White LED Step-Up Converter in Tiny Package

General Description

The RT9271 is a step-up DC/DC converter specifically designed to drive white LEDs with a constant current. The device can drive one to four LEDs in series from a Li-lon cell. Series connection of the LEDs provides identical LED currents resulting in uniform brightness and eliminating the need for ballast resistors. The RT9271 switches at 1.1 MHz , allowing the use of tiny external components. The input and output capacitor can be as small as $1 u F$, saving space and cost versus alternative solutions. A low 0.25 V feedback voltage minimizes power loss in the current setting resistor for better efficiency.

The RT9271 is available in low profile SOT-26 package.

Ordering Information

Package Type E: SOT-26

Marking Information

For marking information, contact our sales representative directly or through a RichTek distributor located in your area, otherwise visit our website for detail.

Features

- Inherently Matched LED Current
- High Efficiency: 85\% Typical
- Drives Up to Four LEDs from 2.8V Supply
- 20V Internal Switch
- Fast 1.1 MHz Switching Frequency
- Uses Tiny 1 mm Tall Inductors
- Requires Only 1uF Output Capacitor
- Low Profile SOT-26 Package
- Optional 15V Over Voltage Protection

Applications

- Mobile Phone
- Digital Still Camera
- PDAs, Handheld Computers
- MP3 Players
- GPS Receivers

Pin Configurations

(TOP VIEW)

SOT-26

Functional Pin Description

Pin	Name	Function
1	LX	Switch Pin. Connect inductor/diode here. Minimize trace area at this pin to reduce EMI
2	GND	Ground Pin. Connect directly to local ground plane.
3	FB	Feedback Pin. Reference voltage is 0.25 V . Connect cathode of lowest LED and resistor here. Calculate resistor value according to the formula: $R_{\text {FB }}=0.25 / \mathrm{LED}$
4	CE	Chip Enable Pin. Connect to 1.4V or higher to enable device, 0.4 V or less to disable device.
5	OVP	Over Voltage Protection Pin. Voltage sensing input to trigger the function of over voltage protection, the trip point is 15.5V. Leave it unconnected to disable this function.
6	VCC	Input Voltage Pin. Must be locally bypass with 1uF capacitor to GND.

Typical Application Circuit

Figure 1. RT9271 Drivers 1 WLED Application Circuit

Figure 2. RT9271 Drivers 2 Series WLEDs Application Circuit

Figure 3. RT9271 Drivers 3 Series WLEDs Application Circuit

Figure 4. RT9271 Drivers 4 Series WLEDs Application Circuit

```
Note: 1. D1 is Schottky diode (SS0520).
2. D2 ~ D5 are the WLED (HT-S91CW-DT) of HARVATEK.
3. LX is the SH4018 series of ABC TAIWAN ELECTRONICS CORP.
```


Recommended Circuits for Driving LED's

Figure 1 to Figure 4 illustrates the recommended application circuits for driving white LED's. The series connected LED's are driven with identical current to emit uniform luminescence, and the 250 mV low reference voltage can minimize the efficiency loss across the current-sensing resistor. The recommended current setting for driving white LED's is 10 mA to 20 mA , and the dimming control can be implemented by toggling CE pin with 60 Hz to 1 KHz PWM clock. Please refer to application notes for guidance of component selection and board layout.

Absolute Maximum Ratings (Note 1)

- The Other Pins -0.3 V to 7 V

- ESD Susceptibility (Note 2)

Recommended Operating Conditions (Note 3)

Electrical Characteristics

($\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Parameter	Symbol	Test Condition	Min	Typ	Max	Units
System Supply Input						
Under Voltage Lock Out	UVLO		1.8	2.2	2.3	V
Maximum Output Voltage			--	--	20	V
Supply Current	ICC1	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$, Continuously Switching	--	--	2	mA
Quiescent Current	ICC2	$\mathrm{V}_{\mathrm{Cc}}=6 \mathrm{~V}, \mathrm{FB}=1.3 \mathrm{~V}$, No Switching	50	90	120	$\mu \mathrm{A}$
Shut Down Current	ICC3	$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}<0.4 \mathrm{~V}$	--	0.1	1	$\mu \mathrm{A}$
Oscillator						
Operation Frequency	Fosc		0.9	1.1	1.3	MHz
Maximum Duty Cycle	Dmax		85	90	--	\%
Reference Voltage						
Feedback Voltage	$V_{\text {FB }}$		0.237	0.25	0.263	V
MOSFET						
On Resistance of MOSFET	Rds(on)		0.5	0.75	1.0	Ω
Current Limitation	$I_{\text {max } 1}$	Normal Operation	600	750	900	mA
Current Limit	$I_{\text {max } 2}$	Start up Condition	250	400	550	mA
Control and Protection						
Shut Down Voltage	$\mathrm{V}_{\text {CE1 }}$		0.4	0.8	--	V
Enable Voltage	$\mathrm{V}_{\text {CE2 }}$		--	0.8	1.4	V
CE Pin Pull Low Current	ICE		--	4	6	$\mu \mathrm{A}$
OVP Threshold (Note 4)	OVP		14.5	15.5	20.0	V

Preliminary

Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note 2. Devices are ESD sensitive. Handling precaution recommended. The human body model is a 100 pF capacitor discharged through a $1.5 \mathrm{k} \Omega$ resistor into each pin.

Note 3. The device is not guaranteed to function outside its operating conditions.
Note 4. Floating the OVP pin to disable OVP function.

Function Block Diagram

Operation

The RT9271 uses a constant frequency, current mode control scheme to provide excellent line and load regulation. Operation can be best understood by referring to the block diagram. At the start of each oscillator cycle, the SR latch is set, which turns on the power switch M1. A voltage proportional to the switch current is added to a stabilizing ramp and the resulting sum is fed into the positive terminal of the PWM comparator A2. When this voltage exceeds the level at the negative input of A2, the SR latch is reset turning off the power switch. The level at the negative input of A2 is set by the error amplifier A1, and is simply an amplified version of the difference between the feedback voltage and the reference voltage of 250 mV . In this manner, the error amplifier sets the correct peak current level to keep the output in regulation. If the error amplifier's output increases, more current is delivered to the output; if it decreases, less current is delivered. A 15 V Zener diode connects OVP pin to FB pin internally to provide an optional protection function preventing LX pin from over-voltage damage, in case the feedback loop broken due to component wear-out or improper connection on the application boards. This function is especially suitable for applications driving white LED' s less than 4 in series

Typical Operating Characteristics

Efficiency vs. V_{IN} (Driving 3 WLEDs)

Frequency vs. V_{IN}

$V_{\text {FB }}$ vs. Temperature

Stability for Driving 1 WLED

Stability for Driving 2 WLEDs

Stability for Driving 1 WLED

Stability for Driving 2 WLEDs

Stability for Driving 2 WLEDs

Stability for Driving 3 WLEDs

Stability for Driving 3 WLEDs

Stability for Driving 4 WLEDs

Stability for Driving 3 WLEDs

Stability for Driving 4 WLEDs

Stability for Driving 4 WLEDs

Inrush Current for Driving 1 WLED

Inrush Current for Driving 3 WLEDs

Inrush Current for Driving 3 WLEDs with soft-start

Application Information

LED Current Control

The LED current is controlled by the feedback resistor (R2 in Application Circuit). The feedback reference is 0.25 V . The LED current is $0.25 \mathrm{~V} / \mathrm{R} 2$. In order to have accurate LED current, precision resistors are preferred (1% is recommended). The formula and table for R2 selection are shown below.

$$
\mathrm{R} 2=0.25 \mathrm{~V} / \mathrm{ILED}
$$

R2 Resistor Value Selection

LED (mA)	R2 (Ω)
5	49.9
10	24.9
12	21
15	16.5
20	12.4

Recommended Inductance and Rectifier (for Li-lon cell)

Condition	Inductance (H)	Schottky Diode
2 WLEDs	$4.7 \mathrm{u} \sim 10 \mathrm{u}$	SS0520
3 WLEDs	$4.7 \mathrm{u} \sim 10 \mathrm{u}$	SS0520
4 WLEDs	$4.7 \mathrm{u} \sim 10 \mathrm{u}$	SS0520

Dimming Control

a. Using a PWM Signal to CE Pin

With the PWM signal applied to the CE pin, the RT9271 is turned on or off by the PWM signal. The average LED current increases proportionally with the duty cycle of the PWM signal, A 0\% duty cycle will turn off the RT9271 and corresponds to zero LED current. A 100\% duty cycle corresponds to full current. The magnitude of the PWM signal should be higher than minimum CE voltage high.

Figure 5. PWM Dimming Control Using the CE Pin

b. Using a DC Voltage

For some applications, the preferred method of brightness control is a variable DC voltage to adjust the LED current. The dimming control using a DC voltage is shown in Figure 6. As the DC voltage increases, the voltage drop on R2 increases and the voltage drop on R1 decreases. Thus, the LED current decreases. For $V_{D C}$ range from $0 V$ to 2.6 V , the selection of resistors in Figure 6 gives dimming control of LED current from 20 mA to 0 mA .

Figure 6. Dimming Control Using a DC Voltage

Figure 7. Recommended Soft-Start Circuit

Layout Guide

- A full GND plane without gap break.
- $V_{c c}$ to GND noise bypass - Short and wide connection for the 1μ F MLCC capacitor between Pin6 and Pin2.
- Minimized LX node copper area to reduce EMI.
- Minimized FB node copper area and keep far away from noise sources.

EVB Circuit

Board Layout Example (2-Layer EVB Board)
(Refer to EVB Circuit)

- Top Layer -

- Bottom Layer -

Outline Dimension

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	0.889	1.295	0.035	0.051
A1	--	0.152	--	0.006
B	1.397	1.803	0.055	0.071
b	0.356	0.559	0.014	0.022
C	2.591	2.997	0.102	0.118
D	2.692	3.099	0.106	0.122
e	0.838	1.041	0.033	0.041
H	0.102	0.254	0.004	0.010
L	0.356	0.610	0.014	0.024

SOT- 26 Surface Mount Package

RICHTEK TECHNOLOGY CORP.

Headquarter
5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611

RICHTEK TECHNOLOGY CORP.

Taipei Office (Marketing)
8F-1, No. 137, Lane 235, Paochiao Road, Hsintien City
Taipei County, Taiwan, R.O.C.
Tel: (8862)89191466 Fax: (8862)89191465
Email: marketing@richtek.com

