XC7WT14 # **Triple inverting Schmitt trigger** Rev. 1 — 19 January 2011 **Product data sheet** ## 1. General description The XC7WT14 is a high-speed Si-gate CMOS device. This device provides three inverting buffers with Schmitt trigger action. This device is capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. ### 2. Features and benefits - Symmetrical output impedance - High noise immunity - ESD protection: - HBM JESD22-A114F exceeds 2000 V - ♦ MM JESD22-A115-A exceeds 200 V - ◆ CDM JESD22-C101D exceeds 1000 V - Low power dissipation - Balanced propagation delays - Multiple package options - Specified from -40 °C to +85 °C and -40 °C to +125 °C # 3. Applications - Wave and pulse shaper for highly noisy environment - Astable multivibrator - Monostable multivibrator # 4. Ordering information Table 1. Ordering information | Type number | Package | | | | | | | | |-------------|-------------------|--------|---|----------|--|--|--|--| | | Temperature range | Name | Description | Version | | | | | | XC7WT14DP | –40 °C to +125 °C | TSSOP8 | plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm | SOT505-2 | | | | | | XC7WT14DC | –40 °C to +125 °C | VSSOP8 | plastic very thin shrink small outline package; 8 leads; body width 2.3 mm | SOT765-1 | | | | | | XC7WT14GT | –40 °C to +125 °C | XSON8 | plastic extremely thin small outline package; no leads; 8 terminals; body 1 \times 1.95 \times 0.5 mm | SOT833-1 | | | | | | XC7WT14GD | –40 °C to +125 °C | XSON8U | plastic extremely thin small outline package; no leads; 8 terminals; UTLP based; body $3\times2\times0.5~\text{mm}$ | SOT996-2 | | | | | # 5. Marking Table 2. Marking codes | Type number | Marking code[1] | |-------------|-----------------| | XC7WT14DP | g14 | | XC7WT14DC | g14 | | XC7WT14GT | g14 | | XC7WT14GD | g14 | ^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code. ## 6. Functional diagram # 7. Pinning information ### 7.1 Pinning XC7WT14 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. **Triple inverting Schmitt trigger** ### **Triple inverting Schmitt trigger** ## 7.2 Pin description Table 3. Pin description | Symbol | Pin | Description | |-----------------|---------|----------------| | 1A, 2A, 3A | 1, 3, 6 | data input | | GND | 4 | ground (0 V) | | 1Y, 2Y, 3Y | 7, 5, 2 | data output | | V _{CC} | 8 | supply voltage | # 8. Functional description Table 4. Function table [1] | Input nA | Output nY | |----------|-----------| | L | Н | | Н | L | [1] H = HIGH voltage level; L = LOW voltage level ## **Triple inverting Schmitt trigger** # 9. Limiting values Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). | Symbol | Parameter | Conditions | Min | Max | Unit | |------------------|-------------------------|---|--------------|------|------| | V_{CC} | supply voltage | | -0.5 | +7.0 | V | | V_{I} | input voltage | | -0.5 | +7.0 | V | | I _{IK} | input clamping current | $V_{I} < -0.5 \text{ V}$ | -20 | - | mA | | I _{OK} | output clamping current | $V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$ | <u>[1]</u> _ | ±20 | mA | | Io | output current | $-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$ | - | ±25 | mA | | I _{CC} | supply current | | - | 75 | mA | | I_{GND} | ground current | | -75 | - | mA | | T _{stg} | storage temperature | | -65 | +150 | °C | | P _{tot} | total power dissipation | $T_{amb} = -40 ^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$ | [2] _ | 250 | mW | ^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed. ## 10. Recommended operating conditions Table 6. Recommended operating conditions Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |------------------|---------------------|------------|-----|-----|----------|------| | V_{CC} | supply voltage | | 4.5 | 5.0 | 5.5 | V | | VI | input voltage | | 0 | - | 5.5 | V | | V_{O} | output voltage | | 0 | - | V_{CC} | V | | T _{amb} | ambient temperature | | -40 | +25 | +125 | °C | ^[2] For TSSOP8 package: above 55 °C the value of P_{tot} derates linearly at 2.5 mW/K. For VSSOP8 package: above 110 °C the value of P_{tot} derates linearly at 8 mW/K. For XSON8 and XSON8U package: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K. # Triple inverting Schmitt trigger ## 11. Static characteristics Table 7. Static characteristics Voltages are referenced to GND (ground = 0 V). | Symbol | Parameter | Conditions | | 25 °C | | -40 °C | to +85 °C | -40 °C to +125 °C | | Unit | |-----------------|---------------------------|--|------|-------|------|--------|-----------|-------------------|------|------| | | | | Min | Тур | Max | Min | Max | Min | Max | | | V_{OH} | HIGH-level | $V_{I} = V_{T+} \text{ or } V_{T-}; V_{CC} = 4.5 \text{ V}$ | | | | | | | | | | | output voltage | $I_O = -50 \mu A$ | 4.4 | 4.5 | - | 4.4 | - | 4.4 | - | V | | | | $I_0 = -8.0 \text{ mA}$ | 3.94 | - | - | 3.8 | - | 3.70 | - | V | | V_{OL} | LOW-level | $V_I = V_{T+}$ or V_{T-} ; $V_{CC} = 4.5 \text{ V}$ | | | | | | | | | | | output voltage | I _O = 50 μA | - | 0 | 0.1 | - | 0.1 | - | 0.1 | V | | | | $I_0 = 8.0 \text{ mA}$ | - | - | 0.36 | - | 0.44 | - | 0.55 | V | | Iı | input leakage
current | $V_I = 5.5 \text{ V or GND};$
$V_{CC} = 0 \text{ V to } 5.5 \text{ V}$ | - | - | 0.1 | - | 1.0 | - | 2.0 | μΑ | | I _{CC} | supply current | $V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$ | - | - | 1.0 | - | 10 | - | 40 | μА | | ΔI_{CC} | additional supply current | per input pin; $V_I = 3.4 \text{ V}$;
other inputs at V_{CC} or GND;
$I_O = 0 \text{ A}$; $V_{CC} = 5.5 \text{ V}$ | - | - | 1.35 | - | 1.5 | - | 1.5 | mA | | Cı | input
capacitance | | - | 1.5 | 10 | - | 10 | - | 10 | pF | ## **Triple inverting Schmitt trigger** ### 11.1 Transfer characteristics Table 8. Transfer characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). See Figure 9 and Figure 10. | Symbol | Parameter | Conditions | 25 °C | | -40 °C to +85 °C | | -40 °C to +125 °C | | Unit | | |----------------------|-----------------------------------|--------------------------|-------|-----|------------------|-----|-------------------|------|------|---| | | | | Min | Тур | Max | Min | Max | Min | Max | | | V_{T+} | positive-going | $V_{CC} = 4.5 \text{ V}$ | - | - | 2.0 | - | 2.0 | - | 2.0 | V | | threshold
voltage | V _{CC} = 5.5 V | - | - | 2.0 | - | 2.0 | - | 2.0 | V | | | V_{T-} | negative-going | $V_{CC} = 4.5 \text{ V}$ | 0.5 | - | - | 0.5 | - | 0.5 | - | V | | | threshold
voltage | V _{CC} = 5.5 V | 0.6 | - | - | 0.6 | - | 0.6 | - | V | | V _H | V _H hysteresis voltage | V _{CC} = 4.5 V | 0.4 | - | 1.4 | 0.4 | 1.4 | 0.35 | 1.4 | V | | | | V _{CC} = 5.5 V | 0.4 | - | 1.6 | 0.4 | 1.6 | 0.35 | 1.6 | V | # 12. Dynamic characteristics Table 9. Dynamic characteristics GND = 0 V; for test circuit see Figure 8. | Symbol | Parameter | Conditions | | 25 °C | | -40 °C to +85 °C | | -40 °C to +125 °C | | Unit | |-----------------------------|-------------------------------------|--|-----|-------|-----|------------------|------|-------------------|------|------| | | | | Min | Тур | Max | Min | Max | Min | Max | | | t _{pd} propagation | nA to nY; <u>Figure 7</u> [1] [2] | | | | | | | | | | | | delay | C _L = 15 pF | - | 4.1 | 7.0 | 1.0 | 8.0 | 1.0 | 9.0 | ns | | | | C _L = 50 pF | - | 5.9 | 8.5 | 1.0 | 10.0 | 1.0 | 11.0 | ns | | C_{PD} | power
dissipation
capacitance | per buffer; $V_I = GND \text{ to } V_{CC}$ | - | 12 | - | - | - | - | - | pF | ^[1] t_{pd} is the same as t_{PLH} and t_{PHL}. $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where: f_i = input frequency in MHz; f_o = output frequency in MHz; C_L = output load capacitance in pF; V_{CC} = supply voltage in V; $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs. ^[2] Typical values are measured at $V_{CC} = 5.0 \text{ V}$. ^[3] C_{PD} is used to determine the dynamic power dissipation P_D (μW). ### **Triple inverting Schmitt trigger** ## 13. Waveforms Fig 7. The input (nA) to output (nY) propagation delays #### Table 10. Measurement points | Type number | Input | | Output | |-------------|--------------|----------------|---------------------| | | VI | V _M | V _M | | XC7WT14 | GND to 3.0 V | 1.5 V | $0.5 \times V_{CC}$ | Definitions for test circuit: C_L = Load capacitance including jig and probe capacitance. R_{T} = Termination resistance should be equal to output impedance Z_{0} of the pulse generator. Fig 8. Test circuit for measuring switching times Table 11. Test data | Туре | Input L | | Load | Test | |---------|----------------|---------------------------------|----------------|-------------------------------------| | | V _I | t _r , t _f | C _L | | | XC7WT14 | 3.0 V | ≤ 3.0 ns | 15 pF, 50 pF | t _{PLH} , t _{PHL} | XC7WT14 ## **Triple inverting Schmitt trigger** ## 13.1 Transfer characteristic waveforms Downloaded from Elcodis.com electronic components distributor ## **Triple inverting Schmitt trigger** # 14. Application information The slow input rise and fall times cause additional power dissipation, which can be calculated using the following formula: $P_{add} = f_i \times (t_r \times \Delta I_{CC(AV)} + t_f \times \Delta I_{CC(AV)}) \times V_{CC}$ where: P_{add} = additional power dissipation (μW); $f_i = input frequency (MHz);$ t_r = input rise time (ns); 10 % to 90 %; t_f = input fall time (ns); 90 % to 10 %; $\Delta I_{CC(AV)}$ = average additional supply current (μA). Δl_{CC(AV)} differs with positive or negative input transitions, as shown in Figure 13. For XC7WT14 used in relaxation oscillator circuit, see Figure 14. #### Note to the application information: 1. All values given are typical unless otherwise specified. Linear change of V_I between $0.1V_{CC}$ to $0.9V_{CC}$ Fig 13. Average additional I_{CC} Downloaded from Elcodis.com electronic components distributor # **Triple inverting Schmitt trigger** # 15. Package outline TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm; lead length 0.5 mm SOT505-2 Fig 15. Package outline SOT505-2 (TSSOP8) XCTWT14 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. **Product data sheet** Rev. 1 — 19 January 2011 Fig 16. Package outline SOT765-1 (VSSOP8) XC7WT14 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Fig 17. Package outline SOT833-1 (XSON8) XC7WT14 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. ### **Triple inverting Schmitt trigger** Fig 18. Package outline SOT996-2 (XSON8U) XC7WT14 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. # **Triple inverting Schmitt trigger** ## 16. Abbreviations ### Table 12. Abbreviations | Acronym | Description | |---------|---| | CMOS | Complementary Metal-Oxide Semiconductor | | DUT | Device Under Test | | ESD | ElectroStatic Discharge | | HBM | Human Body Model | | MM | Machine Model | # 17. Revision history #### Table 13. Revision history | Document ID | Release date | Data sheet status | Change notice | Supersedes | |-------------|--------------|--------------------|---------------|------------| | XC7WT14 v.1 | 20110119 | Product data sheet | - | - | ## Triple inverting Schmitt trigger # 18. Legal information #### 18.1 Data sheet status | Document status[1][2] | Product status[3] | Definition | |--------------------------------|-------------------|---| | Objective [short] data sheet | Development | This document contains data from the objective specification for product development. | | Preliminary [short] data sheet | Qualification | This document contains data from the preliminary specification. | | Product [short] data sheet | Production | This document contains the product specification. | - [1] Please consult the most recently issued document before initiating or completing a design. - [2] The term 'short data sheet' is explained in section "Definitions" - [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. #### 18.2 Definitions **Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. #### 18.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. XC7WT14 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. ### **Triple inverting Schmitt trigger** **Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities. ## 18.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. ## 19. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com **XC7WT14 NXP Semiconductors** # 20. Contents | 1 | General description | |------|-------------------------------------| | 2 | Features and benefits | | 3 | Applications | | 4 | Ordering information 1 | | 5 | Marking 2 | | 6 | Functional diagram | | 7 | Pinning information | | 7.1 | Pinning | | 7.2 | Pin description | | 8 | Functional description 3 | | 9 | Limiting values | | 10 | Recommended operating conditions 4 | | 11 | Static characteristics | | 11.1 | Transfer characteristics 6 | | 12 | Dynamic characteristics 6 | | 13 | Waveforms | | 13.1 | Transfer characteristic waveforms 8 | | 14 | Application information 9 | | 15 | Package outline | | 16 | Abbreviations15 | | 17 | Revision history | | 18 | Legal information | | 18.1 | Data sheet status | | 18.2 | Definitions | | 18.3 | Disclaimers | | 18.4 | Trademarks17 | | 19 | Contact information | | 20 | Contents 19 | Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'. © NXP B.V. 2011. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 19 January 2011 Document identifier: XC7WT14 **Triple inverting Schmitt trigger**