

GaAs INTEGRATED CIRCUIT μ PG2405T6Q

1 W SP3T SWITCH

DESCRIPTION

The μ PG2405T6Q is an SP3T GaAs FET switch which was developed for BluetoothTM, wireless LAN and NFC.

This device can operate frequency from 500 MHz to 2.5 GHz, having the low insertion loss and high linearity.

This device is housed in a 10-pin plastic TSSON (Thin Shrink Small Out-line Non-leaded) package. And this package is able to high-density surface mounting.

FEATURES

Lins = 0.45 dB TYP. @ f = 1.0 GHz, Vcont (H) = 2.8 V, Vcont (L) = 0 V
 Lins = 0.55 dB TYP. @ f = 2.0 GHz, Vcont (H) = 2.8 V, Vcont (L) = 0 V
 Lins = 0.60 dB TYP. @ f = 2.5 GHz, Vcont (H) = 2.8 V, Vcont (L) = 0 V
 High isolation
 ISL = 28 dB TYP. @ f = 1.0 GHz, Vcont (H) = 2.8 V, Vcont (L) = 0 V
 ISL = 22 dB TYP. @ f = 2.0 GHz, Vcont (H) = 2.8 V, Vcont (L) = 0 V
 ISL = 20 dB TYP. @ f = 2.5 GHz, Vcont (H) = 2.8 V, Vcont (L) = 0 V
 Handling power
 Pin (0.1 dB) = +31.0 dBm TYP. @ f = 2.5 GHz, Vcont (H) = 2.8 V, Vcont (L) = 0 V

• High-density surface mounting : 10-pin plastic TSSON package ($2.0 \times 1.35 \times 0.37$ mm)

APPLICATIONS

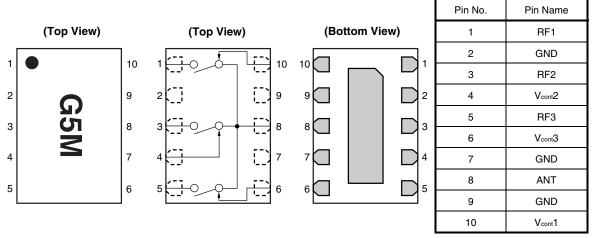
- Bluetooth and IEEE802.11b/g etc.
- NFC (FeliCa[™] etc.)

ORDERING INFORMATION

Part Number	Order Number	Package	Marking	Supplying Form
μPG2405T6Q-E2	μPG2405T6Q-E2-A	10-pin plastic TSSON (Pb-Free)	G5M	Embossed tape 8 mm wide Pin 5, 6 face the perforation side of the tape Qty 3 kpcs/reel

Remark To order evaluation samples, please contact your nearby sales office.

Part number for sample order: μ PG2405T6Q


Caution Although this device is designed to be as robust as possible, ESD (Electrostatic Discharge) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions must be employed at all times.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

Document No. PG10753EJ01V0DS (1st edition) Date Published April 2009 NS Printed in Japan

PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

Remark Exposed pad : GND

TRUTH TABLE

V _{cont} 1	V _{cont} 2	V _{cont} 3	ANT-RF1	ANT-RF2	ANT-RF3
High	Low	Low	ON	OFF	OFF
Low	High	Low	OFF	ON	OFF
Low	Low	High	OFF	OFF	ON

ABSOLUTE MAXIMUM RATINGS (TA = +25°C, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Switch Control Voltage	Vcont	+6.0 Note	V
Input Power	Pin	+34	dBm
Operating Ambient Temperature	TA	-45 to +85	°C
Storage Temperature	Tstg	-55 to +150	°C

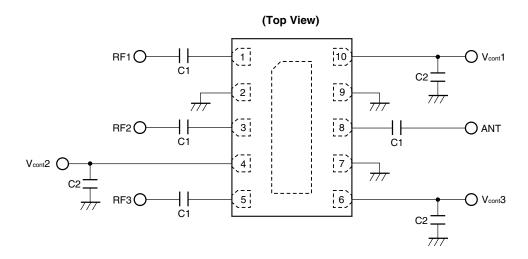
Note $|V_{cont (H)} - V_{cont (L)}| \le 6.0 \text{ V}$

RECOMMENDED OPERATING RANGE (TA = +25°C)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Switch Control Voltage (H)	V _{cont (H)}	2.7	2.8	3.0	٧
Switch Control Voltage (L)	V _{cont (L)}	-0.2	0	0.2	٧
Control Voltage Difference (H)	△V _{cont (H)} Note1	-0.1	0	0.1	V
Control Voltage Difference (L)	△V cont (L) Note2	-0.1	0	0.1	V

Notes 1. $\triangle V_{cont}$ (H) is a difference between the maximum and the minimum control voltages among $V_{cont}1$ (H), $V_{cont}2$ (H) and $V_{cont}3$ (H).

2. ΔV_{cont} (L) is a difference between the maximum and the minimum control voltages among V_{cont} 1 (L), V_{cont} 2 (L) and V_{cont} 3 (L).

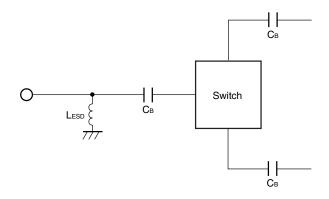

ELECTRICAL CHARACTERISTICS

(TA = +25°C, V_{cont} (H) = 2.8 V, V_{cont} (L) = 0 V, Z_O = 50 Ω , DC blocking capacitors = 56 pF, unless otherwise specified)

Parameter	Symbol	Pass	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss	Lins	ANT to RF1, 2, 3	f = 0.5 to 1.0 GHz	-	0.45	0.65	dB
			f = 1.0 to 2.0 GHz	-	0.55	0.80	dB
			f = 2.0 to 2.5 GHz	-	0.60	0.85	dB
Isolation	ISL	ANT to RF1, 2, 3	f = 0.5 to 1.0 GHz	24	28	ı	dB
		(OFF)	f = 1.0 to 2.0 GHz	18	22	I	dB
			f = 2.0 to 2.5 GHz	16	20	1	dB
Input Return Loss	RLin	ANT to RF1, 2, 3	f = 0.5 to 2.5 GHz	15	20	-	dB
Output Return Loss	RLout	ANT to RF1, 2, 3	f = 0.5 to 2.5 GHz	15	20	ı	dB
0.1 dB Loss Compression Input Power ^{Note}	Pin (0.1 dB)	ANT to RF1, 2, 3	f = 2.5 GHz	+29.0	+31.0	-	dBm
2nd Harmonics	2f0	ANT to RF1, 2, 3	f = 2.5 GHz, P _{in} = 23 dBm	65	75	-	dBc
3rd Harmonics	3f0	ANT to RF1, 2, 3	f = 2.5 GHz, P _{in} = 23 dBm	65	75	-	dBc
Switch Control Current	Icont		RF None	ı	0.2	50	μΑ
Switch Control Speed	tsw			-	700	ı	ns

Note Pin (0.1 dB) is measured the input power level when the insertion loss increases more 0.1 dB than that of linear range.

EVALUATION CIRCUIT

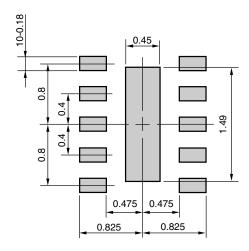


The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

USING THE NEC EVALUATION BOARD

Symbol	Values	
C1	56 pF	
C2	1 000 pF	

APPLICATION INFORMATION

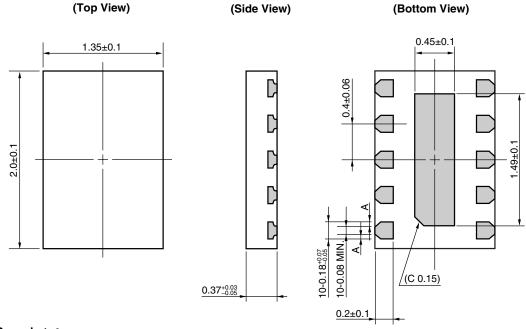


- \bullet $C_{\mbox{\scriptsize B}}$ are DC blocking capacitors external to the device.
- A value of 56 pF is sufficient for operation from 500 MHz to 2.5 GHz bands.
- The value may be tailored to provide specific electrical responses.
- The RF ground connections should be kept as short as possible and connected to directly to a good RF ground for best performance.
- Lesp provides a means to increase the ESD protection on a specific RF port, typically the port attached to the antenna.

MOUNTING PAD LAYOUT DIMENSIONS

10-PIN PLASTIC TSSON (UNIT: mm)

MOUNTING PAD



Remark The mounting pad layout in this document is for reference only.

When designing PCB, please consider workability of mounting, solder joint reliability, prevention of solder bridge and so on, in order to optimize the design.

PACKAGE DIMENSIONS

10-PIN PLASTIC TSSON (UNIT: mm)

Remark A>0

(): Reference value

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions	Condition Symbol	
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
Partial Heating	Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

NEC μ PG2405T6Q

Bluetooth is a trademark owned by Bluetooth SIG, Inc., U.S.A. FeliCa is the contactless IC card technology developed by Sony Corporation. FeliCa is a trademark of Sony Corporation.

- The information in this document is current as of April, 2009. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or
 data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all
 products and/or types are available in every country. Please check with an NEC Electronics sales
 representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior
 written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
 appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".
 - The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).

M8E 02.11-1

NEC μ PG2405T6Q

_		
-	ı+i.	nn
Cau	JU	UH

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
- Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
- 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.