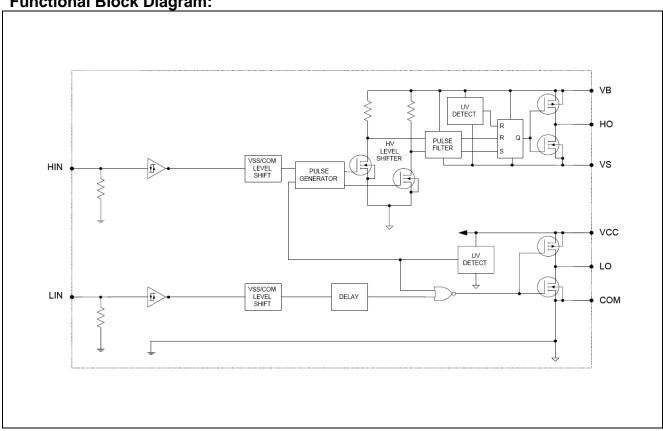
The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units			
V_{B}	High-side floating supply absolute voltage	V _S + 5	V _S + 20				
Vs	High-side floating supply offset voltage	† 1	600	600			
V_{HO}	High-side floating output voltage	Vs	V_B	V			
V_{CC}	Low-side and logic fixed supply voltage	5	20	V			
V_{LO}	Low-side output voltage	0	V_{CC}				
V _{IN}	Logic input voltage (HIN & LIN)	COM	V _{CC}				
T _A	Ambient temperature	-40	125	°C			

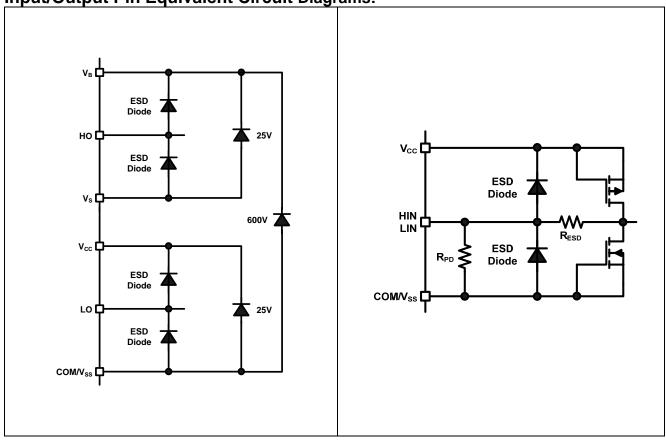
^{†:} Logic operational for V_S of -5 V to +600 V. Logic state held for V_S of -5 V to $-V_{BS}$. (Please refer to the Design Tip DT97 -3 for more details).

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C unless otherwise specified. The V_{IL} , V_{IH} and I_{IN} parameters are referenced to COM and are applicable to the respective input leads: HIN and LIN. The V_{O_i} I_{O_i} and I_{O_i} parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

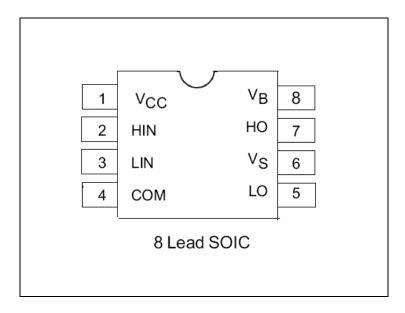

Symbol	Definition	Min	Тур	Max	Units	Test conditions	
V _{IH}	Logic "1" input voltage	2.5	_	_	V	V _{CC} = 10V to 20V	
V_{IL}	Logic "0" input voltage		_	8.0	V	V _{CC} = 10V to 20V	
V_{OH}	High level output voltage, V _{BIAS} - V _O	_	_	0.2	V	I _O = 2mA	
V _{OL}	Low level output voltage, V _O	_	_	0.1	\ \	1 ₀ – 2111A	
I _{LK}	Offset supply leakage current		_	50		$V_{\rm B} = V_{\rm S} = 600 V$	
I_{QBS}	Quiescent V _{BS} supply current	60	160	260		V _{IN} = 0V or 5V	
I _{QCC}	Quiescent V _{CC} supply current	60	160	260	μA	V _{IN} – UV UI 5V	
I _{IN+}	Logic "1" input bias current	_	5	20		V _{IN} = 5V	
I _{IN-}	Logic "0" input bias current	_	_	5		$V_{IN} = 0V$	
$V_{CCUV+} \ V_{BSUV+}$	V_{CC} and V_{BS} supply undervoltage positive going threshold	3.3	4.1	5			
$V_{CCUV-} V_{BSUV-}$	V _{CC} and V _{BS} supply undervoltage negative going threshold 3 3.8 4.7 V		V				
V_{CCUVH} V_{BSUVH}	Hysteresis	0.1	0.3	_			
I _{O+}	Output high short circuit pulsed current	_	200	_	mA	$V_O = 0V$, PW $\leq 10\mu$ s	
I _{O-}	Output low short circuit pulsed current	_	350	_	IIIA	V _O = 15V, PW ≤ 10µs	

Dynamic Electrical Characteristics


 V_{BIAS} (V_{CC} , V_{BS}) = 15V, C_L = 1000pF, T_A = 25°C unless otherwise specified.

Symbol	Definition	Min	Тур	Max	Units	Test conditions
t _{on}	Turn-on propagation delay	_	220	300		$V_S = 0V$
t_{off}	Turn-off propagation delay	_	200	280		$V_S = 0V \text{ or } 600V$
MT	Delay matching, HS & LS turn-on/off	_	0	50	ns	
t _r	Turn-on rise time	_	130	220		V _S = 0V
t _f	Turn-off fall time	_	50	80		v _S = 0v

Functional Block Diagram:


Input/Output Pin Equivalent Circuit Diagrams:

Lead Definitions:

PIN#	Symbol	Description				
1	V_{CC}	ow-side and logic fixed supply				
2	HIN	ogic input for high-side gate driver outputs (HO), in phase with HO				
3	LIN	Logic input for low-side gate driver outputs (LO), in phase with LO				
4	COM	Low-side return				
5	LO	Low-side gate drive output				
6	V_S	High-side floating supply return				
7	НО	High-side gate drive output				
8	V_B	High-side floating supply				

Lead Assignments

Application Information and Additional Details

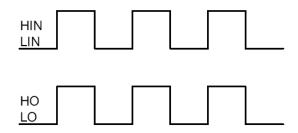
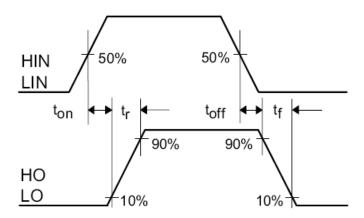
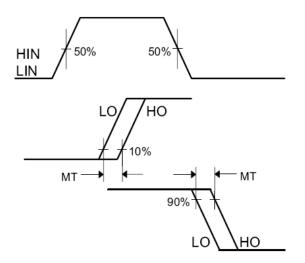




Figure 1: Input/Output Timing Diagram

Figure 2: Switching Time Waveform Definitions

Figure 3: Delay Matching Waveform Definitions

Tolerability to Negative VS Transients

The AUIRS2301S has been seen to withstand negative Vs transient conditions on the order of -25V for a period of 100 ns (V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C).

An illustration of the AUIRS2301S performance can be seen in Figure 4.

Even though the AUIRS2301S has been shown able to handle these negative Vs transient conditions, it is highly recommended that the circuit designer always limit the negative Vs transients as much as possible by careful PCB layout and component use.

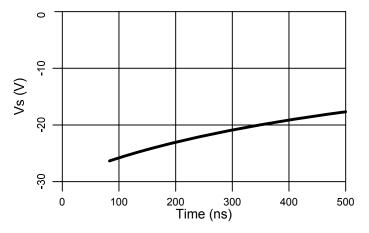
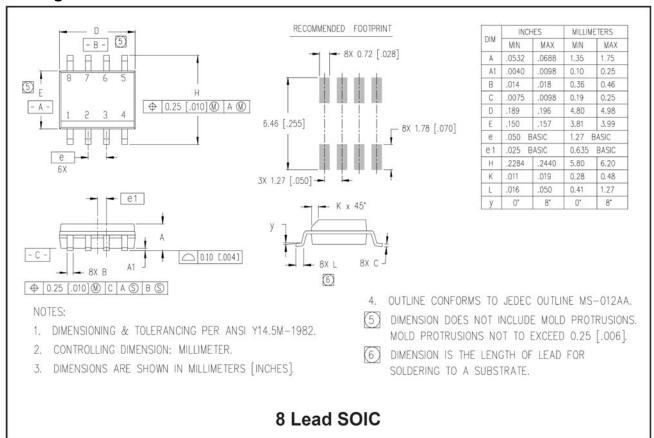
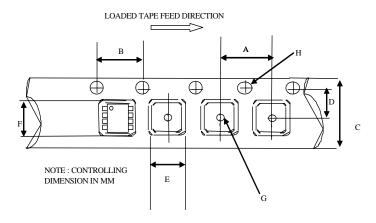
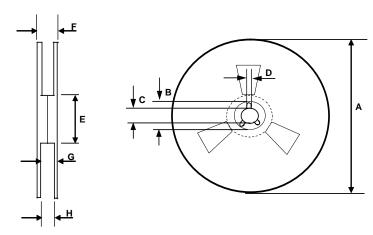




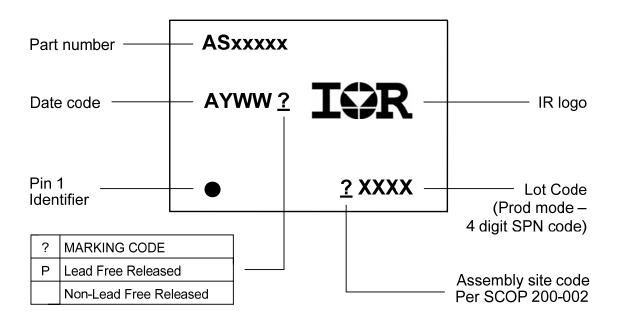
Figure 4: -Vs Transient results

Package Details



Tape and Reel Details

CARRIER TAPE DIMENSION FOR 8SOICN


	Metric		Imperial		
Code	Min	Max	Min	Max	
Α	7.90	8.10	0.311	0.318	
B C	3.90	4.10	0.153	0.161	
С	11.70	12.30	0.46	0.484	
D	5.45	5.55	0.214	0.218	
E	6.30	6.50	0.248	0.255	
F	5.10	5.30	0.200	0.208	
G	1.50	n/a	0.059	n/a	
Н	1.50	1.60	0.059	0.062	

REEL DIMENSIONS FOR 8SOICN

	Metric		Imperial		
Code	Min	Max	Min	Max	
Α	329.60	330.25	12.976	13.001	
B C	20.95	21.45	0.824	0.844	
С	12.80	13.20	0.503	0.519	
D	1.95	2.45	0.767	0.096	
E F	98.00	102.00	3.858	4.015	
	n/a	18.40	n/a	0.724	
G H	14.50	17.10	0.570	0.673	
Н	12.40	14.40	0.488	0.566	

Part Marking Information

International

TOR Rectifier

AUIRS2301S

Ordering Information

		Standard Pack		Occupation Book Named an	
Base Part Number	Package Type	Form	Quantity	Complete Part Number	
ALUDOGGA	SOIC8	Tube/Bulk	95	AUIRS2301S	
AUIRS2301	30108	Tape and Reel	2500	AUIRS2301STR	

he information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

www.irf.com © 2009 International Rectifier