

Actel Fusion[®] Programmable System Chips Mixed-Signal Family with Optional ARM® Support

Features and Benefits

High-Performance Reprogrammable Flash Technology

- Advanced 130-nm, 7-Layer Metal, Flash-Based CMOS Process
- Nonvolatile, Retains Program when Powered Off
- Live at Power-Up (LAPU) Single-Chip Solution
- 350 MHz System Performance

Embedded Flash Memory

- User Flash Memory 2 Mbits to 8 Mbits
 - Configurable 8-, 16-, or 32-Bit Datapath
 - 10 ns Access in Read-Ahead Mode
- 1 kbit of Additional FlashROM

Integrated A/D Converter (ADC) and Analog I/O

- Up to 12-Bit Resolution and up to 600 ksps
- Internal 2.56 V or External Reference Voltage
- ADC: Up to 30 Scalable Analog Input Channels
- High-Voltage Input Tolerance: -10.5 V to +12 V
- **Current Monitor and Temperature Monitor Blocks**
- Up to 10 MOSFET Gate Driver Outputs
 - P- and N-Channel Power MOSFET Support
 - Programmable 1, 3, 10, 30 µA and 20 mA Drive Strengths
- ADC Accuracy is Better than 1%

On-Chip Clocking Support

- Internal 100 MHz RC Oscillator (accurate to 1%)
- Crystal Oscillator Support (32 kHz to 20 MHz)
- Programmable Real-Time Counter (RTC)
- 6 Clock Conditioning Circuits (CCCs) with 1 or 2 Integrated PLLs
 - Phase Shift, Multiply/Divide, and Delay Capabilities
 - Frequency: Input 1.5-350 MHz, Output 0.75-350 MHz

Low Power Consumption

- Single 3.3 V Power Supply with On-Chip 1.5 V Regulator
- Sleep and Standby Low Power Modes

In-System Programming (ISP) and Security

- Secure ISP with 128-Bit AES via JTAG
- FlashLock® to Secure FPGA Contents

Advanced Digital I/O

- 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation
- Bank-Selectable I/O Voltages Up to 5 Banks per Chip
- Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V / 2.5 V /1.8 V / 1.5 V, 3.3 V PCI / 3.3 V PCI-X, and LVCMOS 2.5 V / 5.0 V Input
- Differential I/O Standards: LVPECL, LVDS, BLVDS, and M-LVDS
 - Built-In I/O Registers
 - 700 Mbps DDR Operation
- Hot-Swappable I/Os
- Programmable Output Slew Rate, Drive Strength, and Weak Pull-Up/Down Resistor
- Pin-Compatible Packages across the Fusion Family

SRAMs and FIFOs

- Variable-Aspect-Ratio 4,608-Bit SRAM Blocks (x1, x2, x4, x9, and ×18 organizations available)
- True Dual-Port SRAM (except ×18)
- Programmable Embedded FIFO Control Logic

Soft ARM7™ Core Support in M7 and M1 Fusion **Devices**

ARM Cortex™-M1 (without debug), CoreMP7Sd (with debug) and CoreMP7S (without debug))

		٠-١-١٠	
Table 1	•	Fusion	Family

Fusion Devices		AFS090	AFS250	AFS600	AFS1500
ARM-Enabled	CoreMP7 ¹			M7AFS600	
Fusion Devices	Cortex-M1 ²		M1AFS250	M1AFS600	M1AFS1500
	System Gates	90,000	250,000	600,000	1,500,000
	Tiles (D-flip-flops)	2,304	6,144	13,824	38,400
General Information	Secure (AES) ISP	Yes	Yes	Yes	Yes
in or mation	PLLs	1	1	2	2
	Globals	18	18	18	18
	Flash Memory Blocks (2 Mbits)	1	1	2	4
	Total Flash Memory Bits	2 M	2 M	4 M	8 M
Memory	FlashROM Bits	1 k	1 k	1 k	1 k
	RAM Blocks (4,608 bits)	6	8	24	60
	RAM kbits	27	36	108	270
	Analog Quads	5	6	10	10
	Analog Input Channels	15	18	30	30
Analog and I/Os	Gate Driver Outputs	5	6	10	10
	I/O Banks (+ JTAG)	4	4	5	5
	Maximum Digital I/Os	75	114	172	252
	Analog I/Os	20	24	40	40

Notes:

- Refer to the CoreMP7 datasheet for more information.
- Refer to the Cortex-M1 product brief for more information.

Actel Fusion Programmable System Chips

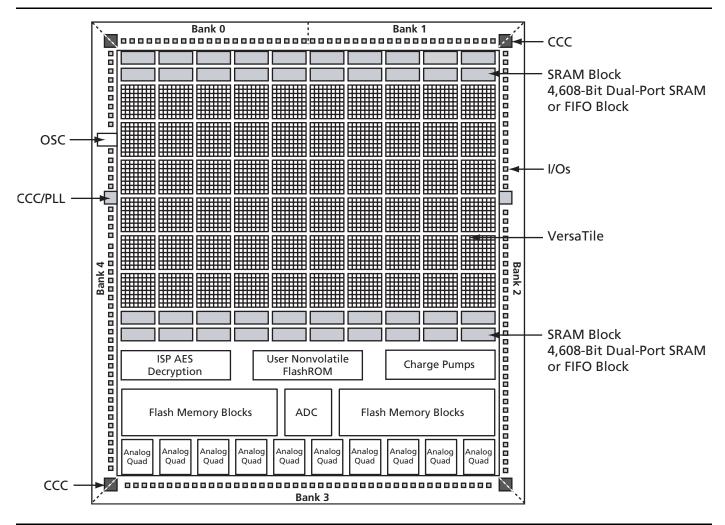
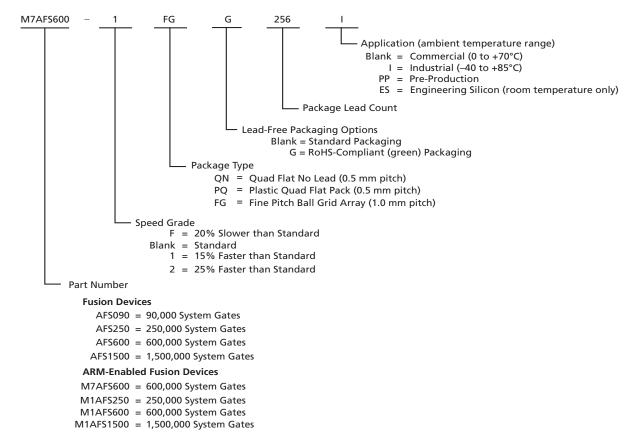


Figure 1 • Fusion Device Architecture Overview (AFS600)



Package I/Os: Single-/Double-Ended (Analog)

Fusion Devices		AFS090	AFS250	AFS600	AFS1500
ARM-Enabled Devices	CoreMP7			M7AFS600	
ARIVI-Enabled Devices	Cortex-M1		M1AFS250	M1AFS600	M1AFS1500
QN108		37/9 (16)			
QN180		60/16 (20)	65/15 (24)		
PQ208			93/26 (24)	95/46 (40)	
FG256		75/22 (20)	114/37 (24)	119/58 (40)	119/58 (40)
FG484				172/86 (40)	223/109 (40)
FG676					252/126 (40)

Note: All devices in the same package are pin compatible with the exception of the PQ208 package (AFS250 and AFS600).

Product Ordering Codes

Notes:

- 1. DC and switching characteristics for –F speed grade targets are based only on simulation. The characteristics provided for the –F speed grade are subject to change after establishing FPGA specifications. Some restrictions might be added and will be reflected in future revisions of this document. The –F speed grade is only supported in the commercial temperature range.
- 2. Quad Flat No Lead packages are only offered as RoHS compliant, QNG.

Temperature Grade Offerings

Fusion Devices		AFS090	AFS250	AFS600	AFS1500
ARM-Enabled Devices	CoreMP7			M7AFS600	
ARIVI-Enabled Devices	Cortex-M1		M1AFS250	M1AFS600	M1AFS1500
QN108		С, І	-	-	-
QN180		С, І	С, І	-	-
PQ208		-	С, І	С, І	-
FG256		С, І	С, І	С, І	С, І
FG484		-	-	С, І	С, І
FG676		-			С, І

Notes:

- 1. C = Commercial Temperature Range: 0°C to 70°C Ambient
- 2. I = Industrial Temperature Range: -40°C to 85°C Ambient

Speed Grade and Temperature Grade Matrix

	-F ¹	Std.	-1	-2
C ²	✓	✓	✓	✓
l ³	-	✓	✓	✓

Notes:

- 1. DC and switching characteristics for –F speed grade targets are based only on simulation. The characteristics provided for the –F speed grade are subject to change after establishing FPGA specifications. Some restrictions might be added and will be reflected in future revisions of this document. The –F speed grade is only supported in the commercial temperature range.
- 2. C = Commercial Temperature Range: 0°C to 70°C Ambient
- 3. I = Industrial Temperature Range: -40°C to 85°C Ambient

Contact your local Actel representative for device availability (http://www.actel.com/contact/offices/index.html).

Table of Contents

Introduction and Overview
Introduction
General Description
Unprecedented Integration 1-
Related Documents
Device Architecture
Fusion Stack Architecture
Core Architecture 2-
Clocking Resources 2-1
Real-Time Counter System
Embedded Memories 2-3
Analog Block
Analog Configuration MUX (ACM) 2-11
User I/Os
Pin Descriptions
Software Tools and Programming 2-20
DC and Power Characteristics
General Specifications 3-
Calculating Power Dissipation 3-
Power Consumption 3-2
Package Pin Assignments
108-Pin QFN
180-Pin QFN
208-Pin PQFP
256-Pin FBGA
484-Pin FBGA
676-Pin FBGA
Datasheet Information
List of Changes
Datasheet Categories 5-1
Export Administration Regulations (EAR)
Actel Safety Critical, Life Support, and High-Reliability Applications Policy 5-1

Introduction and Overview

Introduction

The Actel Fusion Programmable System Chip (PSC) satisfies the demand from system architects for a device that simplifies design and unleashes their creativity. As the world's first mixed-signal programmable logic family, Fusion integrates mixed-signal analog, flash memory, and FPGA fabric in a monolithic PSC. Actel Fusion devices enable designers to quickly move from concept to completed design and then deliver feature-rich systems to market. This new technology takes advantage of the unique properties of Actel flash-based FPGAs, including a high-isolation, triple-well process and the ability to support high-voltage transistors to meet the demanding requirements of mixed-signal system design.

Actel Fusion PSCs bring the benefits of programmable logic to many application areas, including power management, smart battery charging, clock generation and management, and motor control. Until now, these applications have only been implemented with costly and space-consuming discrete analog components or mixed-signal ASIC solutions. Actel Fusion PSCs present new capabilities for system development by allowing designers to integrate a wide range of functionality into a single device, while at the same time offering the flexibility of upgrades late in the manufacturing process or after the device is in the field. Actel Fusion devices provide an excellent alternative to costly and timeconsuming mixed-signal ASIC designs. In addition, when used in conjunction with the Actel 8051 core or ARM-based soft MCU core, Actel Fusion technology represents the definitive PSC platform.

Flash-based Fusion devices are live at power-up. As soon as system power is applied and within normal operating specifications, Fusion devices are working. Fusion devices have a 128-bit flash-based lock and industry-leading AES decryption, used to secure programmed intellectual property (IP) and configuration data. Actel Fusion devices are the most comprehensive single-chip analog and digital programmable logic solution available today. To support this new ground-breaking technology, Actel has developed a series of major tool innovations to help maximize designer productivity. Implemented as extensions to the popular Actel Libero® Integrated Design Environment (IDE), these new tools allow designers to easily instantiate and configure peripherals within a design, establish links between peripherals, create or import building blocks or reference designs, and perform hardware verification. This tool suite will

also add comprehensive hardware/software debug capability as well as a suite of utilities to simplify development of embedded soft-processor-based solutions.

General Description

The Actel Fusion family, based on the highly successful ProASIC®3 and ProASIC3E Flash FPGA architecture, has been designed as a high-performance, programmable, mixed-signal platform. By combining an advanced flash FPGA core with flash memory blocks and analog peripherals, Fusion devices dramatically simplify system design and, as a result, dramatically reduce overall system cost and board space.

The state-of-the-art flash memory technology offers high-density integrated flash memory blocks, enabling savings in cost, power, and board area relative to external flash solutions, while providing increased flexibility and performance. The flash memory blocks and integrated analog peripherals enable true mixed-mode programmable logic designs. Two examples are using an on-chip soft processor to implement a fully functional Flash MCU and using high-speed FPGA logic to offer system and power supervisory capabilities. Live at power-up and capable of operating from a single 3.3 V supply, the Fusion family is ideally suited for system management and control applications.

The devices in the Fusion family are categorized by FPGA core density. Each family member contains many peripherals, including flash memory blocks, an analogto-digital-converter (ADC), high-drive outputs, both RC and crystal oscillators, and a real-time counter (RTC). This provides the user with a high level of flexibility and integration to support a wide variety of mixed-signal applications. The flash memory block capacity ranges from 2 Mbits to 8 Mbits. The integrated 12-bit ADC supports up to 30 independently configurable input channels. The on-chip crystal and RC oscillators work in conjunction with the integrated phase-locked loops (PLLs) to provide clocking support to the FPGA array and on-chip resources. In addition to supporting typical RTC uses such as watchdog timer, the Fusion RTC can control the on-chip voltage regulator to power down the device (FPGA fabric, flash memory block, and ADC), enabling a low-power standby mode.

Advanced v1.4 1-1

The Actel Fusion family offers revolutionary features, never before available in an FPGA. The nonvolatile flash technology gives the Fusion family the advantage of being a secure, low-power, single-chip solution that is live at power-up. Fusion is reprogrammable and offers time to market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

The family has up to 1.5 M system gates, supported with up to 270 kbits of true dual-port SRAM, up to 8 Mbits of flash memory, 1 kbit of user FlashROM, and up to 278 user I/Os. With integrated flash memory, the Fusion family is the ultimate soft-processor platform. The AFS600 and AFS1500 devices both support the Actel ARM7 core (CoreMP7). The ARM-enabled versions are identified with the M7 prefix as M7AFS600 and M7AFS1500. The AFS250, AFS600, and AFS1500 devices support the Actel Cortex-M1 core. The Cortex-M1-enabled versions are identified with the M1 prefix as M1AFS250, M1AFS600, and M1AFS1500.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, high performance, and ease of use. Flash-based Fusion devices are live at power-up and do not need to be loaded from an external boot PROM. On-board security mechanisms prevent access to the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote insystem reprogramming to support future design iterations and field upgrades, with confidence that valuable IP cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm with MAC data authentication on the device. The Fusion family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the Fusion family a cost-effective ASIC replacement solution for applications in the consumer, networking and communications, computing, and avionics markets.

Security

As the nonvolatile, flash-based Fusion family requires no boot PROM, there is no vulnerable external bitstream. Fusion devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

Fusion devices utilize a 128-bit flash-based key lock and a separate AES key to secure programmed IP and configuration data. The FlashROM data in Fusion devices can also be encrypted prior to loading. Additionally, the Flash memory blocks can be programmed during runtime using the industry-leading AES-128 block cipher

encryption standard (FIPS Publication 192). The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the DES standard, which was adopted in 1977. Fusion devices have a built-in AES decryption engine and a flash-based AES key that make Fusion devices the most comprehensive programmable logic device security solution available today. Fusion devices with AES-based security allow for secure remote field updates over public networks, such as the Internet, and ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves. As an additional security measure, the FPGA configuration data of a programmed Fusion device cannot be read back, although secure design verification is possible. During design, the user controls and defines both internal and external access to the flash memory blocks.

Security, built into the FPGA fabric, is an inherent component of the Fusion family. The Flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. Fusion with FlashLock and AES security is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected, making secure remote ISP possible. A Fusion device provides the most impenetrable security for programmable logic designs.

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based Fusion FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Live at Power-Up

Flash-based Fusion devices are Level 0 live at power-up (LAPU). LAPU Fusion devices greatly simplify total system design and reduce total system cost by eliminating the need for CPLDs. The Fusion LAPU clocking (PLLs) replaces off-chip clocking resources. The Fusion mix of LAPU clocking and analog resources makes these devices an excellent choice for both system supervisor and system management functions. LAPU from a single 3.3 V source enables Fusion devices to initiate, control, and monitor multiple voltage supplies while also providing system clocks. In addition, glitches and brownouts in system power will not corrupt the Fusion device flash configuration. Unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables reduction or complete removal of expensive

voltage monitor and brownout detection devices from the PCB design. Flash-based Fusion devices simplify total system design and reduce cost and design risk, while increasing system reliability.

Firm Errors

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. Another source of radiation-induced firm errors is alpha particles. For an alpha to cause a soft or firm error, its source must be in very close proximity to the affected circuit. The alpha source must be in the package molding compound or in the die itself. While low-alpha molding compounds are being used increasingly, this helps reduce but does not entirely eliminate alpha-induced firm errors.

Firm errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not occur in Fusion Flashbased FPGAs. Once it is programmed, the flash cell configuration element of Fusion FPGAs cannot be altered by high-energy neutrons and is therefore immune to errors from them.

Recoverable (or soft) errors occur in the user data SRAMs of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Low Power

Flash-based Fusion devices exhibit power characteristics similar to those of an ASIC, making them an ideal choice for power-sensitive applications. With Fusion devices, there is no power-on current surge and no high current transition, both of which occur on many FPGAs.

Fusion devices also have low dynamic power consumption and support both low power standby mode and very low power sleep mode, offering further power savings.

Advanced Flash Technology

The Fusion family offers many benefits, including nonvolatility and reprogrammability through an advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows very high logic utilization (much higher than competing SRAM technologies) without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

Advanced Architecture

The proprietary Fusion architecture provides granularity comparable to standard-cell ASICs. The Fusion device consists of several distinct and programmable architectural features, including the following (Figure 1-1 on page 1-5):

- Embedded memories
 - Flash memory blocks
 - FlashROM
 - SRAM and FIFO
- Clocking resources
 - PLL and CCC
 - RC oscillator
 - Crystal oscillator
 - No-Glitch MUX (NGMUX)
- Digital I/Os with advanced I/O standards
- FPGA VersaTiles
- Analog components
 - ADC
 - Analog I/Os supporting voltage, current, and temperature monitoring
 - 1.5 V on-board voltage regulator
 - Real-time counter

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic lookup table (LUT) equivalent or a D-flip-flop or latch (with or without enable) by programming the appropriate flash switch interconnections. This versatility allows efficient use of the FPGA fabric. The VersaTile capability is unique to the Actel families of flash-based FPGAs. VersaTiles and larger functions are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

In addition, extensive on-chip programming circuitry allows for rapid (3.3 V) single-voltage programming of Fusion devices via an IEEE 1532 JTAG interface.

Unprecedented Integration

Integrated Analog Blocks and Analog I/Os

Fusion devices offer robust and flexible analog mixedsignal capability in addition to the high-performance flash FPGA fabric and flash memory block. The many built-in analog peripherals include a configurable 32:1 input analog MUX, up to 10 independent MOSFET gate driver outputs, and a configurable ADC. The ADC

Actel Fusion Programmable System Chips

supports 8-, 10-, and 12-bit modes of operation with a cumulative sample rate up to 600 k samples per second (ksps), differential nonlinearity (DNL) < 1.0 LSB, and Total Unadjusted Error (TUE) of 0.72 LSB in 10-bit mode. The TUE is used for characterization of the conversion error and includes errors from all sources, such as offset and linearity. Internal bandgap circuitry offers 1% voltage reference accuracy with the flexibility of utilizing an external reference voltage. The ADC channel sampling sequence and sampling rate are programmable and implemented in the FPGA logic using Designer and Libero IDE software tool support.

Two channels of the 32-channel ADCMUX are dedicated. Channel 0 is connected internally to V_{CC} and can be used to monitor core power supply. Channel 31 is connected to an internal temperature diode which can be used to monitor device temperature. The 30 remaining channels can be connected to external analog signals. The exact number of I/Os available for external connection signals is device-dependent (refer to Table 1 on page i for details).

With Fusion, Actel also introduces the Analog Quad I/O structure (Figure 1-1 on page 1-5). Each guad consists of three analog inputs and one gate driver. Each quad can be configured in various built-in circuit combinations, such as three prescaler circuits, three digital input circuits, a current monitor circuit, or a temperature monitor circuit. Each prescaler has multiple scaling factors programmed by FPGA signals to support a large range of analog inputs with positive or negative polarity. When the current monitor circuit is selected, two adjacent analog inputs measure the voltage drop across a small external sense resistor. Built-in operational amplifiers amplify small voltage signals (2 mV sensitivity) for accurate current measurement. One analog input in each quad can be connected to an external temperature monitor diode and achieves detection accuracy of ±3°C. addition to the external temperature monitor diode(s), a Fusion device can monitor an internal temperature diode using dedicated channel 31 of the ADCMUX.

Figure 1-1 on page 1-5 illustrates a typical use of the Analog Quad I/O structure. The Analog Quad shown is configured to monitor and control an external power supply. The AV pad measures the source of the power supply. The AC pad measures the voltage drop across an external sense resistor to calculate current. The AG MOSFET gate driver pad turns the external MOSFET on and off. The AT pad measures the load-side voltage level.

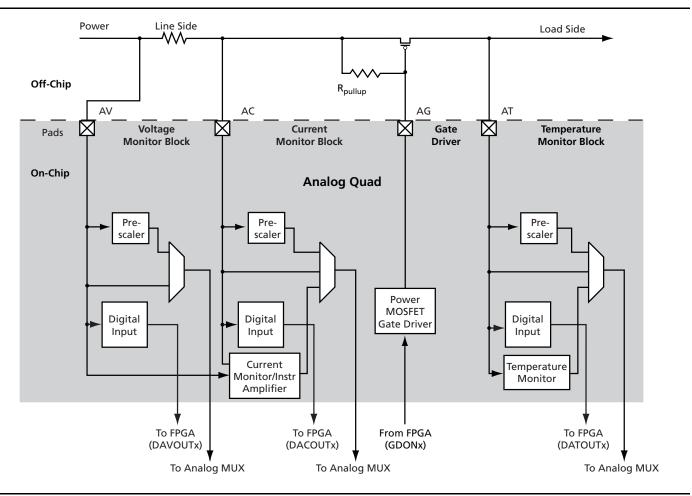


Figure 1-1 • Analog Quad

Embedded Memories

Flash Memory Blocks

The flash memory available in each Fusion device is composed of one to four flash blocks, each 2 Mbits in density. Each block operates independently with a dedicated flash controller and interface. Fusion flash memory blocks combine fast access times (60 ns random access and 10 ns access in Read-Ahead mode) with a configurable 8-, 16-, or 32-bit datapath, enabling high-speed flash operation without wait states. The memory block is organized in pages and sectors. Each page has 128 bytes, with 33 pages comprising one sector and 64 sectors per block. The flash block can support multiple partitions. The only constraint on size is that partition boundaries must coincide with page boundaries. The flexibility and granularity enable many use models and allow added granularity in programming updates.

Fusion devices support two methods of external access to the flash memory blocks. The first method is a serial interface that features a built-in JTAG-compliant port, which allows in-system programmability during user or monitor/test modes. This serial interface supports programming of an AES-encrypted stream. Secure data can be passed through the JTAG interface, decrypted, and then programmed in the flash block. The second method is a soft parallel interface.

FPGA logic or an on-chip soft microprocessor can access flash memory through the parallel interface. Since the flash parallel interface is implemented in the FPGA fabric, it can potentially be customized to meet special user requirements. For more information, refer to the *CoreCFI Handbook*. The flash memory parallel interface provides configurable byte-wide (×8), word-wide (×16), or dual-word-wide (×32) data port options. Through the programmable flash parallel interface, the on-chip and off-chip memories can be cascaded for wider or deeper configurations.

The flash memory has built-in security. The user can configure either the entire flash block or the small blocks to prevent unintentional or intrusive attempts to change or destroy the storage contents. Each on-chip flash memory block has a dedicated controller, enabling each block to operate independently.

The flash block logic consists of the following sub-blocks:

- Flash block Contains all stored data. The flash block contains 64 sectors and each sector contains 33 pages of data.
- Page Buffer Contains the contents of the current page being modified. A page contains 8 blocks of data.
- Block Buffer Contains the contents of the last block accessed. A block contains 128 data bits.

 ECC Logic – The flash memory stores error correction information with each block to perform single-bit error correction and double-bit error detection on all data blocks.

User Nonvolatile FlashROM

In addition to the flash blocks, Actel Fusion devices have 1 kbit of user-accessible, nonvolatile FlashROM on-chip. The FlashROM is organized as 8×128-bit pages. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- Secure key storage for secure communications algorithms
- Asset management/tracking
- · Date stamping
- Version management

The FlashROM is written using the standard IEEE 1532 JTAG programming interface. Pages can be individually programmed (erased and written). On-chip AES decryption can be used selectively over public networks to securely load data such as security keys stored in the FlashROM for a user design.

The FlashROM can be programmed (erased and written) via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing.

The FlashPoint tool in the Actel Fusion development software solutions, Libero IDE and Designer, has extensive support for flash memory blocks and FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using the Actel Libero IDE and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

Fusion devices have embedded SRAM blocks along the north and south sides of the device. Each variable-aspectratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit

widths on each port. For example, data can be written through a 4-bit port and read as a single bitstream. The SRAM blocks can be initialized from the flash memory blocks or via the device JTAG port (ROM emulation mode), using the UJTAG macro.

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal EMPTY and FULL flags. The embedded FIFO control unit contains the counters necessary for the generation of the read and write address pointers. The SRAM/FIFO blocks can be cascaded to create larger configurations.

Clock Resources

PLLs and Clock Conditioning Circuits (CCCs)

Fusion devices provide designers with very flexible clock conditioning capabilities. Each member of the Fusion family contains six CCCs. In the two larger family members, two of these CCCs also include a PLL; the smaller devices support one PLL.

The inputs of the CCC blocks are accessible from the FPGA core or from one of several inputs with dedicated CCC block connections.

The CCC block has the following key features:

- Wide input frequency range (f_{IN_CCC}) = 1.5 MHz to 350 MHz
- Output frequency range (f_{OUT_CCC}) = 0.75 MHz to 350 MHz
- Clock phase adjustment via programmable and fixed delays from –6.275 ns to +8.75 ns
- Clock skew minimization (PLL)
- Clock frequency synthesis (PLL)
- On-chip analog clocking resources usable as inputs:
 - 100 MHz on-chip RC oscillator
 - Crystal oscillator

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°
- Output duty cycle = 50% ± 1.5%
- Low output jitter. Samples of peak-to-peak period jitter when a single global network is used:
 - 70 ps at 350 MHz
 - 90 ps at 100 MHz
 - 180 ps at 24 MHz
 - Worst case < 2.5% × clock period
- Maximum acquisition time = 150 μs
- Low power consumption of 5 mW

Global Clocking

Fusion devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there are on-chip oscillators as well as a comprehensive global clock distribution network.

The integrated RC oscillator generates a 100 MHz clock. It is used internally to provide a known clock source to the flash memory read and write control. It can also be used as a source for the PLLs.

The crystal oscillator supports the following operating modes:

- Crystal (32.768 kHz to 20 MHz)
- Ceramic (500 kHz to 8 MHz)
- RC (32.768 kHz to 4 MHz)

Each VersaTile input and output port has access to nine VersaNets: six main and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via MUXes. The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.

Digital I/Os with Advanced I/O Standards

The Fusion family of FPGAs features a flexible digital I/O structure, supporting a range of voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). Fusion FPGAs support many different digital I/O standards, both single-ended and differential.

The I/Os are organized into banks, with four or five banks per device. The configuration of these banks determines the I/O standards supported. The banks along the east and west sides of the device support the full range of I/O standards (single-ended and differential). The south bank supports the Analog Quads (analog I/O). In the family's two smaller devices, the north bank supports multiple single-ended digital I/O standards. In the family's larger devices, the north bank is divided into two banks of digital Pro I/Os, supporting a wide variety of single-ended, differential, and voltage-referenced I/O standards.

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following applications:

- Single-Data-Rate (SDR) applications
- Double-Data-Rate (DDR) applications—DDR LVDS I/O for chip-to-chip communications
- Fusion banks support LVPECL, LVDS, BLVDS, and M-LVDS with 20 multi-drop points.

Advanced v1.4 1-7

Actel Fusion Programmable System Chips

VersaTiles

The Fusion core consists of VersaTiles, which are also used in the successful Actel ProASIC3 family. The Fusion VersaTile supports the following:

- All 3-input logic functions—LUT-3 equivalent
- Latch with clear or set
- D-flip-flop with clear or set and optional enable

Refer to Figure 1-2 for the VersaTile configuration arrangement.

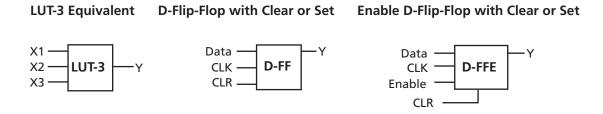


Figure 1-2 • VersaTile Configurations

Related Documents

Application Notes

Fusion FlashROM

http://www.actel.com/documents/Fusion_FROM_AN.pdf

Fusion SRAM/FIFO Blocks

http://www.actel.com/documents/

Fusion_RAM_FIFO_AN.pdf

Using DDR in Fusion Devices

http://www.actel.com/documents/Fusion_DDR_AN.pdf

Fusion Security

http://www.actel.com/documents/

Fusion_Security_AN.pdf

Using Fusion RAM as Multipliers

http://www.actel.com/documents/

Fusion_Multipliers_AN.pdf

Prototyping with AFS600 for Smaller Devices

http://www.actel.com/documents/

Fusion_Prototyp_AN.pdf

UJTAG Applications in Actel's Low-Power Flash Devices

http://www.actel.com/documents/LPD_UJTAG_HBs.pdf

In-System Programming (ISP) of Actel's Low-Power Flash Devices Using FlashPro3

http://www.actel.com/documents/LPD_ISP_HBs.pdf

Handbook

Fusion Handbook

http://www.actel.com/documents/Fusion_HB.pdf

User's Guides

Designer User's Guide

http://www.actel.com/documents/designer_UG.pdf

Fusion Design Flow Tutorial

http://www.actel.com/documents/fusion_df_ug.pdf

Fusion, IGLOO/e and ProASIC3/E Macro Library Guide

http://www.actel.com/documents/pa3_libguide_ug.pdf

Peripherals User's Guide

http://www.actel.com/documents/peripheral_ug.pdf

SmartGen, FlashROM, Flash Memory System Builder, and Analog System Builder User's Guide

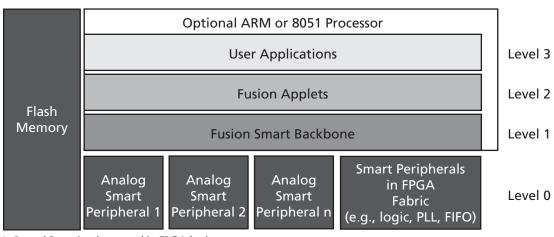
http://www.actel.com/documents/genguide_ug.pdf

White Papers

Fusion Technology

http://www.actel.com/documents/Fusion_Tech_WP.pdf

Device Architecture


Fusion Stack Architecture

To manage the unprecedented level of integration in Fusion devices, Actel developed the Fusion technology stack (Figure 2-1). This layered model offers a flexible design environment, enabling design at very high and very low levels of abstraction. Fusion peripherals include hard analog IP and hard and soft digital IP. Peripherals communicate across the FPGA fabric via a layer of soft gates—the Fusion backbone. Much more than a common bus interface, this Fusion backbone integrates a microsequencer within the FPGA fabric and configures the individual peripherals and supports low-level processing of peripheral data. Fusion applets are application building blocks that can control and respond to peripherals and other system signals. Applets can be rapidly combined to create large applications. The technology is scalable across devices, families, design types, and user expertise, and supports a well-defined interface for external IP and tool integration.

At the lowest level, Level 0, are Fusion peripherals. These are configurable functional blocks that can be hardwired structures such as a PLL or analog input channel, or soft (FPGA gate) blocks such as a UART or two-wire serial interface. The Fusion peripherals are configurable and support a standard interface to facilitate communication and implementation.

Connecting and controlling access to the peripherals is the Fusion backbone, Level 1. The backbone is a soft-gate structure, scalable to any number of peripherals. The backbone is a bus and much more; it manages peripheral configuration to ensure proper operation. Leveraging the common peripheral interface and a low-level state machine, the backbone efficiently offloads peripheral management from the system design. The backbone can set and clear flags based upon peripheral behavior and can define performance criteria. The flexibility of the stack enables a designer to configure the silicon, directly bypassing the backbone if that level of control is desired.

One step up from the backbone is the Fusion applet, Level 2. The applet is an application building block that implements a specific function in FPGA gates. It can react to stimuli and board-level events coming through the backbone or from other sources, and responds to these stimuli by accessing and manipulating peripherals via the backbone or initiating some other action. An applet controls or responds to the peripheral(s). Applets can be easily imported or exported from the design environment. The applet structure is open and well-defined, enabling users to import applets from Actel, system developers, third parties, and user groups.

Note: Levels 1, 2, and 3 are implemented in FPGA logic gates.

Figure 2-1 • Fusion Architecture Stack

Advanced v1.4 2-1

Actel Fusion Programmable System Chips

The system application, Level 3, is the larger user application that utilizes one or more applets. Designing at the highest level of abstraction supported by the Actel Fusion technology stack, the application can be easily created in FPGA gates by importing and configuring multiple applets.

In fact, in some cases an entire FPGA system design can be created without any HDL coding.

An optional MCU enables a combination of software and HDL-based design methodologies. The MCU can be on-chip or off-chip as system requirements dictate. System portioning is very flexible, allowing the MCU to reside above the applets or to absorb applets, or applets and backbone, if desired.

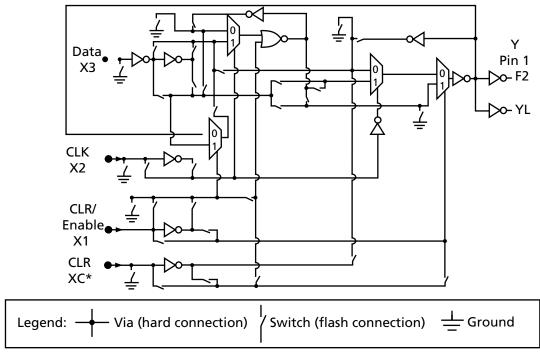
The Actel Fusion technology stack enables a very flexible design environment. Users can engage in design across a continuum of abstraction from very low to very high.

Core Architecture

VersaTile

Based upon successful Actel ProASIC3/E logic architecture, Fusion devices provide granularity comparable to gate

arrays. The Fusion device core consists of a sea-of-VersaTiles architecture.


As illustrated in Figure 2-2, there are four inputs in a logic VersaTile cell, and each VersaTile can be configured using the appropriate flash switch connections:

- Any 3-input logic function
- · Latch with clear or set
- D-flip-flop with clear or set
- Enable D-flip-flop with clear or set (on a 4th input)

VersaTiles can flexibly map the logic and sequential gates of a design. The inputs of the VersaTile can be inverted (allowing bubble pushing), and the output of the tile can connect to high-speed, very-long-line routing resources. VersaTiles and larger functions are connected with any of the four levels of routing hierarchy.

When the VersaTile is used as an enable D-flip-flop, the SET/CLR signal is supported by a fourth input, which can only be routed to the core cell over the VersaNet (global) network.

The output of the VersaTile is F2 when the connection is to the ultra-fast local lines, or YL when the connection is to the efficient long-line or very-long-line resources (Figure 2-2).

Note: *This input can only be connected to the global clock distribution network.

Figure 2-2 • Fusion Core VersaTile

VersaTile Characteristics

Sample VersaTile Specifications—Combinatorial Module

The Fusion library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library (Figure 2-3). For more details, refer to the Fusion, IGLOO/e and ProASIC3/E Macro Library Guide.

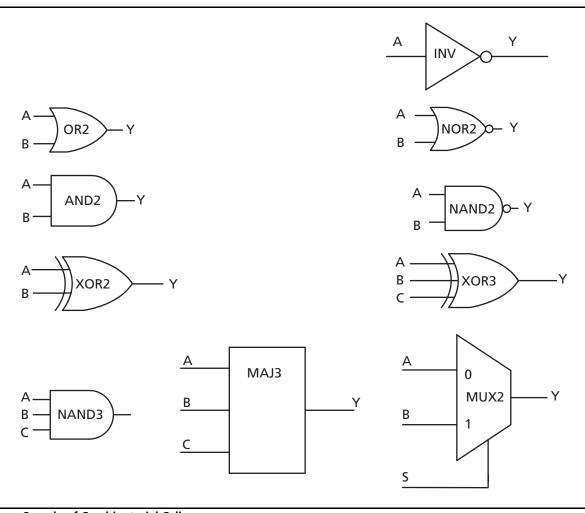
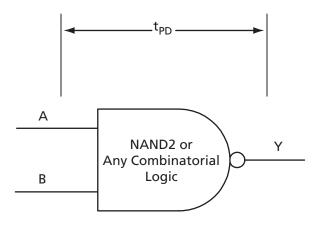



Figure 2-3 • Sample of Combinatorial Cells

Advanced v1.4 2-3

 t_{PD} = MAX($t_{PD(RR)}$, $t_{PD(RF)}$, $t_{PD(FF)}$, $t_{PD(FR)}$) where edges are applicable for the particular combinatorial cell



Figure 2-4 • Combinatorial Timing Model and Waveforms

Timing Characteristics

Table 2-1 • Combinatorial Cell Propagation Delays
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V

Combinatorial Cell	Equation	Parameter	-2	-1	Std.	Units
INV	Y = !A	t _{PD}	0.40	0.46	0.54	ns
AND2	$Y = A \cdot B$	t _{PD}	0.47	0.54	0.63	ns
NAND2	$Y = !(A \cdot B)$	t _{PD}	0.47	0.54	0.63	ns
OR2	Y = A + B	t _{PD}	0.49	0.55	0.65	ns
NOR2	Y = !(A + B)	t _{PD}	0.49	0.55	0.65	ns
XOR2	Y = A ⊕ B	t _{PD}	0.74	0.84	0.99	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	0.70	0.79	0.93	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	0.87	1.00	1.17	ns
MUX2	Y = A !S + B S	t _{PD}	0.51	0.58	0.68	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	0.56	0.64	0.75	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Sample VersaTile Specifications—Sequential Module

The Fusion library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library (Figure 2-5). For more details, refer to the Fusion, IGLOO/e and ProASIC3/E Macro Library Guide.

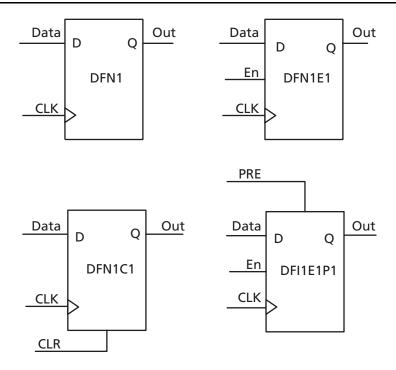


Figure 2-5 • Sample of Sequential Cells

Advanced v1.4 2-5

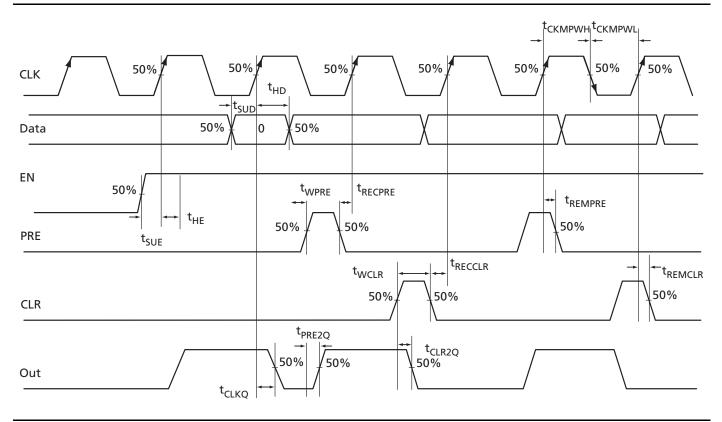


Figure 2-6 • Sequential Timing Model and Waveforms

Sequential Timing Characteristics

Table 2-2 ◆ Register Delays
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V

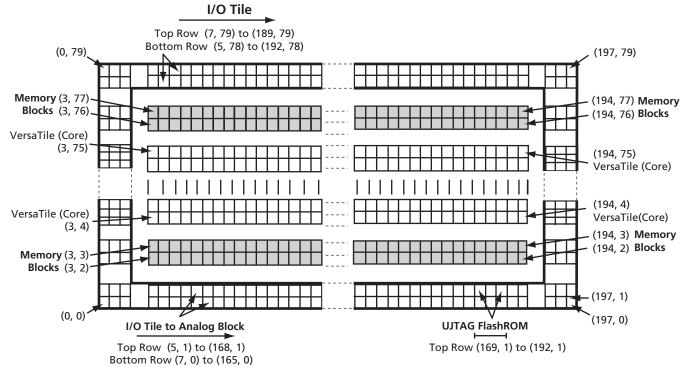
Parameter	Description	-2	-1	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	0.55	0.63	0.74	ns
t _{SUD}	Data Setup Time for the Core Register	0.43	0.49	0.57	ns
t _{HD}	Data Hold Time for the Core Register	0.00	0.00	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	0.45	0.52	0.61	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	0.00	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.40	0.45	0.53	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.40	0.45	0.53	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	0.00	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.22	0.25	0.30	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	0.00	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.22	0.25	0.30	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.22	0.25	0.30	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.22	0.25	0.30	ns
t _{CKMPWH}	Clock Minimum Pulse Width HIGH for the Core Register	0.32	0.37	0.43	ns
t _{CKMPWL}	Clock Minimum Pulse Width LOW for the Core Register	0.36	0.41	0.48	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Array Coordinates

During many place-and-route operations in the Actel Designer software tool, it is possible to set constraints that require array coordinates. Table 2-3 is provided as a reference. The array coordinates are measured from the lower left (0, 0). They can be used in region constraints for specific logic groups/blocks, designated by a wildcard, and can contain core cells, memories, and I/Os.

Table 2-3 provides array coordinates of core cells and memory blocks.


I/O and cell coordinates are used for placement constraints. Two coordinate systems are needed because there is not a one-to-one correspondence between I/O

cells and edge core cells. In addition, the I/O coordinate system changes depending on the die/package combination. It is not listed in Table 2-3. The Designer ChipPlanner tool provides array coordinates of all I/O locations. I/O and cell coordinates are used for placement constraints. However, I/O placement is easier by package pin assignment.

Figure 2-7 illustrates the array coordinates of an AFS600 device. For more information on how to use array coordinates for region/placement constraints, see the *Designer User's Guide* or online help (available in the software) for Fusion software tools.

Table 2-3 ● Array Coordinates

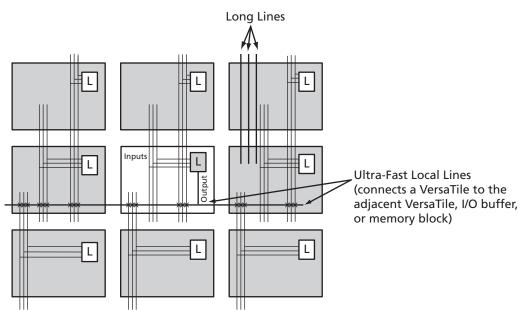
		Vers	aTiles		Memoi	y Rows	All		
	Mi	Min.		Max.		Тор	Min.	Max.	
Device	х	у	х	у	(x, y)	(x, y)	(x, y)	(x, y)	
AFS090	3	2	98	25	None	(3, 26)	(0, 0)	(101, 29)	
AFS250	3	2	130	49	None	(3, 50)	(0, 0)	(133, 53)	
AFS600	3	4	194	75	(3, 2)	(3, 76)	(0, 0)	(197, 79)	
AFS1500	3	4	322	123	(3, 2)	(3, 124)	(0, 0)	(325, 129)	

Note: The vertical I/O tile coordinates are not shown. West side coordinates are {(0, 2) to (2, 2)} to {(0, 77) to (2, 77)}; east side coordinates are {(195, 2) to (197, 2)} to {(195, 77) to (197, 77)}.

Figure 2-7 • Array Coordinates for AFS600

Advanced v1.4 2-7

Routing Architecture


The routing structure of Fusion devices is designed to provide high performance through a flexible four-level hierarchy of routing resources: ultra-fast local resources; efficient long-line resources; high-speed very-long-line resources; and the high-performance VersaNet networks.

The ultra-fast local resources are dedicated lines that allow the output of each VersaTile to connect directly to every input of the eight surrounding VersaTiles (Figure 2-8). The exception to this is that the SET/CLR input of a VersaTile configured as a D-flip-flop is driven only by the VersaNet global network.

The efficient long-line resources provide routing for longer distances and higher-fanout connections. These resources vary in length (spanning one, two, or four VersaTiles), run both vertically and horizontally, and cover the entire Fusion device (Figure 2-9 on page 2-9). Each VersaTile can drive signals onto the efficient long-line resources, which can access every input of every VersaTile. Active buffers are inserted automatically by routing software to limit loading effects.

The high-speed very-long-line resources, which span the entire device with minimal delay, are used to route very long or high-fanout nets: length +/-12 VersaTiles in the vertical direction and length +/-16 in the horizontal direction from a given core VersaTile (Figure 2-10 on page 2-10). Very long lines in Fusion devices, like those in ProASIC3 devices, have been enhanced. This provides a significant performance boost for long-reach signals.

The high-performance VersaNet global networks are low-skew, high-fanout nets that are accessible from external pins or from internal logic (Figure 2-11 on page 2-11). These nets are typically used to distribute clocks, reset signals, and other high-fanout nets requiring minimum skew. The VersaNet networks are implemented as clock trees, and signals can be introduced at any junction. These can be employed hierarchically, with signals accessing every input on all VersaTiles.

Note: Input to the core cell for the D-flip-flop set and reset is only available via the VersaNet global network connection.

Figure 2-8 • Ultra-Fast Local Lines Connected to the Eight Nearest Neighbors

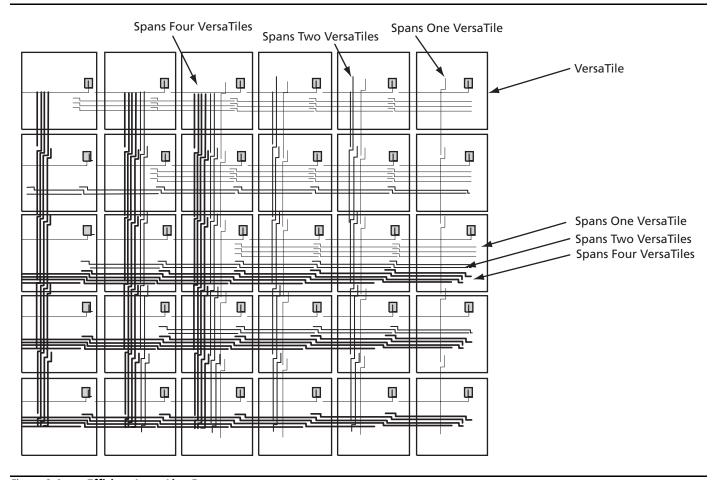


Figure 2-9 • Efficient Long-Line Resources

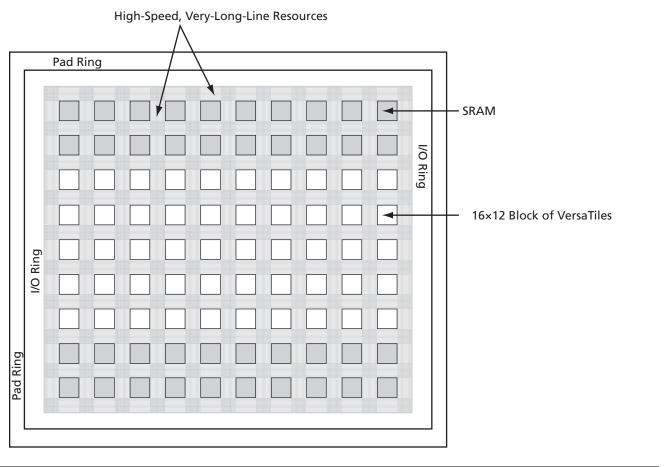


Figure 2-10 • Very-Long-Line Resources

Global Resources (VersaNets)

Fusion devices offer powerful and flexible control of circuit timing through the use of analog circuitry. Each chip has six CCCs. The west CCC also contains a PLL core. In the two larger devices (AFS600 and AFS1500), the west and the east CCCs each contain a PLL. The PLLs include delay lines, a phase shifter (0°, 90°, 180°, 270°), and clock multipliers/dividers. Each CCC has all the circuitry needed for the selection and interconnection of inputs to the VersaNet global network. The east and west CCCs each have access to three VersaNet global lines on each side of the chip (six lines total). The CCCs at the four corners each have access to three quadrant global lines on each quadrant of the chip.

Advantages of the VersaNet Approach

One of the architectural benefits of Fusion is the set of powerful and low-delay VersaNet global networks. Fusion offers six chip (main) global networks that are distributed from the center of the FPGA array (Figure 2-11). In

addition, Fusion devices have three regional globals (quadrant globals) in each of the four chip quadrants. Each core VersaTile has access to nine global network resources: three quadrant and six chip (main) global networks. There are a total of 18 global networks on the device. Each of these networks contains spines and ribs that reach all VersaTiles in all quadrants (Figure 2-12 on page 2-12). This flexible VersaNet global network architecture allows users to map up to 180 different internal/external clocks in a Fusion device. Details on the VersaNet networks are given in Table 2-4 on page 2-12. The flexibility of the Fusion VersaNet global network allows the designer to address several design requirements. User applications that are clock-resource-intensive can easily route external or gated internal clocks using VersaNet global routing networks. Designers can also drastically reduce delay penalties and minimize resource usage by mapping critical, high-fanout nets to the VersaNet global network.

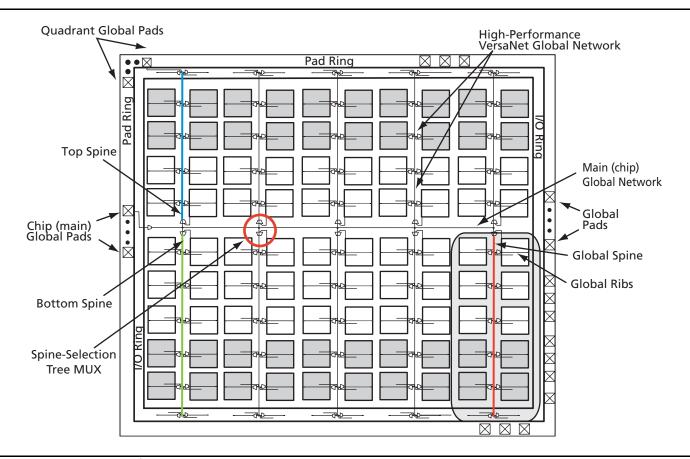


Figure 2-11 • Overview of Fusion VersaNet Global Network

Advanced v1.4 2-11

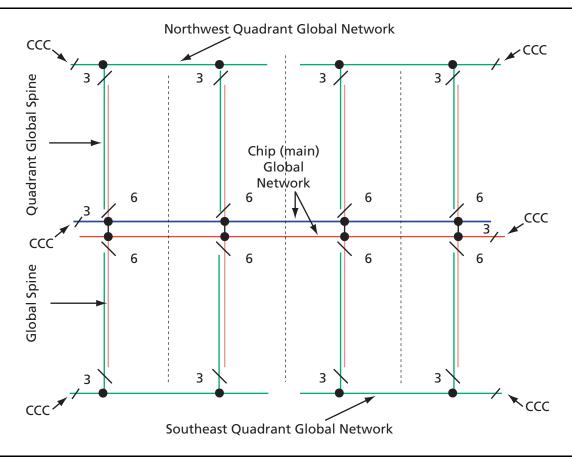


Figure 2-12 • Global Network Architecture

Table 2-4 • Globals/Spines/Rows by Device

	AFS090	AFS250	AFS600	AFS1500
Global VersaNets (trees)*	9	9	9	9
VersaNet Spines/Tree	4	8	12	20
Total Spines	36	72	108	180
VersaTiles in Each Top or Bottom Spine	384	768	1,152	1,920
Total VersaTiles	2,304	6,144	13,824	38,400

Note: *There are six chip (main) globals and three globals per quadrant.

VersaNet Global Networks and Spine Access

The Fusion architecture contains a total of 18 segmented global networks that can access the VersaTiles, SRAM, and I/O tiles on the Fusion device. There are 6 chip (main) global networks that access the entire device and 12 quadrant networks (3 in each quadrant). Each device has a total of 18 globals. These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets, including clock signals. In addition, these highly segmented global networks offer users the flexibility to create low-skew local networks using spines for up to 180 internal/external clocks (in an AFS1500 device) or other high-fanout nets in Fusion devices. Optimal usage of these low-skew networks can result in significant improvement in design performance on Fusion devices.

The nine spines available in a vertical column reside in global networks with two separate regions of scope: the quadrant global network, which has three spines, and the chip (main) global network, which has six spines. Note that there are three quadrant spines in each quadrant of the device. There are four quadrant global network regions per device (Figure 2-12 on page 2-12).

The spines are the vertical branches of the global network tree, shown in Figure 2-11 on page 2-11. Each spine in a vertical column of a chip (main) global network is further divided into two equal-length spine

segments: one in the top and one in the bottom half of the die.

Each spine and its associated ribs cover a certain area of the Fusion device (the "scope" of the spine; see Figure 2-11 on page 2-11). Each spine is accessed by the dedicated global network MUX tree architecture, which defines how a particular spine is driven—either by the signal on the global network from a CCC, for example, or another net defined by the user (Figure 2-13). Quadrant spines can be driven from user I/Os on the north and south sides of the die, via analog I/Os configured as direct digital inputs. The ability to drive spines in the quadrant global networks can have a significant effect on system performance for high-fanout inputs to a design.

Details of the chip (main) global network spine-selection MUX are presented in Figure 2-13. The spine drivers for each spine are located in the middle of the die.

Quadrant spines are driven from a north or south rib. Access to the top and bottom ribs is from the corner CCC or from the I/Os on the north and south sides of the device. For details on using spines in Fusion devices, see the Actel application note *Using Global Resources in Actel Fusion Devices*.

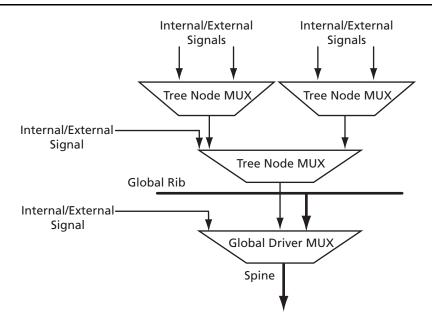


Figure 2-13 • Spine-Selection MUX of Global Tree

Advanced v1.4 2-13

Actel Fusion Programmable System Chips

Clock Aggregation

Clock aggregation allows for multi-spine clock domains. A MUX tree provides the necessary flexibility to allow long lines or I/Os to access domains of one, two, or four global spines. Signal access to the clock aggregation system is achieved through long-line resources in the central rib, and also through local resources in the north and south ribs, allowing I/Os to feed directly into the

clock system. As Figure 2-14 indicates, this access system is contiguous.

There is no break in the middle of the chip for north and south I/O VersaNet access. This is different from the quadrant clocks, located in these ribs, which only reach the middle of the rib.Refer to the *Using Global Resources in Actel Fusion Devices* application note.

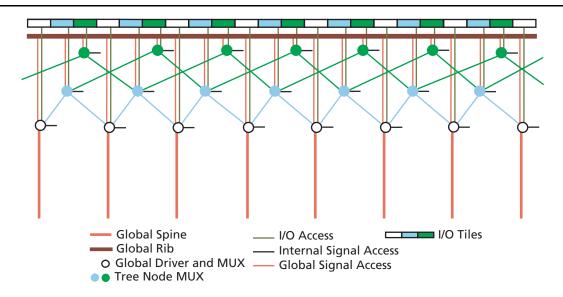


Figure 2-14 • Clock Aggregation Tree Architecture

Global Resource Characteristics

AFS600 VersaNet Topology

Clock delays are device-specific. Figure 2-15 is an example of a global tree used for clock routing. The global tree presented in Figure 2-15 is driven by a CCC located on the west side of the AFS600 device. It is used to drive all D-flip-flops in the device.

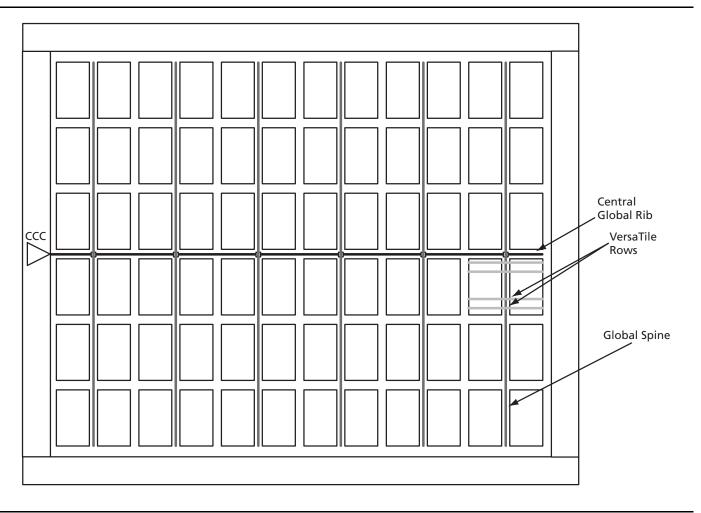


Figure 2-15 • Example of Global Tree Use in an AFS600 Device for Clock Routing

Actel Fusion Programmable System Chips

VersaNet Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are dependent upon I/O standard, and the clock may be driven and conditioned internally by the CCC module. Table 2-5, Table 2-6, Table 2-7, and Table 2-8 on page 2-17 present minimum and maximum global clock delays within the device. Minimum and maximum delays are measured with minimum and maximum loading, respectively.

Timing Characteristics

Table 2-5 • AFS1500 Global Resource Timing Commercial-Case Conditions: T_I = 70°C, V_{CC} = 1.425 V

		-2		-1		Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t_{RCKL}	Input LOW Delay for Global Clock	1.53	1.75	1.74	1.99	2.05	2.34	ns
t _{RCKH}	Input HIGH Delay for Global Clock	1.53	1.79	1.75	2.04	2.05	2.40	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.29		0.34	ns
F _{RMAX}	Maximum Frequency for Global Clock							MHz

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-6 • AFS600 Global Resource Timing Commercial-Case Conditions: T₁ = 70°C, V_{CC} = 1.425 V

		-2		-1		Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input LOW Delay for Global Clock	1.27	1.49	1.44	1.70	1.69	2.00	ns
t _{RCKH}	Input HIGH Delay for Global Clock	1.26	1.54	1.44	1.75	1.69	2.06	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.27		0.31		0.36	ns
F _{RMAX}	Maximum Frequency for Global Clock							MHz

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-7 • AFS250 Global Resource Timing
Commercial-Case Conditions: T₁ = 70°C, V_{CC} = 1.425 V

		-2		-1		Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input LOW Delay for Global Clock	0.89	1.12	1.02	1.27	1.20	1.50	ns
t _{RCKH}	Input HIGH Delay for Global Clock	0.88	1.14	1.00	1.30	1.17	1.53	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.26		0.30		0.35	ns
F _{RMAX}	Maximum Frequency for Global Clock							MHz

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-8 ◆ AFS090 Global Resource Timing Commercial-Case Conditions: T_J = 70°C, V_{CC} = 1.425 V

		-2		-1		Std.		
Parameter	Description	Min. ¹	Max. ²	Min. ¹	Max. ²	Min. ¹	Max. ²	Units
t _{RCKL}	Input LOW Delay for Global Clock	0.84	1.07	0.96	1.21	1.13	1.43	ns
t _{RCKH}	Input HIGH Delay for Global Clock	0.83	1.10	0.95	1.25	1.12	1.47	ns
t _{RCKMPWH}	Minimum Pulse Width HIGH for Global Clock							ns
t _{RCKMPWL}	Minimum Pulse Width LOW for Global Clock							ns
t _{RCKSW}	Maximum Skew for Global Clock		0.27		0.30		0.36	ns
F _{RMAX}	Maximum Frequency for Global Clock							MHz

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Clocking Resources

The Fusion family has a robust collection of clocking peripherals, as shown in the block diagram in Figure 2-16. These on-chip resources enable the creation, manipulation, and distribution of many clock signals. The Fusion integrated RC oscillator produces a 100 MHz clock source with no external components. For systems requiring more precise clock signals, the Actel Fusion family supports an on-chip crystal oscillator circuit. The integrated PLLs in each Fusion device can use the RC

oscillator, crystal oscillator, or another on-chip clock signal as a source. These PLLs offer a variety of capabilities to modify the clock source (multiply, divide, synchronize, advance, or delay). Utilizing the CCC found in the popular Actel ProASIC3 family, Fusion incorporates six CCC blocks. The CCCs allow access to Fusion global and local clock distribution nets, as described in the "Global Resources (VersaNets)" section on page 2-11.

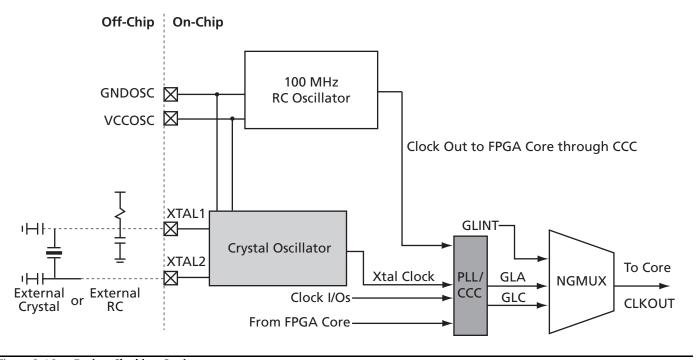


Figure 2-16 • Fusion Clocking Options

RC Oscillator

The RC oscillator is an on-chip free-running clock source generating a 100 MHz clock. It can be used as a source clock for both on-chip and off-chip resources. When used in conjunction with the Fusion PLL and CCC circuits, the RC oscillator clock source can be used to generate clocks of varying frequency and phase.

The Fusion RC oscillator is very accurate at ±1% over commercial and industrial temperature ranges. It is an automated clock, requiring no setup or configuration by the user. It requires only that the power and GNDOSC pins be connected; no external components are required. The RC oscillator can be used to drive either a PLL or another internal signal.

RC Oscillator Characteristics

Table 2-9 • Electrical Characteristics of RC Oscillator

Parameter	Description	Conditions	Min.	Тур.	Мах.	Units
F _{RC}	Operating Frequency			100		MHz
	Accuracy	Temperature: 0°C to 85°C Voltage: 3.3 V ± 5%		1		%
		Temperature: -40° C to 125°C Voltage: 3.3 V ± 5%		3		%
	Output Jitter	Period Jitter (at 5 k cycles)		100		ps
		Cycle–Cycle Jitter (at 5 k cycles)		100		ps
		Period Jitter (at 5 k cycles) with 1 kHz / 300 mV peak-to-peak noise on power supply		150		ps
		Cycle–Cycle Jitter (at 5 k cycles) with 1 kHz / 300 mV peak-to-peak noise on power supply		150		ps
	Output Duty Cycle			50		%
I _{DYNRC}	Operating Current			1		mA

Crystal Oscillator

The on-chip crystal oscillator circuit works with an offchip crystal to generate a high-precision clock. It has an accuracy of 100 ppm (0.01%) and is capable of providing system clocks for Fusion peripherals and other system clock networks, both on-chip and off-chip. When combined with the on-chip CCC/PLL blocks, a wide range of clock frequencies can be created to support various design requirements.

The on-chip circuitry is designed to work with an external crystal, a ceramic resonator, or an RC network. It can only support one of these configurations at a time.

Typical design practices dictate that the desired mode for the crystal oscillator be determined and the board designed for a single configuration. The crystal oscillator supports four modes of operation, defined in Table 2-10. In Mode 0, the oscillator is configured to work with an external RC network. The RC components are connected to the XTAL1 pin, with XTAL2 left floating. The frequency generated by the circuit in Mode 0 is determined by the RC time constant of the selected components (Figure 2-18).

Table 2-10 • Crystal Oscillator Mode Definition

Mode	RTCMODE/MODE[1:0]	Frequency Range		
RC network (Mode 0)	00	N/A		
Low gain (Mode 1)	01	0.032 to 0.20 MHz		
Medium gain (Mode 2)	10	0.20 to 2.0 MHz		
High gain (Mode 3)	11	2.0 to 20.0 MHz		

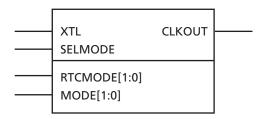


Figure 2-17 • Crystal Oscillator Macro

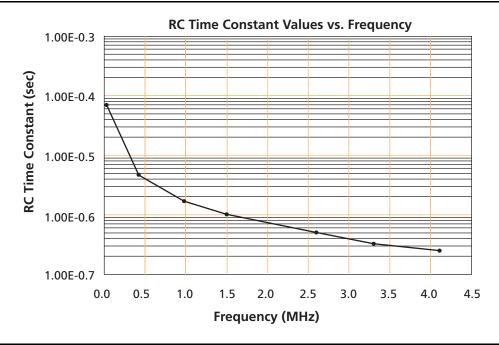


Figure 2-18 • Crystal Oscillator: RC Time Constant Values vs. Frequency (typical)

In Modes 1 to 3, the crystal oscillator is configured to support an external crystal or ceramic resonator. These modes correspond to low, medium, and high gain. They differ in the crystal or resonator frequency supported. The crystal or resonator is connected to the XTAL1 and XTAL2 pins. Additionally, a capacitor is required on both XTAL1 and XTAL2 pins to ground (Figure 2-16 on page 2-18). Table 2-10 on page 2-20 details each crystal oscillator mode, supported frequency range, and recommended capacitor value.

A use model supported by the Fusion device involves powering down the core while the RTC continues to run, clocked by the crystal oscillator. When powered down, the core cannot control crystal oscillator mode pins. Also, some designers may wish to avoid the RTC altogether. To support both situations, the crystal oscillator can be controlled by either the RTC or the FPGA core. If the RTC is instantiated in the design, it will by default use RTCMODE[1:0] to set the crystal oscillator control pins (the default). If the RTC is not used in the design, the FPGA core will set the crystal oscillator control pins with MODE[1:0].

The crystal oscillator can be disabled/enabled by RTC or FPGA upon operation requirement. When the crystal oscillator is disabled, XTL1 and XTL2 pins can be left floating.

Crystal Oscillator Characteristics

Table 2-11 • Electrical Characteristics of the Crystal Oscillator

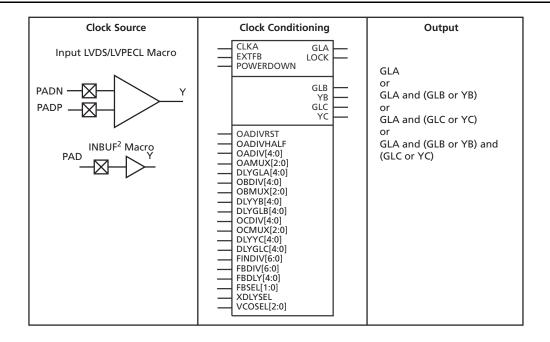
Parameter	Description	Conditions	Min.	Тур.	Max.	Units
F _{XTAL}	Operating Frequency	Using External Crystal	0.032		20	MHz
		Using Ceramic Resonator	0.5		8	MHz
		Using RC Network	0.032		4	MHz
	Output Duty Cycle			50		%
	Output Jitter	With 10 MHz Crystal		50		ps RMS
I _{DYNXTAL}	Operating Current	RC		0.6		mA
		0.032–0.2 MHz		0.19		mA
		0.2–2.0 MHz		0.6		mA
		2.0–20.0 MHz		0.6		mA
I _{STBXTAL}	Sleep Current			10		μΑ
PSRR _{XTAL}	Power Supply Noise Tolerance			0.5		Vp-p
V _{IHXTAL}	Input Logic Level HIGH		90% of V _{CC}			V
V _{ILXTAL}	Input Logic Level LOW				10% of V _{CC}	V

Clock Conditioning Circuits

In Fusion devices, the CCCs are used to implement frequency division, frequency multiplication, phase shifting, and delay operations.

The CCCs are available in six chip locations—each of the four chip corners and the middle of the east and west chip sides.

Each CCC can implement up to three independent global buffers (with or without programmable delay), or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to three global outputs. Unused global outputs of a PLL can be used to implement independent global buffers, up to a maximum of three global outputs for a given CCC.


A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, and CLKC-GLC) of a given CCC.

A PLL macro uses the CLKA CCC input to drive its reference clock. It uses the GLA and, optionally, the GLB and GLC global outputs to drive the global networks. A PLL macro can also drive the YB and YC regular core outputs. The GLB (or GLC) global output cannot be reused if the YB (or YC) output is used (Figure 2-19). Refer to the "PLL Macro" section on page 2-27 for more information.

Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

- 3 dedicated single-ended I/Os using a hardwired connection
- 2 dedicated differential I/Os using a hardwired connection
- · The FPGA core

The CCC block is fully configurable, either via flash configuration bits set in the programming bitstream or through an asynchronous interface. This asynchronous interface is dynamically accessible from inside the Fusion device to permit changes of parameters (such as divide ratios) during device operation. To increase the versatility and flexibility of the clock conditioning system, the CCC configuration is determined either by the user during the design process, with configuration data being stored in flash memory as part of the device programming procedure, or by writing data into a dedicated shift register during normal device operation. This latter mode allows the user to dynamically reconfigure the CCC without the need for core programming. The shift register is accessed through a simple serial interface. Refer to the UJTAG Applications in Actel's Low-Power Flash Devices handbook chapter and the "CCC and PLL Characteristics" section on page 2-28 for more information.

Notes:

- 1. Visit the Actel website for future application notes concerning dynamic PLL reconfiguration. Refer to the "PLL Macro" section on page 2-27 for signal descriptions.
- 2. Many specific INBUF macros support the wide variety of single-ended and differential I/O standards for the Fusion family.
- 3. Refer to the Fusion, IGLOO/e, and ProASIC3/E Macro Library Guide for more information.

Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro

Table 2-12 • Available Selections of I/O Standards within CLKBUF and CLKBUF_LVDS/LVPECL Macros

CLKBUF Macros
CLKBUF_LVCMOS5
CLKBUF_LVCMOS33 ¹
CLKBUF_LVCMOS18
CLKBUF_LVCMOS15
CLKBUF_PCI
CLKBUF_LVDS ²
CLKBUF_LVPECL

Notes:

- 1. This is the default macro. For more details, refer to the Fusion, IGLOO/e and ProASIC3/E Macro Library Guide.
- 2. The BLVDS and M-LVDS standards are supported with CLKBUF LVDS.

Global Buffers with No Programmable Delays

The CLKBUF and CLKBUF_LVPECL/LVDS macros are composite macros that include an I/O macro driving a global buffer, hardwired together (Figure 2-20).

The CLKINT macro provides a global buffer function driven by the FPGA core.

The CLKBUF, CLKBUF_LVPECL/LVDS, and CLKINT macros are pass-through clock sources and do not use the PLL or provide any programmable delay functionality.

Many specific CLKBUF macros support the wide variety of single-ended and differential I/O standards supported by Fusion devices. The available CLKBUF macros are described in the *Fusion, IGLOO/e and ProASIC3/E Macro Library Guide*.

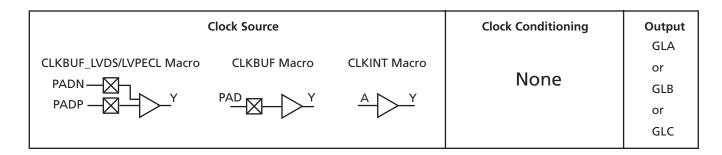


Figure 2-20 • Global Buffers with No Programmable Delay

Global Buffers with Programmable Delay

The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to delay the clock input using a programmable delay (Figure 2-21). The CLKDLY macro takes the selected clock input and adds a user-defined delay element. This macro generates an output clock phase shift from the input clock.

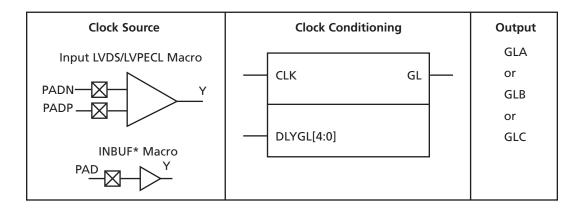
The CLKDLY macro can be driven by an INBUF macro to create a composite macro, where the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the I/O must be placed in one of the dedicated global I/O locations.

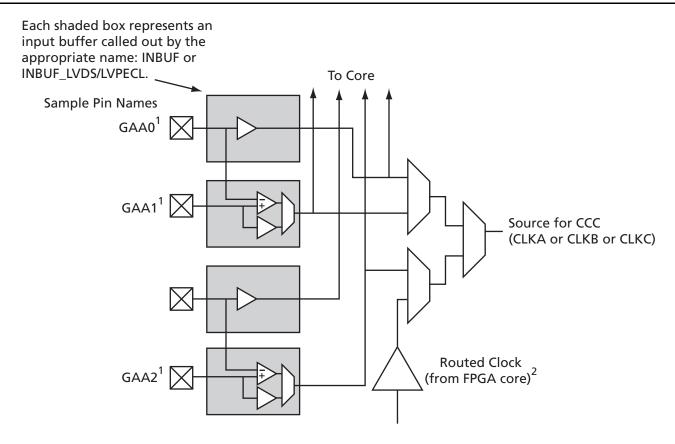
Many specific INBUF macros support the wide variety of single-ended and differential I/O standards supported by the Fusion family. The available INBUF macros are described in the Fusion, IGLOO/e and ProASIC3/E Macro Library Guide.

The CLKDLY macro can be driven directly from the FPGA core.

The CLKDLY macro can also be driven from an I/O that is routed through the FPGA regular routing fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate from the hardwired I/O connection described earlier.

The visual CLKDLY configuration in the SmartGen part of the Libero IDE and Designer tools allows the user to select the desired amount of delay and configures the delay elements appropriately. SmartGen also allows the user to select the input clock source. SmartGen will automatically instantiate the special macro, PLLINT, when needed.




Figure 2-21 • Fusion CCC Options: Global Buffers with Programmable Delay

Global Input Selections

Each global buffer, as well as the PLL reference clock, can be driven from one of the following (Figure 2-22):

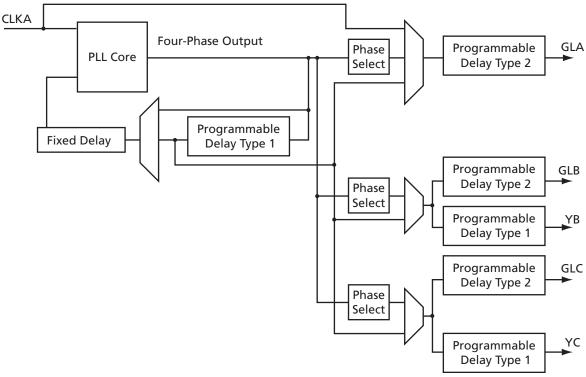
- 3 dedicated single-ended I/Os using a hardwired connection
- 2 dedicated differential I/Os using a hardwired connection
- The FPGA core

GAA[0:2]: GA represents global in the northwest corner of the device. A[0:2]: designates specific A clock source.

Notes:

- 1. Represents the global input pins. Globals have direct access to the clock conditioning block and are not routed via the FPGA fabric. Refer to the "User I/O Naming Convention" section on page 2-142 for more information.
- 2. Instantiate the routed clock source input as follows:
 - a) Connect the output of a logic element to the clock input of the PLL, CLKDLY, or CLKINT macro. b) Do not place a clock source I/O (INBUF or INBUF_LVPECL/LVDS) in a relevant global pin location.
- 3. LVDS-based clock sources are available in the east and west banks on all Fusion devices.

Figure 2-22 • Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT


CCC Physical Implementation

The CCC circuit is composed of the following (Figure 2-23):

- PLL core
- 3 phase selectors
- 6 programmable delays and 1 fixed delay
- 5 programmable frequency dividers that provide frequency multiplication/division (not shown in Figure 2-23 because they are automatically configured based on the user's required frequencies)
- 1 dynamic shift register that provides CCC dynamic reconfiguration capability (not shown)

CCC Programming

The CCC block is fully configurable. It is configured via static flash configuration bits in the array, set by the user in the programming bitstream, or configured through an asynchronous dedicated shift register, dynamically accessible from inside the Fusion device. The dedicated shift register permits changes of parameters such as PLL divide ratios and delays during device operation. This latter mode allows the user to dynamically reconfigure the PLL without the need for core programming. The register file is accessed through a simple serial interface.

Note: Clock divider and multiplier blocks are not shown in this figure or in SmartGen. They are automatically configured based on the user's required frequencies.

Figure 2-23 • PLL Block

PLL Macro

The PLL functionality of the clock conditioning block is supported by the PLL macro. Note that the PLL macro reference clock uses the CLKA input of the CCC block, which is only accessible from the global A[0:2] package pins. Refer to Figure 2-22 on page 2-25 for more information.

The PLL macro provides five derived clocks (three independent) from a single reference clock. The PLL feedback loop can be driven either internally or externally. The PLL macro also provides power-down input and lock output signals. During power-up, POWERDOWN should be asserted LOW until V_{CC} is up. See Figure 2-19 on page 2-22 for more information.

Inputs:

- CLKA: selected clock input
- POWERDOWN (active low): disables PLLs. The default state is power-down on (active low).

Outputs:

- LOCK (active high): indicates that PLL output has locked on the input reference signal
- GLA, GLB, GLC: outputs to respective global networks
- YB, YC: allows output from the CCC to be routed back to the FPGA core

As previously described, the PLL allows up to five flexible and independently configurable clock outputs. Figure 2-23 on page 2-26 illustrates the various clock output options and delay elements.

As illustrated, the PLL supports three distinct output frequencies from a given input clock. Two of these (GLB and GLC) can be routed to the B and C global networks, respectively, and/or routed to the device core (YB and YC).

There are five delay elements to support phase control on all five outputs (GLA, GLB, GLC, YB, and YC).

There is also a delay element in the feedback loop that can be used to advance the clock relative to the reference clock.

The PLL macro reference clock can be driven by an INBUF macro to create a composite macro, where the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the I/O must be placed in one of the dedicated global I/O locations.

The PLL macro reference clock can be driven directly from the FPGA core.

The PLL macro reference clock can also be driven from an I/O routed through the FPGA regular routing fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate it from the hardwired I/O connection described earlier.

The visual PLL configuration in SmartGen, available with the Libero IDE and Designer tools, will derive the necessary internal divider ratios based on the input frequency and desired output frequencies selected by the user. SmartGen allows the user to select the various delays and phase shift values necessary to adjust the phases between the reference clock (CLKA) and the derived clocks (GLA, GLB, GLC, YB, and YC). SmartGen also allows the user to select where the input clock is coming from. SmartGen automatically instantiates the special macro, PLLINT, when needed.

CCC and PLL Characteristics

Timing Characteristics

Table 2-13 • Fusion CCC/PLL Specification

Parameter	Min.	Тур.	Max.	Unit
Clock Conditioning Circuitry Input Frequency f _{IN_CCC}	1.5		350	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		350	MHz
Delay Increments in Programmable Delay Blocks ^{1, 2}		160		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Input Period Jitter			1.5	ns
CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT}	Max Pe	ak-to-Peak Pe	riod Jitter	
	1 Global Network Used		3 Global Networks Used	
0.75 MHz to 24 MHz	1.00%		1.00%	
24 MHz to 100 MHz	1.50%		1.50%	
100 MHz to 250 MHz	2.25%		2.25%	
250 MHz to 350 MHz	3.50%		3.50%	
Acquisition Time LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ³ LockControl = 0			1.6	ns
LockControl = 1			0.8	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 1, 2	0.6		5.56	ns
Delay Range in Block: Programmable Delay 2 1, 2	0.025		5.56	ns
Delay Range in Block: Fixed Delay ^{1, 2}		2.2		ns
N - 4				

Notes:

^{1.} This delay is a function of voltage and temperature. See Table 3-7 on page 3-9 for deratings.

^{2.} $T_J = 25$ °C, $V_{CC} = 1.5 V$

^{3.} Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter.

No-Glitch MUX (NGMUX)

Positioned downstream from the PLL/CCC blocks, the NGMUX provides a special switching sequence between two asynchronous clock domains that prevents generating any unwanted narrow clock pulses. The NGMUX is used to switch the source of a global between three different clock sources. Allowable inputs are either two PLL/CCC outputs or a PLL/CCC output and a regular net, as shown

in Figure 2-24. The GLMUXCFG[1:0] configuration bits determine the source of the CLK inputs (i.e., internal signal or GLC). These are set by SmartGen during design but can also be changed by dynamically reconfiguring the PLL. The GLMUXSEL[1:0] bits control which clock source is passed through the NGMUX to the global network (GL). See Table 2-14.

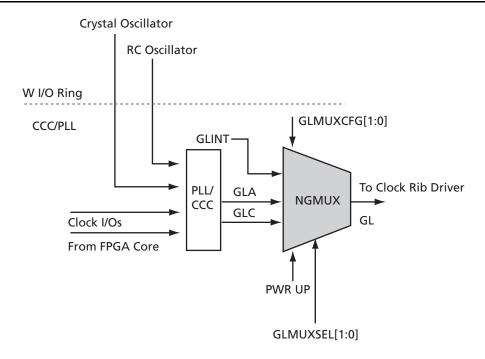


Figure 2-24 • NGMUX

Table 2-14 • **NGMUX Configuration and Selection Table**

GLMUXCFG[1:0]	GLMUXSEL[1:0]		0] GLMUXSEL[1:0] Selected Input Signal		Selected Input Signal	MUX Type
00	X 0		GLA	2-to-1 GLMUX		
	X	1	GLC			
01	X 0		GLA	2-to-1 GLMUX		
	X	1	GLINT			

The NGMUX macro is simplified to show the two clock options that have been selected by the GLMUXCFG[1:0] bits. Figure 2-25 illustrates the NGMUX macro. During design, the two clock sources are connected to CLK0 and CLK1 and are controlled by GLMUXSEL[1:0] to determine which signal is to be passed through the MUX.

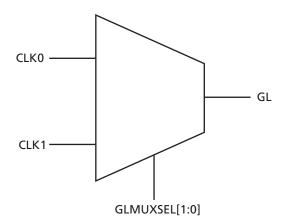


Figure 2-25 • NGMUX Macro

The sequence of switching between two clock sources (from CLK0 to CLK1) is as follows (Figure 2-26):

- GLMUXSEL[1:0] transitions to initiate a switch.
- GL drives one last complete CLK0 positive pulse (i.e., one rising edge followed by one falling edge).
- From that point, GL stays LOW until the second rising edge of CLK1 occurs.
- At the second CLK1 rising edge, GL will begin to continuously deliver the CLK1 signal.
 Minimum t_{sw} = 0.05 ns at 25°C (typical conditions)

For examples of NGMUX operation, refer to the Peripherals User's Guide.

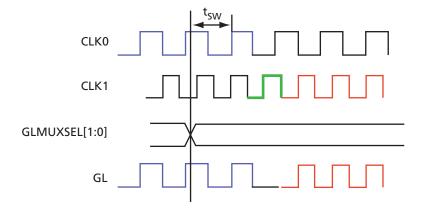


Figure 2-26 • NGMUX Waveform

Real-Time Counter System

The addition of the RTC system enables Fusion devices to support both standby and sleep modes of operation, greatly reducing power consumption in many applications.

The RTC system comprises six blocks that work together to provide this increased functionality and reduced power consumption. Figure 2-27 shows these blocks and how they are connected.

- RTC (Figure 2-28)
- Crystal oscillator
- V_{CC33UP} detector

- Voltage regulator initialization
- Voltage regulator logic
- 1.5 V voltage regulator

The RTC provides a counter as well as a MATCH output signal that can be used in the FPGA and, optionally, to power up the on-chip 1.5 V voltage regulator and provide a 1.5 V power source (in conjunction with an external pass transistor) to the FPGA fabric portion of the Fusion silicon device. The FPGA fabric can then be used to power down the 1.5 V voltage regulator.

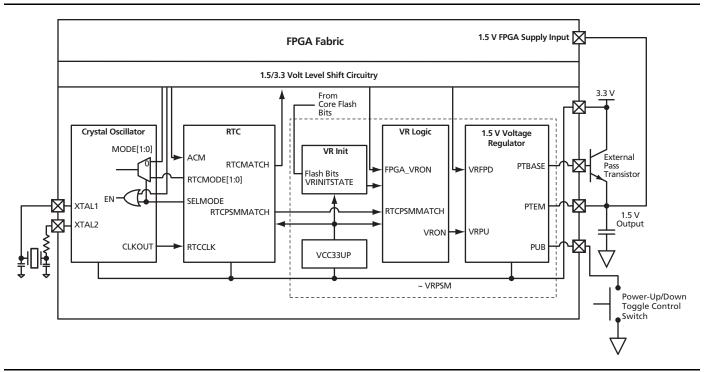


Figure 2-27 • Real-Time Counter System

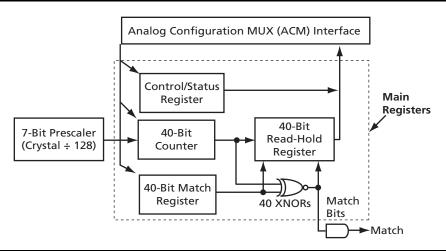


Figure 2-28 • RTC Block Diagram

Advanced v1.4 2-31

Real-Time Counter

The RTC can be configured to power up the FPGA fabric at a specific time or periodically. Custom user logic or a soft microcontroller within the FPGA fabric portion of the Fusion device can be programmed to read and modify the registers in the RTC. Based on this information or other internal or external conditions, the FPGA may decide to power down the voltage regulator and thereby shut off the FPGA fabric.

The 3.3 V supply must be valid and the crystal oscillator (nominally 32.768 kHz) enabled for a self-timed wake-up/restart operation. When operating from the 3.3 V supply with the 1.5 V core voltage disabled, the ACM interface to the FPGA is disabled.

A 40-bit loadable counter is used as the primary timekeeping element within the RTC. This counter can be configured to reset itself when a count value is reached that matches the value set within a 40-bit match register. Note that the only exception to this self-clearing mechanism occurs when the 40-bit counter is equal to zero (0x0000000000), since the counter would never increment from zero. When the device is first powered up (i.e., when the 3.3 V supply becomes valid), the 40-bit counter and 40-bit match register are cleared to logic 0, and the MATCH output signal is active (logic 1). At any time when the 40-bit counter value does not match the value in the 40-bit match register, the MATCH output signal will become inactive (logic 0).

Both the counter and match registers are addressable (read/write) from the FPGA and through a JTAG instruction. The RTC is considered part of the analog system and is accessed via the ACM. Refer to the "Analog Configuration MUX (ACM)" section on page 2-111 for detailed instructions on writing to the RTC via the ACM. The counter action can be suspended/resumed by clearing/setting the Cntr_En bit in the Control/Status register.

If a 32.768 kHz external crystal is connected to the crystal oscillator pad, the 40-bit counter will have a maximum count of 4,294,967,296 seconds, which equates to just

over 136 years of elapsed timekeeping with a minimum period of 1/256 of a second, which will be the toggle rate of the LSB of the 40-bit counter.

Frequencies other than 32.768 kHz can be used as a clock source with the appropriate scaling of the LSB time interval. The maximum input clock frequency is 20 MHz (the crystal oscillator limit).

The RTC signals are included in the Analog Block macro. The signal functions and descriptions are listed in Table 2-15.

A Fusion use model includes the RTC controlling the power-up state of the FPGA core via the 1.5 V regulator. To support this model, the crystal oscillator must be running and configured when the FPGA is powered off. Hence, when the RTC is enabled in the system design, it will configure the crystal oscillator via the RTCXTLMODE[1:0] and RTCXTLSEL pins.

A 7-bit prescaler block is used to divide the source clock (from the external crystal) by 128. This prescaled 50%-duty-cycle clock signal is then used by the counter logic as its reference clock. Given an external crystal frequency of 32.768 kHz, the prescaler output clock will toggle at a rate of 32.768 kHz / 128 = 256 Hz.

The RTC is built from and controlled by a set of registers, denoted "Main Registers" in Figure 2-27 on page 2-31. These registers are accessed via the ACM.

The FPGA fabric portion of the Fusion device must be powered up and active at least once to write to the various registers within the RTC to initialize them for the user's application. Users set up the RTC by configuring it from the Actel SmartGen tool, implementing custom logic or programming a soft microcontroller.

The 40-bit counter and match registers are each divided into five bytes. Each byte is directly addressable by the ACM. The address map of registers accessed through the ACM and used by the RTC is shown in Table 2-16 on page 2-33.

Table 2-15 • RTC Macro Signal Description

Signal Name Number of Bits		Direction	Function
RTCMATCH	1	Out	Match between 40-bit counter and match register
RTCPSMMATCH	1	Out	RTCMATCH connected to voltage regulator power supply monitor (VRPSM) (Figure 2-30 on page 2-36)
RTCXTLMODE[1:0]	2	Out Drives XTLOSC RTCMODE[1:0] pins	
RTCXTLSEL	1 Out Drives XTLOSC SELMODE pin		Drives XTLOSC SELMODE pin
RTCCLK	1	In	RTC clock input from XTLOSC CLKOUT pin

Table 2-16 • RTC ACM Memory Map

ACM_ADDR[7:0]	Decimal	Register Name	Description	Use
0x40	64	COUNTER0	Counter bits 7:0	Used to preload the counter to a
0x41	65	COUNTER1	Counter bits 15:8	specified start point. Default setting is all zeroes.
0x42	66	COUNTER2	Counter bits 23:16	uii 201003.
0x43	67	COUNTER3	Counter bits 31:24	
0x44	68	COUNTER4	Counter bits 39:32	
0x48	72	MATCHREG0	Match register bits 7:0	The RTC uses a 40-bit register to
0x49	73	MATCHREG1	Match register bits 15:8	compare against the 40-bit counter value to determine when a match
0x4A	74	MATCHREG2	Match register bits 23:16	occurs. This 40-bit match register, like
0x4B	75	MATCHREG3	Match register bits 31:24	the counter, is broken into 5 bytes (MATCHREG0–4).
0x4C	76	MATCHREG4	Match register bits 39:32	(MATCHILEGO-4).
0x50	80	MATCHBITS0	Individual match bits 7:0	Each bit of the 40-bit counter is
0x51	81	MATCHBITS1	Individual match bits 15:8	compared to each bit of the 40-bit match register via XNOR gates. These
0x52	82	MATCHBITS2	Individual match bits 23:16	40 match bits are partitioned into 5
0x53	83	MATCHBITS3	Individual match bits 31:24	bytes.
0x54	84	MATCHBITS4	Individual match bits 39:32	
0x58	88	CTRL_STAT	Control (write) / Status (read) register bits 7:0	Control (write) / Status (read) register bits 7:0
0x59	89	TEST_REG	Test register(s)	Test register(s)

Note: Accessing RTC Registers: When reading the RTC count or match register, which operates in the XTLCLK domain, the appropriate 40-bit value is first copied to a capture register through clock synchronization circuitry, if and only if the least significant byte of that set of register is addressed. Higher-order bytes of the same set of registers captured with the LSB can then be read on immediately later read cycles. Higher-order bytes of that set of registers can be read in any order but must be read before switching to a different set of registers to ensure data consistency. For example, RTC counter address ranges from 0x40 to 0x44, register 0x40 must be accessed first before accessing addresses 0x41, 0x42, 0x43, and 0x44 to get the full 40-bit value.

The Control/Status register (CTRL_STAT) is an 8-bit register that defines the operation of the RTC. The Control register can reset the RTC, enabling operation to begin with all zeroes in the counter. The RTC can be configured to clear upon a match with the Match

register, or it can continue to count while still setting the match signal. To enable the Fusion device to power up at a specific time or at periodic intervals, the RTC can be configured to turn on the 1.5 V voltage regulator. Table 2-17 details the CTRL_STAT settings.

Table 2-17 • RTC Control/Status Register

Bit	Name	Description
7	rtc_rst	RTC Reset: Writing a logic 1 to this bit causes an RTC reset. ² Writing a logic 0 to this bit will allow synchronous deassertion of reset after two ACM_CLK cycles if $V_{CC33UP} = 1.3$
6	cntr_en	Counter Enable: A logic 1 in this bit will enable the counter if the RTC is not in reset.
		It takes 64 RTCCLK positive edges (one-half of the prescaler division factor), after reset is removed and $cntr_en = 1$, before the counter is incremented. ⁴
		A logic 0 in this bit resets the prescaler and therefore suspends incrementing the counter, but the counter is not reset.
		Before writing to the counter registers, the counter must be disabled.
5	vr_en_mat	Voltage Regulator Enable on Match: Writing a logic 1 to this bit will allow the RTCMATCH output port to go to logic 1 when a match occurs between the 40-bit counter and the 40-bit match register.
		Logic 0 forces RTCMATCH to logic 0 to prevent enabling the voltage regulator from the RTC.
4:3	xt_mode[1:0]	Crystal Oscillator Mode: These bits control the RTCXTLMODE[1:0] output ports that are connected to the RTCMODE[1:0] input pins of the crystal oscillator pad. For 32 kHz crystal operation, this should be set to '01'.
		(See the "Crystal Oscillator" section on page 2-20.)
2	rst_cnt_omat	Reset Counter on Match: A logic 1 written to this bit allows the counter to clear itself when a match occurs. In this situation, the 40-bit counter clears on the next rising edge of the prescaled clock, approximately 4 ms after the match occurs (the prescaled clock toggles at a rate of 256 Hz, given a 32.768 kHz external crystal).
		A logic 0 written to this bit allows the counter to increment indefinitely while still allowing match events to occur.
1	rstb_cnt	Counter Reset: A logic 0 resets the 40-bit counter value to zero. A logic 1 allows the counter to count. ⁴
0	xtal_en	Crystal Oscillator Enable: This bit controls the RTCXTLSEL output port connected to the SELMODE input pin of the crystal oscillator. If a logic 0 is written to this bit, only the FPGA fabric can be used to control the crystal oscillator EN and MODE[1:0] inputs.
		xtal_en = 1: RTC takes control of crystal oscillator. For example, the RTC Mode bits configure the crystal oscillator (not the FPGA mode bits).
		To enable sleep mode, set xtal_en = $'0'$, so the crystal is controlled from the FPGA EN signal. Then when the FPGA is powered down, the signal from the fpga_en will be 0. It disables the crystal oscillator.

Notes:

- 1. Default state (set when $V_{CC33UP} = 0$) for bits 0–7 is logic 0.
- 2. Reset of all RTC states (except this Control/Status register) occurs asynchronously if $V_{\text{CC33UP}} = 0$ or CTRL_STAT bit 7 (rtc_rst) is set to 1.
- 3. Reset is removed synchronously after two rising edges of ACM_CLK, following both $V_{CC33UP} = 1$ and $rtc_rst = 0$.
- 4. Counter will first increment on the 64th rising edge of RTCCLK after all of the following are true:
 - a. reset is removed
 - b. rstb_cnt (CTRL_STAT bit 1) is set to 1
 - c. cntr_en (CTRL_STAT bit 6) is set to 1

and will then increment every 128 RTCCLK cycles.

Crystal Oscillator (Xtal Osc)

When used as the clock source for the RTC, the crystal oscillator will be configured by the RTC with the RTCXTLMODE[1:0] RTC macro pins. Refer to the "Crystal Oscillator" section on page 2-20 for specific details on crystal oscillator operation.

The crystal oscillator input to the RTC is divided by 128, so bit 0 of the RTC toggles at the frequency of the crystal oscillator divided by 128. The frequencies of the RTC are gated by those of the crystal oscillator, from 32.768 kHz to 20 MHz. When used with a 32.768 kHz crystal, bit 0 of the of RTC has a period of ~7.8 ms, and bit 7 has a period of 1 second.

Voltage Regulator (VR) Initialization (Init)

The VR Init block determines voltage regulator behavior when the 3.3 V supply is valid. The Fusion devices support different use models. Some of these require the 1.5 V voltage regulator to turn on when the 3.3 V supply is stable. Other use models require additional conditions to be met before the 1.5 V VR turns on. Since the FPGA is not operating when the 3.3 V supply is off, the VR Init block lets the user define VR behavior at design time. Two bits can be set within the core, which bits the VR Init block will read as it comes out of reset and either turn on the VR or leave it in an off state.

Voltage Regulator Logic

The VR Logic block, along with the VR, combines commands from the FPGA, RTC, VR Init block, V_{CC33UP} detector, and PUB pad to determine whether or not the VR is enabled.

The VR can be enabled from several sources: the PUB pin, the RTC_MATCH signal from the RTC block, or triggered by the VR Init block. Once triggered, the VR will remain on. Only the FPGA fabric can disable the VR, unless the V_{CC33A} supply falls below the V_{CC33UP} threshold and a reset occurs.

1.5 V Voltage Regulator

The VR generates a 1.5 V power supply from the 3.3 V power supply. The 1.5 V output is intended to supply all 1.5 V needs of the Fusion device. This regulator requires an external bipolar pass transistor (Figure 2-29). The VR can drive up to 20 mA of current through the PTBASE pad. The amount of 1.5 V current available is dependent upon the gain of the external pass transistor used. Enable for this block is generated in the VR Logic block or from the PUB pin.

The VR is forced "on" with TRST high or floating (internal pull-up), so an external pull-down is required on TRST if the customer desires to power-down the VR.

The 1.5 V is not supplied internally to the Fusion device. It must be routed externally to the V_{CC} pins on the device. Therefore the user is not required to use the VR and can use an off-chip 1.5 V supply if desired.

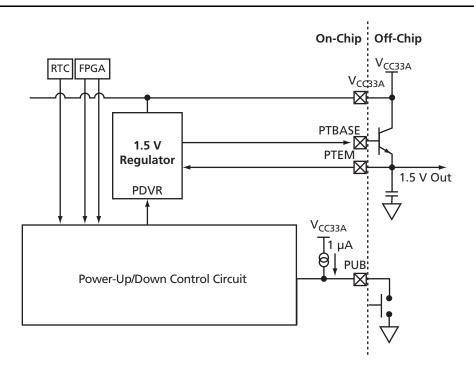


Figure 2-29 • Voltage Regulator

Advanced v1.4 2-35

Voltage Regulator Power Supply Monitor (VRPSM)

As the functions of the VR Logic and Power System Monitor work closely together to control the power-up state of the FPGA core, these functions were combined into a single VRPSM macro (Figure 2-30).

The signals for the VRPSM macro are listed in Table 2-18. The PUB input comes from the PUB pin on the device and

can be pulled LOW by a signal external to the Fusion device. This can be used to wake up the device. The inputs VRINITSTATE and RTCPSMMTACH come from the VR Init and RTC blocks, respectively, and either can initiate a VR power-up. The detailed description is available in the *Peripheral User Guide*.

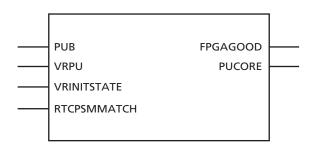


Figure 2-30 • VRPSM Macro

Table 2-18 • Signals for VRPSM Macro

Signal Name	Number of Bits	Direction	Function
PUB	1	Input	Active low signal to power up the FPGA core via the 1.5 V regulator. In this reference design, PUB is on the top level, connected to an
			external switch.
VRPU	1	Input	When this pin is at logic 1, the FPGA core will be turned off via the voltage regulator.
VRINITSTATE	1	Input	This feature is not used in this reference design and is not shown in the macro generated by SmartGen. If used, the signal enables you to set your voltage regulator output at power-up (ON or OFF).
RTCPSMMATCH	1	Input	This feature is not used in this reference design. If used, this active high signal is driven by the RTC's match signal to indicate that the RTC counter value matches the pre-defined Match register value set in SmartGen.
FPGAGOOD	1	Output	Logic 1 indicates that FPGA is logically functional.
PUCORE	1	Output	Logic 1 indicates that FPGA is logically functional.

Embedded Memories

Fusion devices include four types of embedded memory: flash block, FlashROM, SRAM, and FIFO.

Flash Memory Block

Fusion is the first FPGA that offers a flash memory block (FB). Each FB block stores 2 Mbits of data. The flash memory block macro is illustrated in Figure 2-31. The port pin name and descriptions are detailed on Table 2-19 on page 2-38. All flash memory block signals are active high, except for CLK and active low RESET. All flash memory operations are synchronous to the rising edge of CLK.

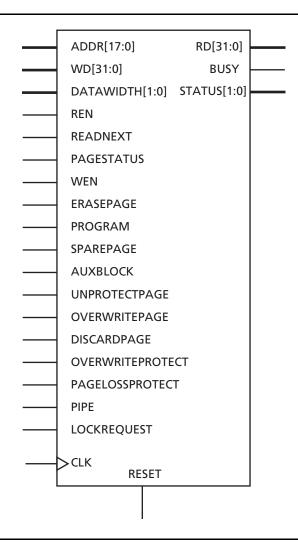


Figure 2-31 • Flash Memory Block

Flash Memory Block Pin Names

Table 2-19 • Flash Memory Block Pin Names

Interface Name	Width	Direction	Description			
ADDR[17:0]	18	In	Byte offset into the FB. Byte-based address.			
AUXBLOCK	1	In	When asserted, the page addressed is used to access the auxiliary block within that page.			
BUSY	1	Out	When asserted, indicates that the FB is performing an operation.			
CLK	1	In	User interface clock. All operations and status are synchronous to the rising edge of this clock.			
DATAWIDTH[1:0]	2	In	Data width 00 = 1 byte in RD/WD[7:0] 01 = 2 bytes in RD/WD[15:0] 1x = 4 bytes in RD/WD[31:0]			
DISCARDPAGE	1	In	When asserted, the contents of the Page Buffer are discarded so that a new page write can be started.			
ERASEPAGE	1	In	When asserted, the contents of the Page Buffer are discarded so that a new page write can be started.			
LOCKREQUEST	1	In	When asserted, indicates to the JTAG controller that the FPGA interface is accessing the ${\sf FB}.$			
OVERWRITEPAGE	1	In	When asserted, the page addressed is overwritten with the contents of the Page Buffer if the page is writable.			
OVERWRITEPROTECT	1	In	When asserted, all program operations will set the overwrite protect bit of the page being programmed.			
PAGESTATUS	1	In	When asserted with REN, initiates a read page status operation.			
PAGELOSSPROTECT	1	In	When asserted, a modified Page Buffer must be programmed or discarded before accessing a new page.			
PIPE	1	In	Adds a pipeline stage to the output for operation above 50 MHz.			
PROGRAM	1	In	When asserted, writes the contents of the Page Buffer into the FB page addressed.			
RD[31:0]	32	Out	Read data; data will be valid from the first non-busy cycle (BUSY = 0) after REN has been asserted.			
READNEXT	1	In	When asserted with REN, initiates a read-next operation.			
REN	1	In	When asserted, initiates a read operation.			
RESET	1	In	When asserted, resets the state of the FB (active low).			
SPAREPAGE	1	In	When asserted, the sector addressed is used to access the spare page within that sector.			
STATUS[1:0]	2	Out	Status of the last operation completed: 00: Successful completion 01: Read-/Unprotect-Page: single error detected and corrected Write: operation addressed a write-protected page Erase-Page: protection violation Program: Page Buffer is unmodified			
			Program: Page Burier is unmodified Protection violation 10: Read-/Unprotect-Page: two or more errors detected 11: Write: attempt to write to another page before programming current page Erase-Page/Program: page write count has exceeded the 10-year retention threshold			
UNPROTECTPAGE	1	In	When asserted, the page addressed is copied into the Page Buffer and the Page Buffer is made writable.			
WD[31:0]	32	In	Write data			
WEN	1	In	When asserted, stores WD in the page buffer.			

All flash memory block input signals are active high, except for RESET.

Flash Memory Block Diagram

A simplified diagram of the flash memory block is shown in Figure 2-32.

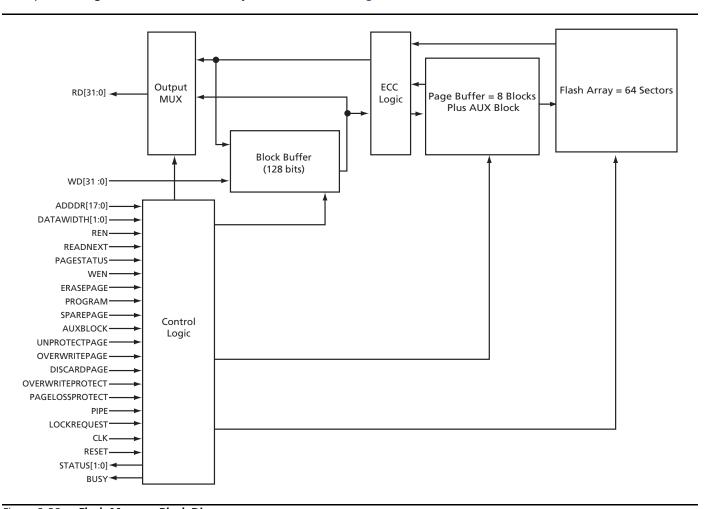


Figure 2-32 • Flash Memory Block Diagram

The logic consists of the following sub-blocks:

- Flash Array
 - Contains all stored data. The flash array contains 64 sectors, and each sector contains 33 pages of data.
- Page Buffer
 - A page-wide volatile register. A page contains 8 blocks of data and an AUX block.
- Block Buffer
 - Contains the contents of the last block accessed. A block contains 128 data bits.
- ECC Logic
 - The FB stores error correction information with each block to perform single-bit error correction and double-bit error detection on all data blocks.

Flash Memory Block Addressing

Figure 2-33 shows a graphical representation of the flash memory block.

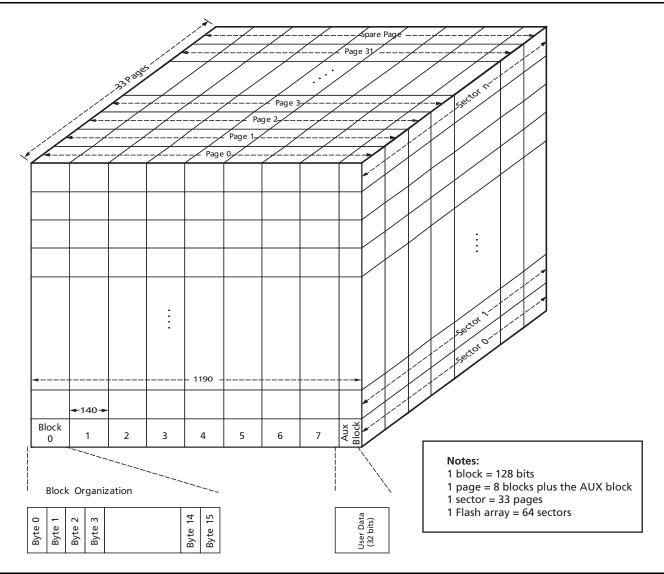


Figure 2-33 • Flash Memory Block Organization

Each FB is partitioned into sectors, pages, blocks, and bytes. There are 64 sectors in an FB, and each sector contains 32 pages and 1 spare page. Each page contains 8 data blocks and 1 auxiliary block. Each data block contains 16 bytes of user data, and the auxiliary block contains 4 bytes of user data.

Addressing for the FB is shown in Table 2-20.

Table 2-20 • FB Address Bit Allocation ADDR[17:0]

17	12	11	7	6	4	3	0
Sector		Pa	ge	Blo	ock	Ву	rte

When the spare page of a sector is addressed (SPAREPAGE active), ADDR[11:7] are ignored.

When the Auxiliary block is addressed (AUXBLOCK active), ADDR[6:2] are ignored.

Note: The spare page of sector 0 is unavailable for any user data. Writes to this page will return an error, and reads will return all zeroes.

Data operations are performed in widths of 1 to 4 bytes. A write to a location in a page that is not already in the Page Buffer will cause the page to be read from the FB Array and stored in the Page Buffer. The block that was addressed during the write will be put into the Block Buffer, and the data written by WD will overwrite the data in the Block Buffer. After the data is written to the Block Buffer, the Block Buffer is then written to the Page Buffer to keep both buffers in sync. Subsequent writes to the same block will overwrite the Block Buffer and the Page Buffer. A write to another block in the page will cause the addressed block to be loaded from the Page Buffer, and the write will be performed as described previously.

The data width can be selected dynamically via the DATAWIDTH input bus. The truth table for the data width settings is detailed in Table 2-21. The minimum resolvable address is one 8-bit byte. For data widths greater than 8 bits, the corresponding address bits are ignored—when DATAWIDTH = 0 (2 bytes), ADDR[0] is ignored, and when DATAWIDTH = '10' or '11' (4 bytes), ADDR[1:0] are ignored. Data pins are LSB-oriented and unused WD data pins must be grounded.

Table 2-21 • Data Width Settings

DATAWIDTH[1:0]	Data Width
00	1 byte [7:0]
01	2 byte [15:0]
10, 11	4 bytes [31:0]

Flash Memory Block Protection

Page Loss Protection

When the PAGELOSSPROTECT pin is set to logic 1, it prevents writes to any page other than the current page in the Page Buffer until the page is either discarded or programmed.

A write to another page while the current page is Page Loss Protected will return a STATUS of '11'.

Overwrite Protection

Any page that is Overwrite Protected will result in the STATUS being set to '01' when an attempt is made to either write, program, or erase it. To set the Overwrite Protection state for a page, set the OVERWRITEPROTECT pin when a Program operation is undertaken. To clear the Overwrite Protect state for a given page, an Unprotect Page operation must be performed on the page, and then the page must be programmed with the OVERWRITEPROTECT pin cleared to save the new page.

LOCKREQUEST

The LOCKREQUEST signal is used to give the user interface control over simultaneous access of the FB from both the User and JTAG interfaces. When LOCKREQUEST is asserted, the JTAG interface will hold off any access attempts until LOCKREQUEST is deasserted.

Flash Memory Block Operations

FB Operation Priority

The FB provides for priority of operations when multiple actions are requested simultaneously. Table 2-22 shows the priority order (priority 0 is the highest).

Table 2-22 • FB Operation Priority

Operation	Priority
System Initialization	0
FB Reset	1
Read	2
Write	3
Erase Page	4
Program	5
Unprotect Page	6
Discard Page	7

Access to the FB is controlled by the BUSY signal. The BUSY output is synchronous to the CLK signal. FB operations are only accepted in cycles where BUSY is logic 0.

Write Operation

Write operations are initiated with the assertion of the WEN signal. Figure 2-34 on page 2-42 illustrates the multiple Write operations.

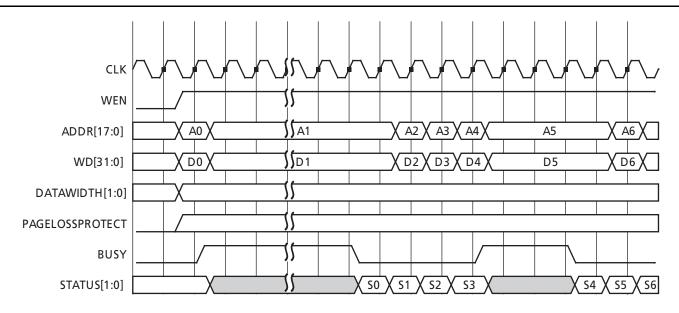


Figure 2-34 • FB Write Waveform

When a Write operation is initiated to a page that is currently not in the Page Buffer, the FB control logic will issue a BUSY signal to the user interface while the page is loaded from the FB Array into the Page Buffer. (Note: The number of clock cycles that the BUSY output is asserted during the load of the Page Buffer is variable.) After loading the page into the Page Buffer, the addressed data block is loaded from the Page Buffer into the Block Buffer. Subsequent writes to the same block of the page will incur no busy cycles. A write to another block in the page will assert BUSY for four cycles (five cycles when PIPE is asserted), to allow the data to be written to the Page Buffer and have the current block loaded into the Block Buffer.

Write operations are considered successful as long as the STATUS output is '00'. A non-zero STATUS indicates that an error was detected during the operation and the write was not performed. Note that the STATUS output is "sticky"; it is unchanged until another operation is started.

Only one word can be written at a time. Write word width is controlled by the DATAWIDTH bus. Users are responsible for keeping track of the contents of the Page Buffer and when to program it to the array. Just like a regular RAM, writing to random addresses is possible. Users can write into the Page Buffer in any order but will incur additional BUSY cycles. It is not necessary to modify the entire Page Buffer before saving it to nonvolatile memory.

Write errors include the following:

1. Attempting to write a page that is Overwrite Protected (STATUS = '01'). The write is not performed.

2. Attempting to write to a page that is not in the Page Buffer when Page Loss Protection is enabled (STATUS = '11'). The write is not performed.

Program Operation

A Program operation is initiated by asserting the PROGRAM signal on the interface. Program operations save the contents of the Page Buffer to the FB Array. Due to the technologies inherent in the FB, a program operation is a time consuming operation (~8 ms). While the FB is writing the data to the array, the BUSY signal will be asserted.

During a Program operation, the sector and page addresses on ADDR are compared with the stored address for the page (and sector) in the Page Buffer. If there is a mismatch between the two addresses, the Program operation will be aborted and an error will be reported on the STATUS output.

It is possible to write the Page Buffer to a different page in memory. When asserting the PROGRAM pin, if OVERWRITEPAGE is asserted as well, the FB will write the contents of the Page Buffer to the sector and page designated on the ADDR inputs if the destination page is not Overwrite Protected.

A Program operation can be utilized to either modify the contents of the page in the flash memory block or change the protections for the page. Setting the OVERWRITEPROTECT bit on the interface while asserting the PROGRAM pin will put the page addressed into Overwrite Protect Mode. Overwrite Protect Mode safeguards a page from being inadvertently overwritten during subsequent Program or Erase operations.

Program operations that result in a STATUS value of '01' do not modify the addressed page. For all other values of STATUS, the addressed page is modified.

Program errors include the following:

- Attempting to program a page that is Overwrite Protected (STATUS = '01')
- 2. Attempting to program a page that is not in the Page Buffer when the Page Buffer has entered Page Loss Protection Mode (STATUS = '01')
- 3. Attempting to perform a program with OVERWRITEPAGE set when the page addressed has been Overwrite Protected (STATUS = '01')

- 4. The Write Count of the page programmed exceeding the Write Threshold defined in the part specification (STATUS = '11')
- 5. The ECC Logic determining that there is an uncorrectable error within the programmed page (STATUS = '10')
- 6. Attempting to program a page that is **not** in the Page Buffer when OVERWRITEPAGE is not set and the page in the Page Buffer is modified (STATUS = '01')
- 7. Attempting to program the page in the Page Buffer when the Page Buffer is **not** modified

The waveform for a Program operation is shown in Figure 2-35.

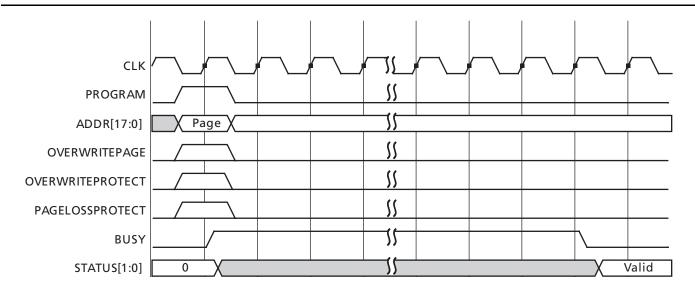


Figure 2-35 • FB Program Waveform

Note: OVERWRITEPAGE is only sampled when the PROGRAM or ERASEPAGE pins are asserted. OVERWRITEPAGE is ignored in all other operations.

Advanced v1.4 2-43

Erase Page Operation

The Erase Page operation is initiated when the ERASEPAGE pin is asserted. The Erase Page operation allows the user to erase (set user data to zero) any page within the FB.

The use of the OVERWRITEPAGE and PAGELOSSPROTECT pins is the same for erase as for a Program Page operation.

As with the Program Page operation, a STATUS of '01' indicates that the addressed page is not erased.

A waveform for an Erase Page operation is shown in Figure 2-36.

Erase errors include the following:

- Attempting to erase a page that is Overwrite Protected (STATUS = '01')
- 2. Attempting to erase a page that is not in the Page Buffer when the Page Buffer has entered Page Loss Protection mode (STATUS = '01')
- 3. The Write Count of the erased page exceeding the Write Threshold defined in the part specification (STATUS = '11')
- 4. The ECC Logic determining that there is an uncorrectable error within the erased page (STATUS = '10')

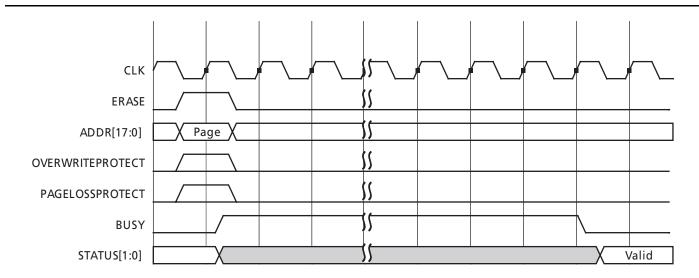


Figure 2-36 • FB Erase Page Waveform

Read Operation

Read operations are designed to read data from the FB Array, Page Buffer, Block Buffer, or status registers. Read operations support a normal read and a read-ahead mode (done by asserting READNEXT). Also, the timing for Read operations is dependent on the setting of PIPE.

The following diagrams illustrate representative timing for Non-Pipe Mode (Figure 2-37) and Pipe Mode (Figure 2-38) reads of the flash memory block interface.

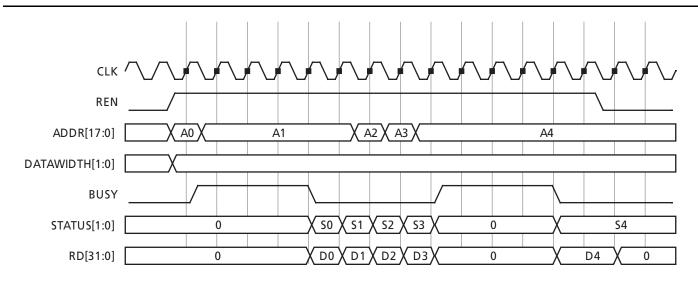


Figure 2-37 • Read Waveform (Non-Pipe Mode, 32-bit access)

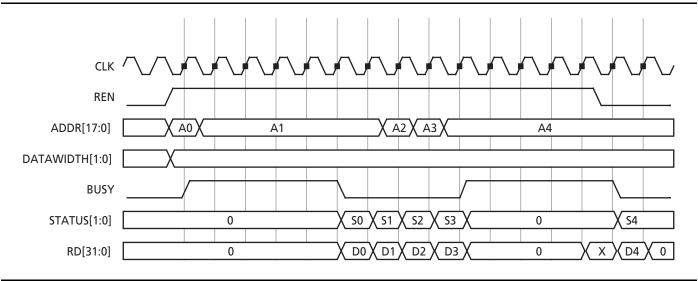


Figure 2-38 • Read Waveform (Pipe Mode, 32-bit access)

The following error indications are possible for Read operations:

- 1. STATUS = '01' when a single-bit data error was detected and corrected within the block addressed.
- 2. STATUS = '10' when a double-bit error was detected in the block addressed (note that the error is uncorrected).

In addition to data reads, users can read the status of any page in the FB by asserting PAGESTATUS along with REN. The format of the data returned by a page status read is shown in Table 2-23, and the definition of the page status bits is shown in Table 2-24.

Table 2-23 • Page Status Read Data Format

Ī	31	8	7	4	3	2	1	0
Ī	Write	Count	Rese	rved	Over Threshold	Read Protected	Write Protected	Overwrite Protected

Table 2-24 • Page Status Bit Definition

Page Status Bit(s)	Definition
31–8	The number of times the page addressed has been programmed/erased
7–4	Reserved; read as 0
3	Over Threshold indicator (see the "Program Operation" section on page 2-42)
2	Read Protected; read protect bit for page, which is set via the JTAG interface and only affects JTAG operations. This bit can be overridden by using the correct user key value.
1	Write Protected; write protect bit for page, which is set via the JTAG interface and only affects JTAG operations. This bit can be overridden by using the correct user key value.
0	Overwrite Protected; designates that the user has set the OVERWRITEPROTECT bit on the interface while doing a Program operation. The page cannot be written without first performing an Unprotect Page operation.

Read Next Operation

The Read Next operation is a feature by which the next block relative to the block in the Block Buffer is read from the FB Array while performing reads from the Block Buffer. The goal is to minimize wait states during consecutive sequential Read operations.

The Read Next operation is performed in a predetermined manner because it does look-ahead reads. The general look-ahead function is as follows:

- Within a page, the next block fetched will be the next in linear address.
- When reading the last data block of a page, it will fetch the first block of the next page.
- When reading spare pages, it will read the first block of the next sector's spare page.

- Reads of the last sector will wrap around to sector 0.
- Reads of Auxiliary blocks will read the next linear page's Auxiliary block.

When an address on the ADDR input does not agree with the predetermined look-ahead address, there is a time penalty for this access. The FB will be busy finishing the current look-ahead read before it can start the next read. The worst case is a total of nine BUSY cycles before data is delivered.

The Non-Pipe Mode and Pipe Mode waveforms for Read Next operations are illustrated in Figure 2-39 and Figure 2-40.

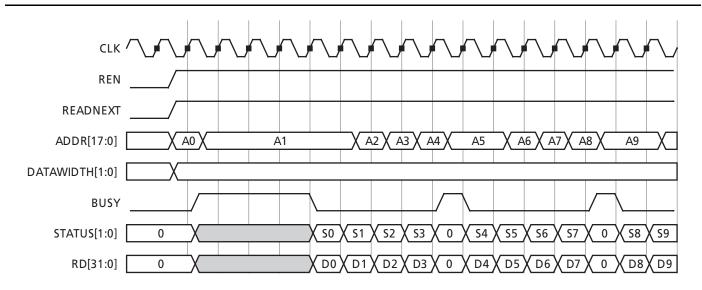


Figure 2-39 • Read Next Waveform (Non-Pipe Mode, 32-bit access)

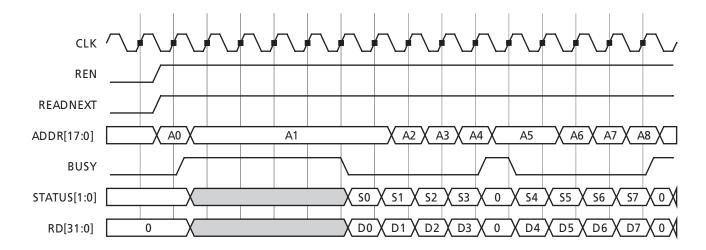


Figure 2-40 • Read Next WaveForm (Pipe Mode, 32-bit access)

Advanced v1.4 2-47

Unprotect Page Operation

An Unprotect Page operation will clear the protection for a page addressed on the ADDR input. It is initiated by setting the UNPROTECTPAGE signal on the interface along with the page address on ADDR.

If the page is not in the Page Buffer, the Unprotect Page operation will copy the page into the Page Buffer. The

Copy Page operation occurs only if the current page in the Page Buffer is not Page Loss Protected.

The waveform for an Unprotect Page operation is shown in Figure 2-41.

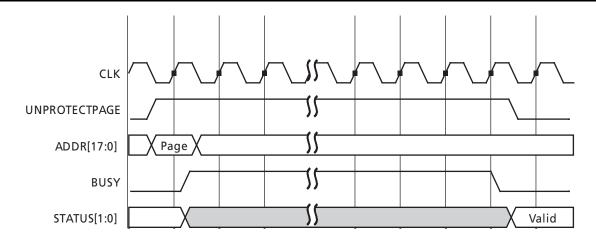


Figure 2-41 • FB Unprotected Page Waveform

The Unprotect Page operation can incur the following error conditions:

- If the copy of the page to the Page Buffer determines that the page has a single-bit correctable error in the data, it will report a STATUS = '01'.
- If the address on ADDR does not match the address of the Page Buffer, PAGELOSSPROTECT is asserted, and the Page Buffer has been modified, then STATUS = '11' and the addressed page is not loaded into the Page Buffer.
- 3. If the copy of the page to the Page Buffer determines that at least one block in the page has a double-bit uncorrectable error, STATUS = '10' and the Page Buffer will contain the corrupted data.

Discard Page Operation

If the contents of the modified Page Buffer have to be discarded, the DISCARDPAGE signal should be asserted. This command results in the Page Buffer being marked as unmodified.

The timing for the operation is shown in Figure 2-42. The BUSY signal will remain asserted until the operation has completed.

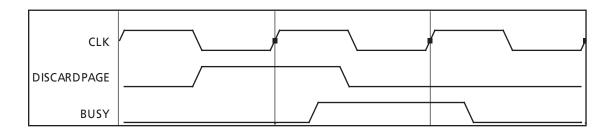


Figure 2-42 • FB Discard Page Waveform

Flash Memory Block Characteristics

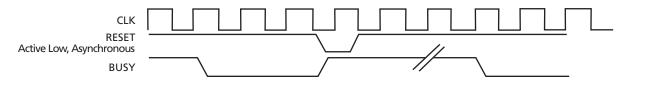


Figure 2-43 • Reset Timing Diagram

Table 2-25 ◆ Flash Memory Block Timing
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{CLK2RD}	Clock-to-Q in 5-cycle read mode of the Read Data	7.99	9.10	10.70	ns
	Clock-to-Q in 6-cycle read mode of the Read Data	5.03	5.73	6.74	ns
t _{CLK2BUSY}	Clock-to-Q in 5-cycle read mode of BUSY	4.95	5.63	6.62	ns
	Clock-to-Q in 6-cycle read mode of BUSY	4.45	5.07	5.96	ns
t _{CLK2STATUS}	Clock-to-Status in 5-cycle read mode	11.24	12.81	15.06	ns
	Clock-to-Status in 6-cycle read mode	4.48	5.10	6.00	ns
t _{DSUNVM}	Data Input Setup time for the Control Logic	1.92	2.19	2.57	ns
t _{DHNVM}	Data Input Hold time for the Control Logic	0.00	0.00	0.00	ns
t _{ASUNVM}	Address Input Setup time for the Control Logic	2.76	3.14	3.69	ns
t _{AHNVM}	Address Input Hold time for the Control Logic	0.00	0.00	0.00	ns
t _{SUDWNVM}	Data Width Setup time for the Control Logic	1.85	2.11	2.48	ns
t _{HDDWNVM}	Data Width Hold time for the Control Logic	0.00	0.00	0.00	ns
t _{SURENNVM}	Read Enable Setup time for the Control Logic	3.85	4.39	5.16	ns
t _{HDRENNVM}	Read Enable Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{SUWENNVM}	Write Enable Setup time for the Control Logic	2.37	2.69	3.17	ns
t _{HDWENNVM}	Write Enable Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{SUPROGNVM}	Program Setup time for the Control Logic	2.16	2.46	2.89	ns
t _{HDPROGNVM}	Program Hold time for the Control Logic	0.00	0.00	0.00	ns
t _{SUSPAREPAGE}	SparePage Setup time for the Control Logic	3.74	4.26	5.01	ns
t _{HDSPAREPAGE}	SparePage Hold time for the Control Logic	0.00	0.00	0.00	ns
t _{SUAUXBLK}	Auxiliary Block Setup Time for the Control Logic	3.74	4.26	5.00	ns
t _{HDAUXBLK}	Auxiliary Block Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{SURDNEXT}	ReadNext Setup Time for the Control Logic	2.17	2.47	2.90	ns
t _{HDRDNEXT}	ReadNext Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{SUERASEPG}	Erase Page Setup Time for the Control Logic	3.76	4.28	5.03	ns
t _{HDERASEPG}	Erase Page Hold Time for the Control Logic	0.00	0.00	0.00	ns
tsuunprotectpg	Unprotect Page Setup Time for the Control Logic	2.01	2.29	2.69	ns
t _{HDUNPROTECTPG}	Unprotect Page Hold Time for the Control Logic	0.00	0.00	0.00	ns

Table 2-25 • Flash Memory Block Timing (Continued)
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{SUDISCARDPG}	Discard Page Setup Time for the Control Logic	1.88	2.14	2.52	ns
^t HDDISCARDPG	Discard Page Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{SUOVERWRPRO}	Overwrite Protect Setup Time for the Control Logic	1.64	1.86	2.19	ns
t _{HDOVERWRPRO}	Overwirte Protect Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{SUPGLOSSPRO}	Page Loss Protect Setup Time for the Control Logic	1.69	1.93	2.27	ns
t _{HDPGLOSSPRO}	Page Loss Protect Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{SUPGSTAT}	Page Status Setup Time for the Control Logic	2.49	2.83	3.33	ns
t _{HDPGSTAT}	Page Status Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{SUOVERWRPG}	Over Write Page Setup Time for the Control Logic	1.88	2.14	2.52	ns
t _{HDOVERWRPG}	Over Write Page Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{SULOCKREQUEST}	Lock Request Setup Time for the Control Logic	0.87	0.99	1.16	ns
t _{HDLOCKREQUEST}	Lock Request Hold Time for the Control Logic	0.00	0.00	0.00	ns
t _{RECARNVM}	Reset Recovery Time	0.94	1.07	1.25	ns
t _{REMARNVM}	Reset Removal Time	0.00	0.00	0.00	ns
t _{MPWARNVM}	Asynchronous Reset Minimum Pulse Width for the Control Logic	10.00	12.50	12.50	ns
[†] MPWCLKNVM	Clock Minimum Pulse Width for the Control Logic	4.00	5.00	5.00	ns
t _{FMAXCLKNVM}	Maximum Frequency for Clock for the Control Logic	100.00	80.00	80.00	MHz

FlashROM

Fusion devices have 1 kbit of on-chip nonvolatile flash memory that can be read from the FPGA core fabric. The FlashROM is arranged in eight banks of 128 bits during programming. The 128 bits in each bank are addressable as 16 bytes during the read-back of the FlashROM from the FPGA core (Figure 2-44).

The FlashROM can only be programmed via the IEEE 1532 JTAG port. It cannot be programmed directly from the FPGA core. When programming, each of the eight 128-bit banks can be selectively reprogrammed. The FlashROM can only be reprogrammed on a bank boundary. Programming involves an automatic, on-chip bank erase prior to reprogramming the bank. The FlashROM supports a synchronous read and can be read on byte boundaries. The upper three bits of the FlashROM address from the FPGA core define the bank that is being accessed. The lower four bits of the FlashROM address from the FPGA core define which of the 16 bytes in the bank is being accessed.

The maximum FlashROM access clock is 20 MHz. Figure 2-45 on page 2-52 shows the timing behavior of the FlashROM access cycle—the address has to be set up on the rising edge of the clock for DOUT to be valid on the next falling edge of the clock.

If the address is unchanged for two cycles:

- D0 becomes invalid 10 ns after the second rising edge of the clock.
- D0 becomes valid again 10 ns after the second falling edge.

If the address unchanged for three cycles:

- D0 becomes invalid 10 ns after the second rising edge of the clock.
- D0 becomes valid again 10 ns after the second falling edge.
- D0 becomes invalid 10 ns after the third rising edge of the clock.
- D0 becomes valid again 10 ns after the third falling edge.

	Byte Number in Bank						4	LSB of ADDR (READ)									
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ba 3 N	7																
ank N	6																
Bank Number 3 MSB of ADD	5																
AD AD	4																
PR **	3																
(공	2																
nber ADDR (READ)	1																
"	0																

Figure 2-44 • FlashROM Architecture

FlashROM Characteristics

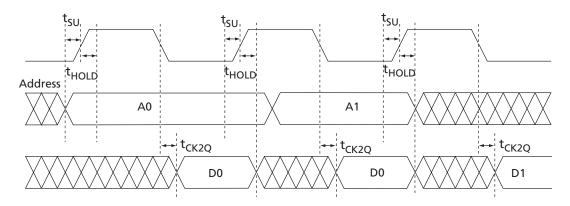


Figure 2-45 • FlashROM Timing Diagram

Table 2-26 • FlashROM Access Time Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{SU}	Address Setup Time	0.53	0.61	0.71	ns
t _{HOLD}	Address Hold Time	0.00	0.00	0.00	ns
t _{CK2Q}	Clock to Out	21.42	24.40	28.68	ns
F _{MAX}	Maximum Clock frequency	15.00	15.00	15.00	MHz

SRAM and FIFO

All Fusion devices have SRAM blocks along the north side of the device. Additionally, AFS600 and AFS1500 devices have an SRAM block on the south side of the device. To meet the needs of high-performance designs, the memory blocks operate strictly in synchronous mode for both read and write operations. The read and write clocks are completely independent, and each may operate at any desired frequency less than or equal to 350 MHz. The following configurations are available:

- 4k×1, 2k×2, 1k×4, 512×9 (dual-port RAM—two read, two write or one read, one write)
- 512×9, 256×18 (two-port RAM—one read and one write)
- Sync write, sync pipelined/nonpipelined read

The Fusion SRAM memory block includes dedicated FIFO control logic to generate internal addresses and external flag logic (FULL, EMPTY, AFULL, AEMPTY).

During RAM operation, addresses are sourced by the user logic, and the FIFO controller is ignored. In FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by internal

MUXes. Refer to Figure 2-46 for more information about the implementation of the embedded FIFO controller.

The Fusion architecture enables the read and write sizes of RAMs to be organized independently, allowing for bus conversion. This is done with the WW (write width) and RW (read width) pins. The different DxW configurations are 256x18, 512x9, 1kx4, 2kx2, and 4kx1. For example, the write size can be set to 256x18 and the read size to 512x9.

Both the write and read widths for the RAM blocks can be specified independently with the WW (write width) and RW (read width) pins. The different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1.

Refer to the allowable RW and WW values supported for each of the RAM macro types in Table 2-27 on page 2-55.

When a width of one, two, or four is selected, the ninth bit is unused. For example, when writing 9-bit values and reading 4-bit values, only the first four bits and the second four bits of each 9-bit value are addressable for read operations. The ninth bit is not accessible.

Conversely, when writing 4-bit values and reading 9-bit values, the ninth bit of a read operation will be undefined. The RAM blocks employ little-endian byte order for read and write operations.

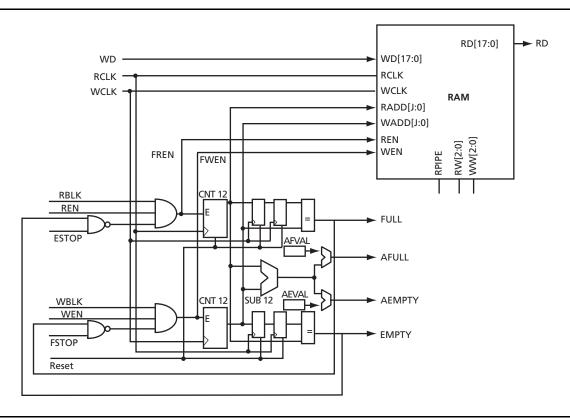


Figure 2-46 • Fusion RAM Block with Embedded FIFO Controller

Advanced v1.4 2-53

RAM4K9 Description

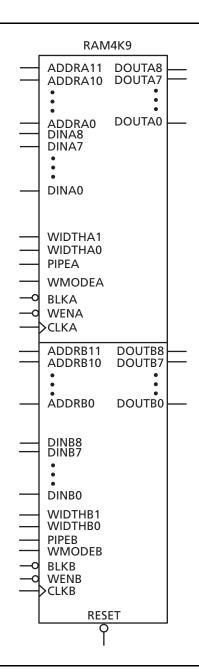


Figure 2-47 • RAM4K9

The following signals are used to configure the RAM4K9 memory element:

WIDTHA and WIDTHB

These signals enable the RAM to be configured in one of four allowable aspect ratios (Table 2-27).

Table 2-27 • Allowable Aspect Ratio Settings for WIDTHA[1:0]

WIDTHA1, WIDTHA0	WIDTHB1, WIDTHB0	D×W
00	00	4k×1
01	01	2k×2
10	10	1k×4
11	11	512×9

Note: The aspect ratio settings are constant and cannot be changed on the fly.

BLKA and BLKB

These signals are active low and will enable the respective ports when asserted. When a BLKx signal is deasserted, the corresponding port's outputs hold the previous value.

WENA and WENB

These signals switch the RAM between read and write mode for the respective ports. A LOW on these signals indicates a write operation, and a HIGH indicates a read.

CLKA and CLKB

These are the clock signals for the synchronous read and write operations. These can be driven independently or with the same driver.

PIPEA and PIPEB

These signals are used to specify pipelined read on the output. A LOW on PIPEA or PIPEB indicates a nonpipelined read, and the data appears on the corresponding output in the same clock cycle. A HIGH indicates a pipelined, read and data appears on the corresponding output in the next clock cycle.

WMODEA and WMODEB

These signals are used to configure the behavior of the output when the RAM is in write mode. A LOW on these signals makes the output retain data from the previous read. A HIGH indicates pass-through behavior, wherein the data being written will appear immediately on the output. This signal is overridden when the RAM is being read.

RESET

This active low signal resets the output to zero, disables reads and writes from the SRAM block, and clears the data hold registers when asserted. It does not reset the contents of the memory.

ADDRA and ADDRB

These are used as read or write addresses, and they are 12 bits wide. When a depth of less than 4 k is specified, the unused high-order bits must be grounded (Table 2-28).

Table 2-28 • Address Pins Unused/Used for Various Supported Bus Widths

	ADDRx					
D×W	Unused	Used				
4k×1	None	[11:0]				
2k×2	[11]	[10:0]				
1k×4	[11:10]	[9:0]				
512×9	[11:9]	[8:0]				

Note: The "x" in ADDRx implies A or B.

DINA and DINB

These are the input data signals, and they are nine bits wide. Not all nine bits are valid in all configurations. When a data width less than nine is specified, unused high-order signals must be grounded (Table 2-29).

DOUTA and DOUTB

These are the nine-bit output data signals. Not all nine bits are valid in all configurations. As with DINA and DINB, high-order bits may not be used (Table 2-29). The output data on unused pins is undefined.

Table 2-29 • Unused/Used Input and Output Data Pins for Various Supported Bus Widths

	DINx/DOUTx						
D×W	Unused	Used					
4k×1	[8:1]	[0]					
2k×2	[8:2]	[1:0]					
1k×4	[8:4]	[3:0]					
512×9	None	[8:0]					

Note: The "x" in DINx and DOUTx implies A or B.

RAM512X18 Description

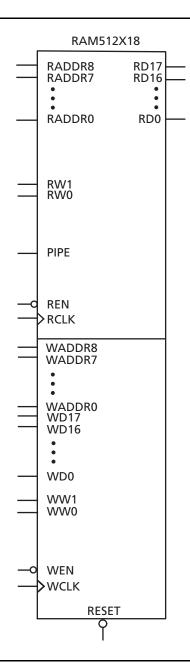


Figure 2-48 • RAM512X18

RAM512X18 exhibits slightly different behavior from RAM4K9, as it has dedicated read and write ports.

WW and RW

These signals enable the RAM to be configured in one of the two allowable aspect ratios (Table 2-30).

Table 2-30 • Aspect Ratio Settings for WW[1:0]

WW[1:0]	RW[1:0]	D×W
01	01	512×9
10	10	256×18
00, 11	00, 11	Reserved

WD and RD

These are the input and output data signals, and they are 18 bits wide. When a 512×9 aspect ratio is used for write, WD[17:9] are unused and must be grounded. If this aspect ratio is used for read, then RD[17:9] are undefined.

WADDR and RADDR

These are read and write addresses, and they are nine bits wide. When the 256×18 aspect ratio is used for write or read, WADDR[8] or RADDR[8] are unused and must be grounded.

WCLK and RCLK

These signals are the write and read clocks, respectively. They are both active high.

WEN and REN

These signals are the write and read enables, respectively. They are both active low by default. These signals can be configured as active high.

RESET

This active low signal resets the output to zero, disables reads and/or writes from the SRAM block, and clears the data hold registers when asserted. It does not reset the contents of the memory.

PIPE

This signal is used to specify pipelined read on the output. A LOW on PIPE indicates a nonpipelined read, and the data appears on the output in the same clock cycle. A HIGH indicates a pipelined read, and data appears on the output in the next clock cycle.

Clocking

The dual-port SRAM blocks are only clocked on the rising edge. SmartGen allows falling-edge-triggered clocks by adding inverters to the netlist, hence achieving dual-port SRAM blocks that are clocked on either edge (rising or falling). For dual-port SRAM, each port can be clocked on either edge or by separate clocks, by port.

Fusion devices support inversion (bubble pushing) throughout the FPGA architecture, including the clock input to the SRAM modules. Inversions added to the SRAM clock pin on the design schematic or in the HDL code will be automatically accounted for during design compile without incurring additional delay in the clock path.

The two-port SRAM can be clocked on the rising edge or falling edge of WCLK and RCLK.

If negative-edge RAM and FIFO clocking is selected for memory macros, clock edge inversion management (bubble pushing) is automatically used within the Fusion development tools, without performance penalty.

Modes of Operation

There are two read modes and one write mode:

- Read Nonpipelined (synchronous—1 clock edge):
 In the standard read mode, new data is driven onto the RD bus in the same clock cycle following RA and REN valid. The read address is registered on the read port clock active edge, and data appears at RD after the RAM access time. Setting PIPE to OFF enables this mode.
- Read Pipelined (synchronous—2 clock edges): The
 pipelined mode incurs an additional clock delay
 from the address to the data but enables
 operation at a much higher frequency. The read
 address is registered on the read port active clock
 edge, and the read data is registered and appears
 at RD after the second read clock edge. Setting
 PIPE to ON enables this mode.
- Write (synchronous—1 clock edge): On the write clock active edge, the write data is written into the SRAM at the write address when WEN is HIGH. The setup times of the write address, write enables, and write data are minimal with respect to the write clock. Write and read transfers are described with timing requirements in the "SRAM Characteristics" section on page 2-58 and the "FIFO Characteristics" section on page 2-69.

RAM Initialization

Each SRAM block can be individually initialized on power-up by means of the JTAG port using the UJTAG mechanism (refer to the "JTAG IEEE 1532" section on page 2-207 and the *Fusion SRAM/FIFO Blocks* application note). The shift register for a target block can be selected and loaded with the proper bit configuration to enable serial loading. The 4,608 bits of data can be loaded in a single operation.

SRAM Characteristics

Timing Waveforms

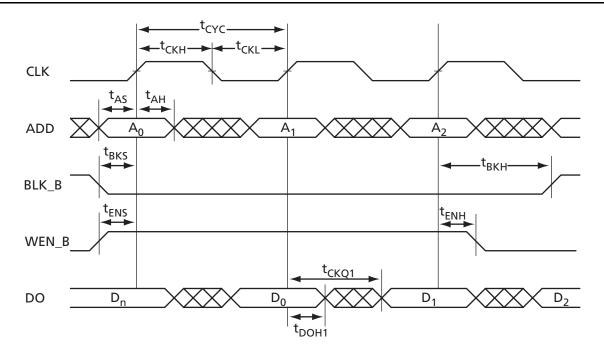


Figure 2-49 • RAM Read for Flow-Through Output

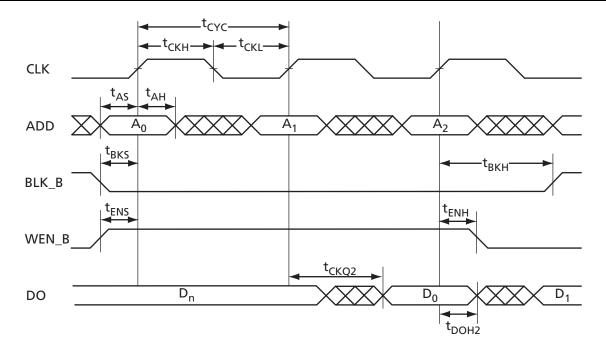


Figure 2-50 • RAM Read for Pipelined Output

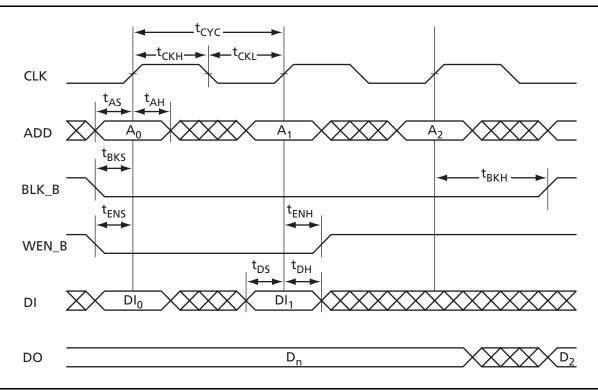
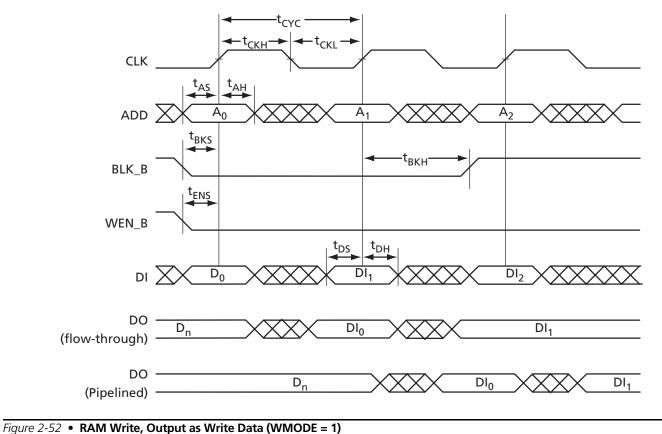



Figure 2-51 • RAM Write, Output Retained (WMODE = 0)

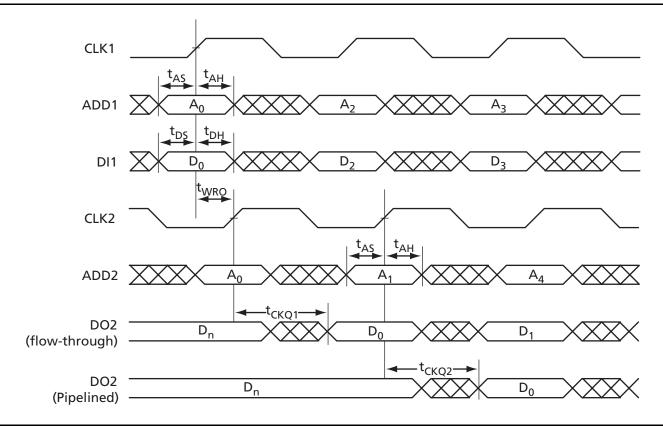


Figure 2-53 • One Port Write / Other Port Read Same

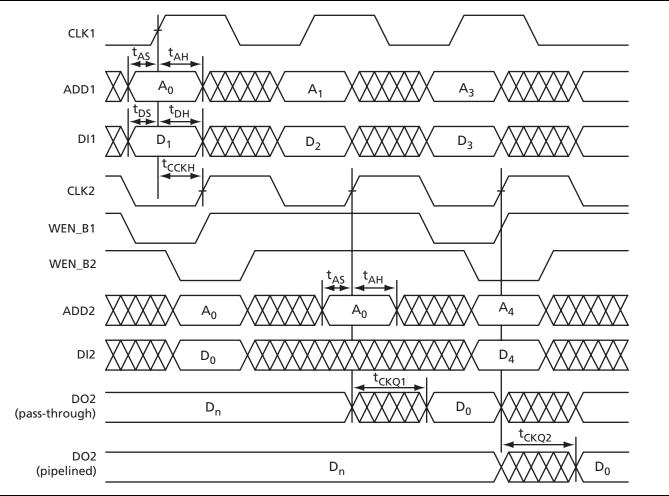


Figure 2-54 • Write Access After Write onto Same Address

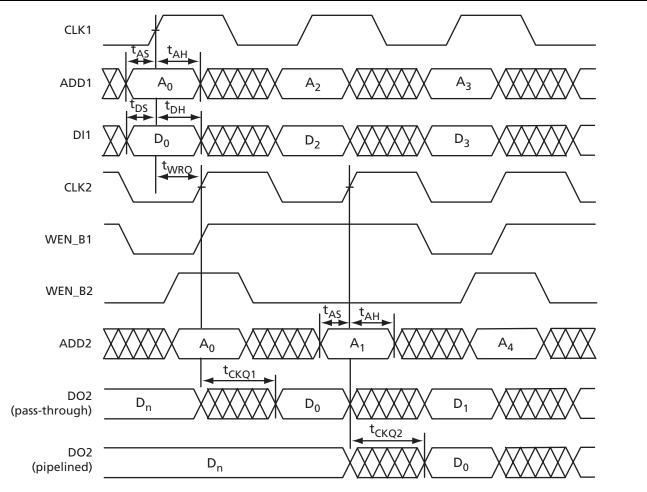


Figure 2-55 • Read Access After Write onto Same Address

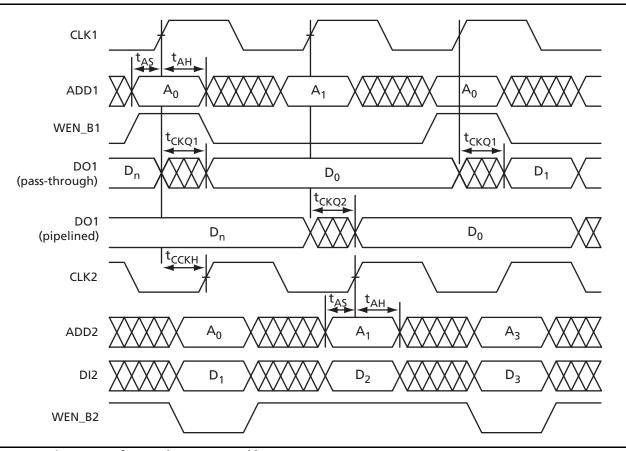


Figure 2-56 • Write Access After Read onto Same Address

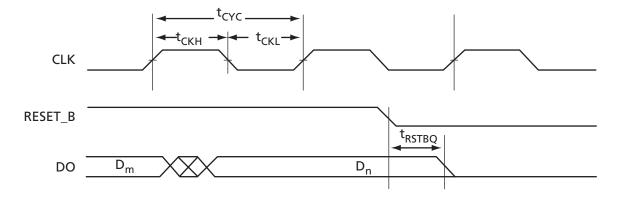


Figure 2-57 • RAM Reset

Timing Characteristics

Table 2-31 • RAM4K9
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address Setup time	0.25	0.28	0.33	ns
t _{AH}	Address Hold time	0.00	0.00	0.00	ns
t _{ENS}	REN_B,WEN_B Setup time	0.14	0.16	0.19	ns
t _{ENH}	REN_B, WEN_B Hold time	0.10	0.11	0.13	ns
t _{BKS}	BLK_B Setup time	0.23	0.27	0.31	ns
t _{BKH}	BLK_B Hold time	0.02	0.02	0.02	ns
t _{DS}	Input data (DI) Setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (DI) Hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on DO (output retained, WMODE = 0)	1.79	2.03	2.39	ns
	Clock High to New Data Valid on DO (flow-through, WMODE = 1)	2.36	2.68	3.15	ns
t _{CKQ2}	Clock High to New Data Valid on DO (pipelined)	0.89	1.02	1.20	ns
t _{WRO}	Address collision clk-to-clk delay for reliable read access after write on same address	TBD	TBD	TBD	ns
t _{CCKH}	Address collision clk-to-clk delay for reliable write access after write/read on same address	TBD	TBD	TBD	ns
t _{RSTBQ}	RESET_B Low to Data Out Low on DO (flow-through)	0.92	1.05	1.23	ns
	RESET_B Low to Data Out Low on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET_B Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET_B Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET_B Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Clock Frequency	310	272	231	MHz

Note: For the derating values at specific junction temperature and voltage-supply levels, refer to Table 3-7 on page 3-9.

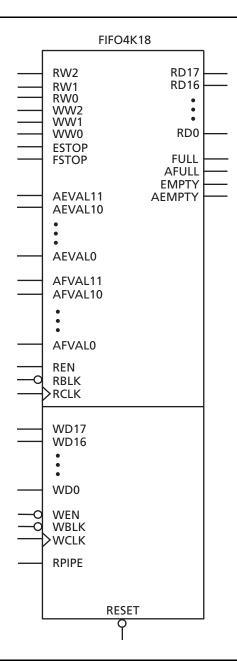


Table 2-32 • RAM512X18 Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425 \text{ V}$

Parameter	Description	-2	-1	Std.	Units
t _{AS}	Address Setup time	0.25	0.28	0.33	ns
t _{AH}	Address Hold time	0.00	0.00	0.00	ns
t _{ENS}	REN_B,WEN_B Setup time	0.09	0.10	0.12	ns
t _{ENH}	REN_B, WEN_B Hold time	0.06	0.07	0.08	ns
t _{DS}	Input data (DI) Setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (DI) Hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on DO (output retained, WMODE = 0)	2.16	2.46	2.89	ns
t _{CKQ2}	Clock High to New Data Valid on DO (pipelined)	0.90	1.02	1.20	ns
t _{WRO}	Address collision clk-to-clk delay for reliable read access after write on same address		TBD	TBD	ns
t _{CCKH}	Address collision clk-to-clk delay for reliable write access after write/read on same address		TBD	TBD	ns
t _{RSTBQ}	RESET_B Low to Data Out Low on DO (flow-through)	0.92	1.05	1.23	ns
	RESET_B Low to Data Out Low on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET_B Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET_B Recovery		1.71	2.01	ns
t _{MPWRSTB}	RESET_B Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Clock Frequency	310	272	231	MHz

Note: For the derating values at specific junction temperature and voltage-supply levels, refer to Table 3-7 on page 3-9.

FIFO4K18 Description

Figure 2-58 • **FIFO4KX18**

The following signals are used to configure the FIFO4K18 memory element:

WW and RW

These signals enable the FIFO to be configured in one of the five allowable aspect ratios (Table 2-33).

Table 2-33 • Aspect Ratio Settings for WW[2:0]

WW2, WW1, WW0	RW2, RW1, RW0	D×W
000	000	4k×1
001	001	2k × 2
010	010	1k × 4
011	011	512 × 9
100	100	256×18
101, 110, 111	101, 110, 111	Reserved

WBLK and RBLK

These signals are active low and will enable the respective ports when LOW. When the RBLK signal is HIGH, the corresponding port's outputs hold the previous value.

WEN and REN

Read and write enables. WEN is active low and REN is active high by default. These signals can be configured as active high or low.

WCLK and RCLK

These are the clock signals for the synchronous read and write operations. These can be driven independently or with the same driver.

RPIPE

This signal is used to specify pipelined read on the output. A LOW on RPIPE indicates a nonpipelined read, and the data appears on the output in the same clock cycle. A HIGH indicates a pipelined read, and data appears on the output in the next clock cycle.

RESET

This active low signal resets the output to zero when asserted. It resets the FIFO counters. It also sets all the RD pins LOW, the FULL and AFULL pins LOW, and the EMPTY and AEMPTY pins HIGH (Table 2-34).

Table 2-34 • Input Data Signal Usage for Different Aspect Ratios

D×W	WD/RD Unused
4k×1	WD[17:1], RD[17:1]
2k×2	WD[17:2], RD[17:2]
1k×4	WD[17:4], RD[17:4]
512 x 9	WD[17:9], RD[17:9]
256 × 18	-

WD

This is the input data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. When a data width less than 18 is specified, unused higher-order signals must be grounded (Table 2-34).

RD

This is the output data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. Like the WD bus, highorder bits become unusable if the data width is less than 18. The output data on unused pins is undefined (Table 2-34).

ESTOP, FSTOP

ESTOP is used to stop the FIFO read counter from further counting once the FIFO is empty (i.e., the EMPTY flag goes HIGH). A HIGH on this signal inhibits the counting.

FSTOP is used to stop the FIFO write counter from further counting once the FIFO is full (i.e., the FULL flag goes HIGH). A HIGH on this signal inhibits the counting.

For more information on these signals, refer to the "ESTOP and FSTOP Usage" section on page 2-68.

FULL. EMPTY

When the FIFO is full and no more data can be written, the FULL flag asserts HIGH. The FULL flag is synchronous to WCLK to inhibit writing immediately upon detection of a full condition and to prevent overflows. Since the write address is compared to a resynchronized (and thus time-delayed) version of the read address, the FULL flag will remain asserted until two WCLK active edges after a read operation eliminates the full condition.

When the FIFO is empty and no more data can be read, the EMPTY flag asserts HIGH. The EMPTY flag is synchronous to RCLK to inhibit reading immediately upon detection of an empty condition and to prevent underflows. Since the read address is compared to a resynchronized (and thus time-delayed) version of the write address, the EMPTY flag will remain asserted until two RCLK active edges after a write operation removes the empty condition.

For more information on these signals, refer to the "FIFO Flag Usage Considerations" section on page 2-68.

AFULL, AEMPTY

These are programmable flags and will be asserted on the threshold specified by AFVAL and AEVAL, respectively.

When the number of words stored in the FIFO reaches the amount specified by AEVAL while reading, the AEMPTY output will go HIGH. Likewise, when the number of words stored in the FIFO reaches the amount specified by AFVAL while writing, the AFULL output will go HIGH.

AFVAL, AEVAL

The AEVAL and AFVAL pins are used to specify the almostempty and almost-full threshold values, respectively. They are 12-bit signals. For more information on these signals, refer to the "FIFO Flag Usage Considerations" section.

ESTOP and FSTOP Usage

The ESTOP pin is used to stop the read counter from counting any further once the FIFO is empty (i.e., the EMPTY flag goes HIGH). Likewise, the FSTOP pin is used to stop the write counter from counting any further once the FIFO is full (i.e., the FULL flag goes HIGH).

The FIFO counters in the Fusion device start the count at 0, reach the maximum depth for the configuration (e.g., 511 for a 512×9 configuration), and then restart at 0. An example application for the ESTOP, where the read counter keeps counting, would be writing to the FIFO once and reading the same content over and over without doing another write.

FIFO Flag Usage Considerations

The AEVAL and AFVAL pins are used to specify the 12-bit AEMPTY and AFULL threshold values, respectively. The FIFO contains separate 12-bit write address (WADDR) and read address (RADDR) counters. WADDR is incremented every time a write operation is performed, and RADDR is incremented every time a read operation is performed. Whenever the difference between WADDR and RADDR is greater than or equal to AFVAL, the AFULL output is asserted. Likewise, whenever the difference between WADDR and RADDR is less than or equal to AEVAL, the AEMPTY output is asserted. To handle different read and write aspect ratios, AFVAL and AEVAL are expressed in terms of total data bits instead of total data words. When users specify AFVAL and AEVAL in terms of read or write words, the SmartGen tool translates them into bit addresses and configures these signals automatically. SmartGen configures the AFULL flag to assert when the write address exceeds the read address by at least a predefined value. In a 2k×8 FIFO, for example, a value of 1,500 for AFVAL means that the AFULL flag will be asserted after a write when the difference between the write address and the read address reaches 1,500 (there have been at least 1500 more writes than reads). It will stay asserted until the difference between the write and read addresses drops below 1,500.

The AEMPTY flag is asserted when the difference between the write address and the read address is less than a predefined value. In the example above, a value of 200 for AEVAL means that the AEMPTY flag will be asserted when a read causes the difference between the write address and the read address to drop to 200. It will stay asserted until that difference rises above 200. Note that the FIFO can be configured with different read and write widths; in this case, the AFVAL setting is based on the number of write data entries and the AEVAL setting is based on the number of read data entries. For aspect ratios of 512×9 and 256×18, only 4,096 bits can be addressed by the 12 bits of AFVAL and AEVAL. The number of words must be multiplied by 8 and 16, instead of 9 and 18. The SmartGen tool automatically uses the proper values. To avoid halfwords being written or read, which could happen if different read and write aspect ratios are specified, the FIFO will assert FULL or EMPTY as soon as at least a minimum of one word cannot be written or read. For example, if a two-bit word is written and a four-bit word is being read, the FIFO will remain in the empty state when the first word is written. This occurs even if the FIFO is not completely empty, because in this case, a complete word cannot be read. The same is applicable in the full state. If a four-bit word is written and a two-bit word is read, the FIFO is full and one word is read. The FULL flag will remain asserted because a complete word cannot be written at this point.

FIFO Characteristics

Timing Waveforms

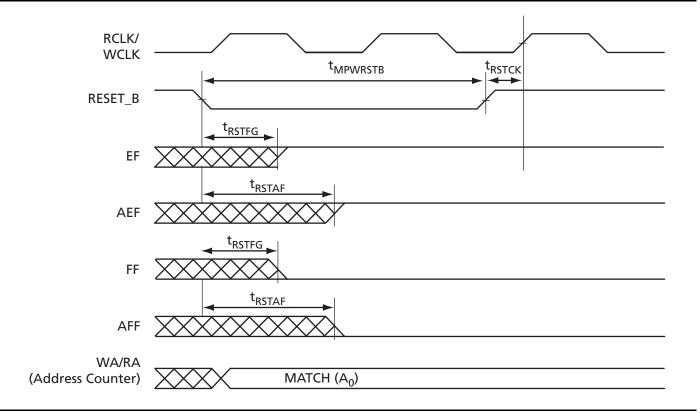


Figure 2-59 • FIFO Reset

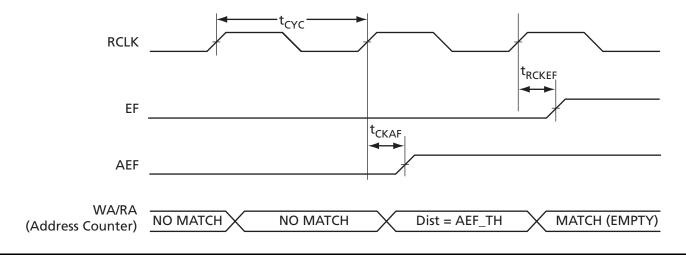


Figure 2-60 • FIFO EMPTY Flag and AEMPTY Flag Assertion

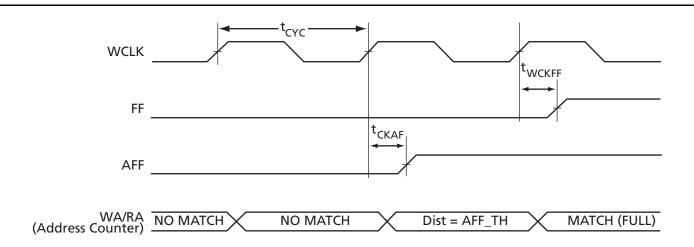


Figure 2-61 • FIFO FULL and AFULL Flag Assertion

Figure 2-62 • FIFO EMPTY Flag and AEMPTY Flag Deassertion

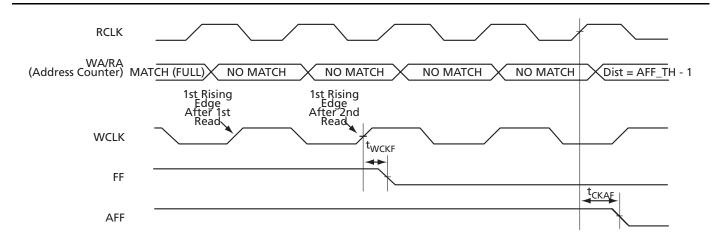


Figure 2-63 • FIFO FULL Flag and AFULL Flag Deassertion

Timing Characteristics

Table 2-35 ◆ FIFO Worst Commercial-Case Conditions: T_J = 70°C, V_{CC} = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ENS}	REN_B, WEN_B Setup time	1.34	1.52	1.79	ns
t _{ENH}	REN_B, WEN_B Hold time	0.00	0.00	0.00	ns
t _{BKS}	BLK_B Setup time	0.19	0.22	0.26	ns
t _{BKH}	BLK_B Hold time	0.00	0.00	0.00	ns
t _{DS}	Input data (DI) Setup time	0.18	0.21	0.25	ns
t _{DH}	Input data (DI) Hold time	0.00	0.00	0.00	ns
t _{CKQ1}	Clock High to New Data Valid on DO (flow-through)	2.17	2.47	2.90	ns
t _{CKQ2}	Clock High to New Data Valid on DO (pipelined)	0.94	1.07	1.26	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	1.72	1.96	2.30	ns
t _{WCKFF}	WCLK High to Full Flag Valid	1.63	1.86	2.18	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	6.19	7.05	8.29	ns
t _{RSTFG}	RESET_B Low to Empty/Full Flag Valid	1.69	1.93	2.27	ns
t _{RSTAF}	RESET_B Low to Almost-Empty/Full Flag Valid	6.13	6.98	8.20	ns
t _{RSTBQ}	RESET_B Low to Data out Low on DO (flow-through)	0.92	1.05	1.23	ns
	RESET_B Low to Data out Low on DO (pipelined)	0.92	1.05	1.23	ns
t _{REMRSTB}	RESET_B Removal	0.29	0.33	0.38	ns
t _{RECRSTB}	RESET_B Recovery	1.50	1.71	2.01	ns
t _{MPWRSTB}	RESET_B Minimum Pulse Width	0.21	0.24	0.29	ns
t _{CYC}	Clock Cycle time	3.23	3.68	4.32	ns
F _{MAX}	Maximum Frequency for FIFO	310	272	231	ns

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-7 on page 3-9 for derating values.

Analog Block

With the Fusion family, Actel has introduced the world's first mixed-mode FPGA solution. Supporting a robust analog peripheral mix, Fusion devices will support a wide variety of applications. It is this Analog Block that separates Fusion from all other FPGA solutions on the market today.

By combining both flash and high-speed CMOS processes in a single chip, these devices offer the best of both worlds. The high-performance CMOS is used for building RAM resources. These high-performance structures support device operation up to 350 MHz. Additionally, the advanced Actel 0.13 µm flash process incorporates high-voltage transistors and a high-isolation, triple-well process. Both of these are suited for the flash-based programmable logic and nonvolatile memory structures.

High-voltage transistors support the integration of analog technology in several ways. They aid in noise immunity so that the analog portions of the chip can be better isolated from the digital portions, increasing analog accuracy. Because they support high voltages, Actel flash FPGAs can be connected directly to high-voltage input signals, eliminating the need for external resistor divider networks, reducing component count, and increasing accuracy. By supporting higher internal voltages, the Actel advanced flash process enables high dynamic range on analog circuitry, increasing precision and signal–noise ratio. Actel flash FPGAs also drive high-voltage outputs, eliminating the need for external level shifters and drivers.

The unique triple-well process enables the integration of high-performance analog features with increased noise immunity and better isolation. By increasing the efficiency of analog design, the triple-well process also enables a smaller overall design size, reducing die size and cost.

The Analog Block consists of the Analog Quad I/O structure, RTC (for details refer to the "Real-Time Counter System" section on page 2-31), ADC, and ACM. All of these elements are combined in the single Analog Block macro, with which the user implements this functionality (Figure 2-64).

The Analog Block needs to be reset/reinitialized after the core powers up or the device is programmed. An external reset/initialize signal, which can come from the internal voltage regulator when it powers up, must be applied.

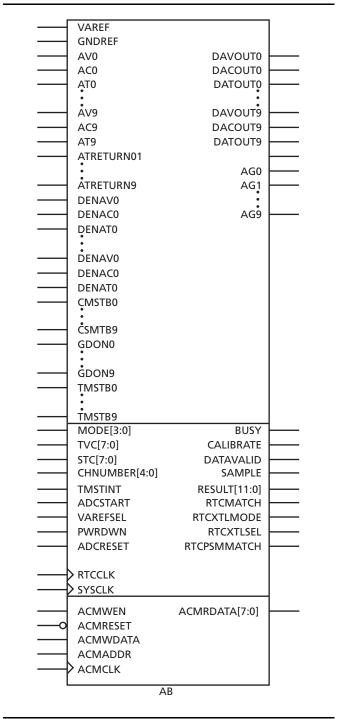


Figure 2-64 • Analog Block Macro

Table 2-36 describes each pin in the Analog Block. Each function within the Analog Block will be explained in detail in in the following sections.

Table 2-36 • Analog Block Pin Description

Signal Name	Number of Bits	Direction	Function	Location of Details
VAREF	1	Input/Output	Voltage reference for ADC	ADC
GNDREF	1	Input	External ground reference	ADC
MODE[3:0]	4	Input	ADC operating mode	ADC
SYSCLK	1	Input	External system clock	
TVC[7:0]	8	Input	Clock divide control	ADC
STC[7:0]	8	Input	Sample time control	ADC
ADCSTART	1	Input	Start of conversion	ADC
PWRDWN	1	Input	Comparator power-down if 1	ADC
ADCRESET	1	Input	ADC resets and disables Analog Quad – active high	ADC
BUSY	1	Output	1 – Running conversion	ADC
CALIBRATE	1	Output	1 – Power-up calibration	ADC
DATAVALID	1	Output	1 – Valid conversion result	ADC
RESULT[11:0]	12	Output	Conversion result	ADC
TMSTBINT	1	Input	Internal temp. monitor strobe	ADC
SAMPLE	1	Output	1 – An analog signal is actively being sampled (stays high during signal acquisition only) 0 – No analog signal is being sampled	ADC
VAREFSEL	1	Input	0 = Output internal voltage reference (2.56 V) to VAREF 1 = Input external voltage reference from VAREF and GNDREF	ADC
CHNUMBER[4:0]	5	Input	Analog input channel select	Input multiplexer
ACMCLK	1	Input	ACM clock	ACM
ACMWEN	1	Input	ACM write enable – active high	ACM
ACMRESET	1	Input	ACM reset – active low	ACM
ACMWDATA[7:0]	8	Input	ACM write data	ACM
ACMRDATA[7:0]	8	Output	ACM read data	ACM
ACMADDR[7:0]	8	Input	ACM address	ACM
CMSTB0 to CMSTB9	10	Input	Current monitor strobe – 1 per quad, active high	Analog Quad
GDON0 to GDON9	10	Input	Control to power MOS – 1 per quad	Analog Quad
TMSTB0 to TMSTB9	10	Input	Temperature monitor strobe – 1 per quad; active high	Analog Quad
DAVOUTO, DACOUTO, DATOUTO to DAVOUT9, DACOUT9, DATOUT9	30	Output	Digital outputs – 3 per quad	Analog Quad
DENAVO, DENACO, DENATO to DENAV9, DENAC9, DENAT9	30	Input	Digital input enables – 3 per quad	Analog Quad

Table 2-36 • Analog Block Pin Description (Continued)

Signal Name	Number of Bits	Direction	Function	Location of Details
AV0	1	Input	Analog Quad 0	Analog Quad
AC0	1	Input		Analog Quad
AG0	1	Output		Analog Quad
AT0	1	Input		Analog Quad
ATRETURN01	1	Input	Temperature monitor return shared by Analog Quads 0 and 1	Analog Quad
AV1	1	Input	Analog Quad 1	Analog Quad
AC1	1	Input		Analog Quad
AG1	1	Output		Analog Quad
AT1	1	Input		Analog Quad
AV2	1	Input	Analog Quad 2	Analog Quad
AC2	1	Input		Analog Quad
AG2	1	Output		Analog Quad
AT2	1	Input		Analog Quad
ATRETURN23	1	Input	Temperature monitor return shared by Analog Quads 2 and 3	Analog Quad
AV3	1	Input	Analog Quad 3	Analog Quad
AC3	1	Input		Analog Quad
AG3	1	Output		Analog Quad
AT3	1	Input		Analog Quad
AV4	1	Input	Analog Quad 4	Analog Quad
AC4	1	Input		Analog Quad
AG4	1	Output		Analog Quad
AT4	1	Input		Analog Quad
ATRETURN45	1	Input	Temperature monitor return shared by Analog Quads 4 and 5	Analog Quad
AV5	1	Input	Analog Quad 5	Analog Quad
AC5	1	Input		Analog Quad
AG5	1	Output		Analog Quad
AT5	1	Input		Analog Quad
AV6	1	Input	Analog Quad 6	Analog Quad
AC6	1	Input		Analog Quad
AG6	1	Output		Analog Quad
AT6	1	Input		Analog Quad
ATRETURN67	1	Input	Temperature monitor return shared by Analog Quads 6 and 7	Analog Quad
AV7	1	Input	Analog Quad 7	Analog Quad
AC7	1	Input		Analog Quad
AG7	1	Output		Analog Quad

<i>Table 2-36</i> •	Analog Block Pin	Description ((Continued)
---------------------	-------------------------	---------------	-------------

Signal Name	Number of Bits	Direction	Function	Location of Details
AT7	1	Input		Analog Quad
AV8	1	Input	Analog Quad 8	Analog Quad
AC8	1	Input		Analog Quad
AG8	1	Output		Analog Quad
AT8	1	Input		Analog Quad
ATRETURN89	1	Input	Temperature monitor return shared by Analog Quads 8 and 9	Analog Quad
AV9	1	Input	Analog Quad 9	Analog Quad
AC9	1	Input		Analog Quad
AG9	1	Output		Analog Quad
AT9	1	Input		Analog Quad
RTCMATCH	1	Output	MATCH	RTC
RTCPSMMATCH	1	Output	MATCH connected to VRPSM	RTC
RTCXTLMODE[1:0]	2	Output	Drives XTLOSC RTCMODE[1:0] pins	RTC
RTCXTLSEL	1	Output	Drives XTLOSC MODESEL pin	RTC
RTCCLK	1	Input	RTC clock input	RTC

Analog Quad

With the Fusion family, Actel introduces the Analog Quad, shown in Figure 2-65 on page 2-76, as the basic analog I/O structure. The Analog Quad is a four-channel system used to precondition a set of analog signals before sending it to the ADC for conversion into a digital signal. To maximize the usefulness of the Analog Quad, the analog input signals can also be configured as LVTTL digital input signals. The Analog Quad is divided into four sections.

The first section is called the Voltage Monitor Block, and its input pin is named AV. It contains a two-channel analog multiplexer that allows an incoming analog signal to be routed directly to the ADC or allows the signal to be routed to a prescaler circuit before being sent to the ADC. The prescaler can be configured to accept analog signals between –12 V and 0 or between 0 and +12 V. The prescaler circuit scales the voltage applied to the ADC input pad such that it is compatible with the ADC input voltage range. The AV pin can also be used as a digital input pin.

The second section of the Analog Quad is called the Current Monitor Block. Its input pin is named AC. The Current Monitor Block contains all the same functions as the Voltage Monitor Block with one addition, which is a current monitoring function. A small external current sensing resistor (typically less than $1\,\Omega$) is connected between the AV and AC pins and is in series with a

power source. The Current Monitor Block contains a current monitor circuit that converts the current through the external resistor to a voltage that can then be read using the ADC.

The third part of the Analog Quad is called the Gate Driver Block, and its output pin is named AG. This section is used to drive an external FET. There are two modes available: a High Current Drive mode and a Current Source Control mode. Both negative and positive voltage polarities are available, and in the current source control mode, four different current levels are available.

The fourth section of the Analog Quad is called the Temperature Monitor Block, and its input pin name is AT. This block is similar to the Voltage Monitor Block, except that it has an additional function: it can be used to monitor the temperature of an external diodeconnected transistor. It has a modified prescaler and is limited to positive voltages only.

The Analog Quad can be configured during design time by Actel Libero IDE; however, the ACM can be used to change the parameters of any of these I/Os during runtime. This type of change is referred to as a context switch. The Analog Quad is a modular structure that is replicated to generate the analog I/O resources. Each Fusion device supports between 5 and 10 Analog Quads.

The analog pads are numbered to clearly identify both the type of pad (voltage, current, gate driver, or

temperature pad) and its corresponding Analog Quad (AV0, AC0, AG0, AT0, AV1, ..., AC9, AG9, and AT9). There are three types of input pads (AVx, ACx, and ATx) and one type of analog output pad (AGx). Since there can be

up to 10 Analog Quads on a device, there can be a maximum of 30 analog input pads and 10 analog output pads.

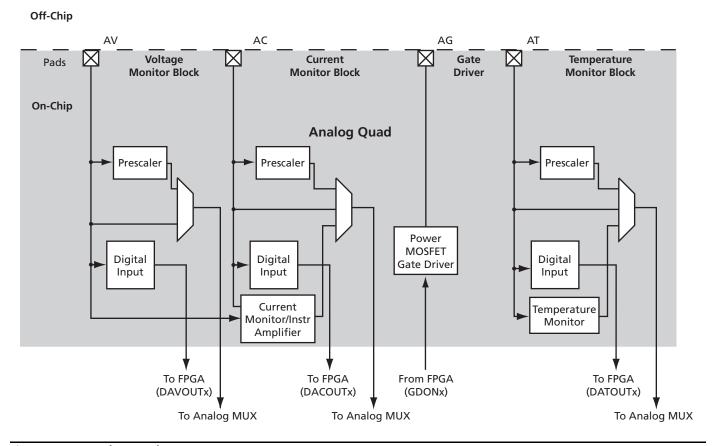


Figure 2-65 • Analog Quad

Voltage Monitor

The Fusion Analog Quad offers a robust set of voltagemonitoring capabilities unique in the FPGA industry. The Analog Quad comprises three analog input pads— Analog Voltage (AV), Analog Current (AC), and Analog Temperature (AT)—and a single gate driver output pad, Analog Gate (AG). There are many common characteristics among the analog input pads. Each analog input can be configured to connect directly to the input MUX of the ADC. When configured in this manner (Figure 2-66), there will be no prescaling of the input signal. Care must be taken in this mode not to drive the ADC into saturation by applying an input voltage greater than the reference voltage. The internal reference voltage of the ADC is 2.56 V. Optionally, an external reference can be supplied by the user. The external reference can be a maximum of 3.3 V DC.

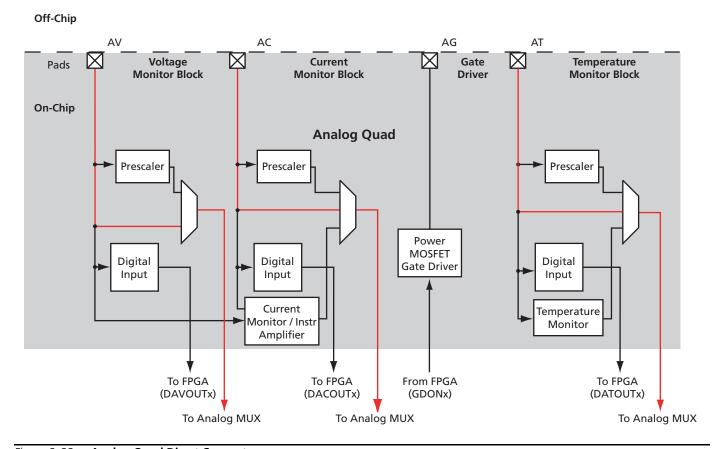


Figure 2-66 • Analog Quad Direct Connect

The Analog Quad offers a wide variety of prescaling options to enable the ADC to resolve the input signals. Figure 2-67 shows the path through the Analog Quad for a signal that is to be prescaled prior to conversion. The ADC internal reference voltage and the prescaler factors were selected to make both prescaling and postscaling of the signals easy binary calculations (refer to Table 2-54 on page 2-115 for details). When an analog input pad is configured with a prescaler, there will be a 1 M Ω resistor to ground. This occurs even when the device is in power-down mode. In low power standby or sleep mode (V_{CC} is OFF, V_{CC33A} is ON, V_{CCI} is ON) or when the resource is not used, analog inputs are pulled down to ground through a

1 M Ω resistor. The gate driver output is floating (or tristated), and there is no extra current on V_{CC33A}.

These scaling factors hold true whether the particular pad is configured to accept a positive or negative voltage. Note that whereas the AV and AC pads support the same prescaling factors, the AT pad supports a reduced set of prescaling factors and supports positive voltages only.

Typical scaling factors are given in Table 2-54 on page 2-115, and the gain error (which contributes to the minimum and maximum) is in Table 2-46 on page 2-102.

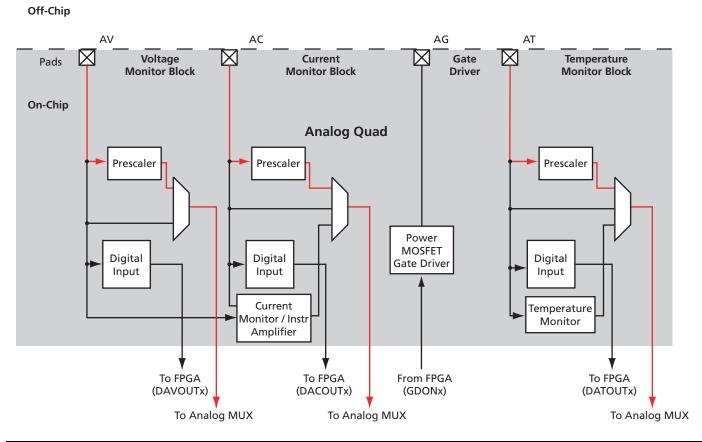


Figure 2-67 • Analog Quad Prescaler Input Configuration

Terminology

BW - Bandwidth

BW is a range of frequencies that a Channel can handle.

Channel

A channel is define as an analog input configured as one of the Prescaler range shown in Table 2-54 on page 2-115. The channel includes the Prescaler circuit and the ADC.

Channel Gain

Channel Gain is a measured of the deviation of the actual slope from the ideal slope. The slope is measured from the 20% and 80% point.

$$Gain = \frac{Gain_{actua}}{Gain_{ideal}}$$

Channel Gain Error

Channel Gain Error is a deviation from the ideal slope of the transfer function. The Prescaler Gain Error is expressed as the percent difference between the actual and ideal, as shown in EQ 2-1.

$$Error_{Gain} = (1-Gain) \times 100\%$$

EQ 2-1

Channel Input Offset Error

Channel Offset error is measured as the input voltage that causes the transition from zero to a count of one. An Ideal Prescaler will have offset equal to ½ of LSB voltage. Offset error is a positive or negative when the first transition point is higher or lower than ideal. Offset error is expressed in LSB or input voltage.

Total Channel Error

Total Channel Error is defined as the total error measured compared to the ideal value. Total Channel Error is the sum of gain error and offset error combined. Figure 2-68 shows how Total Channel Error is measured.

Total Channel Error is defined as the difference between the actual ADC output and ideal ADC output. In the example shown in Figure 2-68, the Total Channel Error would be a negative number.

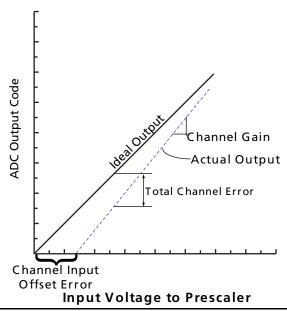


Figure 2-68 • Total Channel Error Example

Advanced v1.4 2-79

Direct Digital Input

The AV, AC, and AT pads can also be configured as high-voltage digital inputs (Figure 2-69). As these pads are 12 V-tolerant, the digital input can also be up to 12 V. However, the frequency at which these pads can operate is limited to 10 MHz.

To enable one of these analog input pads to operate as a digital input, its corresponding Digital Input Enable (DENAxy) pin on the Analog Block must be pulled HIGH, where x is either V, C, or T (for AV, AC, or AT pads,

respectively) and y is in the range 0 to 9, corresponding to the appropriate Analog Quad.

When the pad is configured as a digital input, the signal will come out of the Analog Block macro on the appropriate DAxOUTy pin, where x represents the pad type (V for AV pad, C for AC pad, or T for AT pad) and y represents the appropriate Analog Quad number. Example: If the AT pad in Analog Quad 5 is configured as a digital input, it will come out on the DATOUT5 pin of the Analog Block macro.

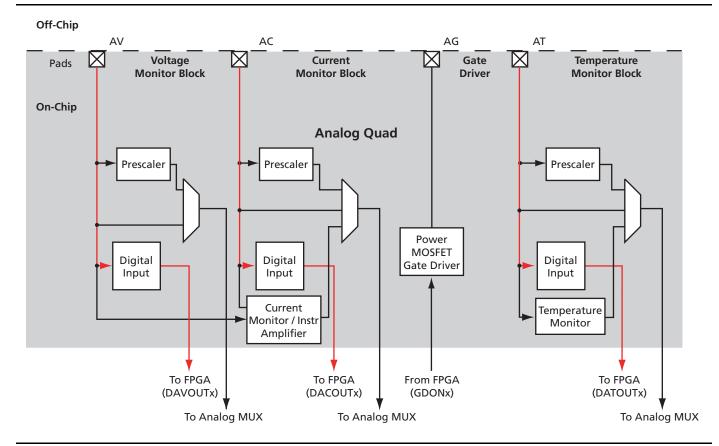


Figure 2-69 • Analog Quad Direct Digital Input Configuration

Current Monitor

The Fusion Analog Quad is an excellent element for voltage- and current-monitoring applications. In addition to supporting the same functionality offered by the AV pad, the AC pad can be configured to monitor current across an external sense resistor (Figure 2-70). To support this current monitor function, a differential amplifier with 10x gain passes the amplified voltage drop between the AV and AC pads to the ADC. The

amplifier enables the user to use very small resistor values, thereby limiting any impact on the circuit. This function of the AC pad does not limit AV pad operation. The AV pad can still be configured for use as a direct voltage input or scaled through the AV prescaler independently of it's use as an input to the AC pad's differential amplifier.

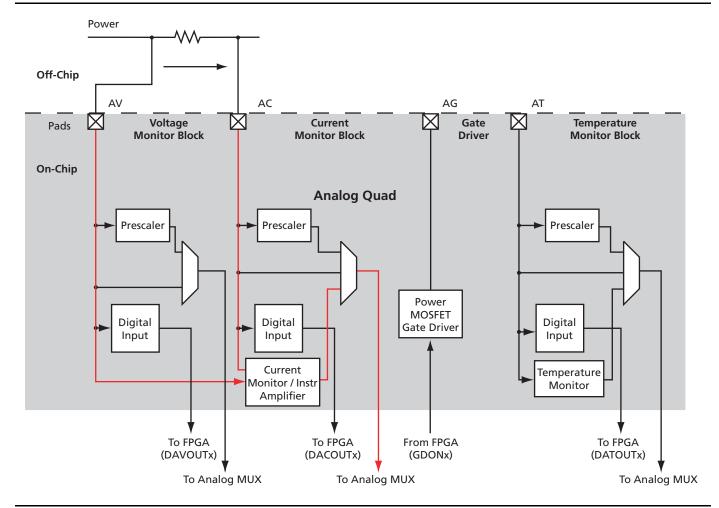


Figure 2-70 • Analog Quad Current Monitor Configuration

To initiate a current measurement, the appropriate Current Monitor Strobe (CMSTB) signal on the AB macro must be asserted low for at least t_{CMSLO} in order to discharge the previous measurement. Then CMSTB must be asserted high for at least t_{CMSET} prior to asserting the

ADCSTART signal. The CMSTB must remain high until after the SAMPLE signal is de-asserted by the AB macro. Note that the minimum sample time cannot be less than t_{CMSHI} . Figure 2-71 shows the timing diagram of CMSTB in relationship with the ADC control signals.

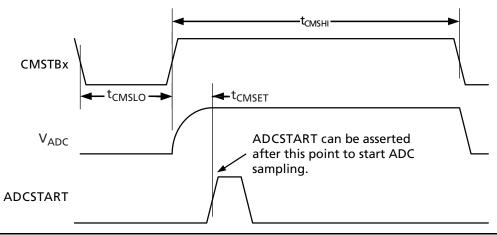


Figure 2-71 • Timing Diagram for Current Monitor Strobe

Figure 2-72 illustrates positive current monitor operation. The differential voltage between AV and AC goes into the 10x amplifier and is then converted by the ADC. For example, a current of 1.5 A is drawn from a 10 V supply and is measured by the voltage drop across a $0.050~\Omega$ sense resistor, The voltage drop is amplified by ten times by the amplifier and then measured by the ADC. The 1.5 A current creates a differential voltage across the sense resistor of 75 mV. This becomes 750 mV after amplification. Thus, the ADC measures a current of 1.5 A as 750 mV. Using an ADC with 8-bit resolution and

VAREF of 2.56 V, the ADC result is decimal 75. EQ 2-2 shows how to compute the current from the ADC result.

$$|\mathbf{I}| = (ADC \times V_{AREF}) / (10 \times 2^{N} \times R_{sense})$$

EQ 2-2

where

I is the current flowing through the sense resistor ADC is the result from the ADC VAREF is the Reference voltage N is the number of bits

Rsense is the resistance of the sense resistor

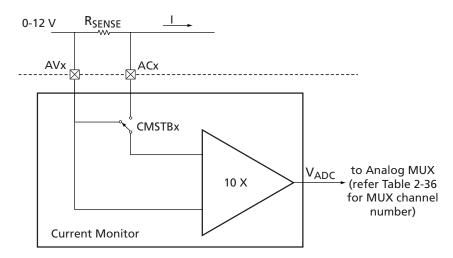


Figure 2-72 • Positive Current Monitor

Care must be taken when choosing the right resistor for current measurement application. Note that because of the 10x amplification, the maximum measurable difference between the AV and AC pads is VAREF / 10. A larger AV-to-AC voltage drop will result in ADC saturation; that is, the digital code put out by the ADC will stay fixed at the full scale value. Therefore, the user must select the external sense resistor appropriately. Table 2-37 shows recommended resistor values for different current measurement ranges. When choosing resistor values for a system, there is a trade-off between measurement accuracy and power consumption. Choosing a large resistor will increase the voltage drop and hence increase accuracy of the measurement; however the larger voltage drop dissipates more power $(P = I^2 \times R).$

The Current Monitor is a unipolar system, meaning that the differential voltage swing must be from 0 V to $V_{AREF}/10$. Therefore, the Current Monitor only supports differential voltage where $|V_{AV}-V_{AC}|$ is greater than 0 V. This results in the requirement that the potential of the AV pad must be larger than the potential of the AC pad. This is straightforward for positive voltage systems. For a negative voltage system, it means that the AV pad must

be "more negative" than the AC pad. This is shown in Figure 2-73.

In this case, both the AV pad and the AC pad are configured for negative operations and the output of the differential amplifier still falls between 0 V and V_{AREF} as required.

Table 2-37 • Recommended Resistor for Different Current Range Measurement

Current Range	Recommended Minimum Resistor Value (Ohms)
> 5 mA – 10 mA	10 – 20
> 10 mA – 20 mA	5 – 10
> 20 mA – 50 mA	2.5 – 5
> 50 mA – 100 mA	1 – 2
> 100 mA – 200 mA	0.5 – 1
> 200 mA – 500 mA	0.3 – 0.5
> 500 mA – 1 A	0.1 – 0.2
> 1 A – 2 A	0.05 – 0.1
> 2 A – 4 A	0.025 – 0.05

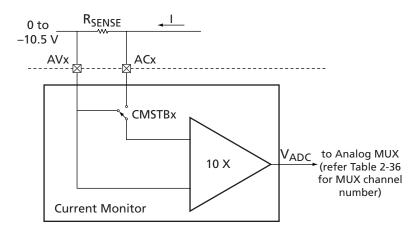


Figure 2-73 • Negative Current Monitor

Terminology

Accuracy

The accuracy of Fusion Current Monitor is ± 2 mV minimum plus 5% of the differential voltage at the input. The input accuracy can be translated to error at the ADC output by using EQ 2-3. The 10 V/V gain is the gain of the Current Monitor Circuit, as described in the "Current Monitor" section on page 2-81. For 8-bit mode, N=8, $V_{AREF}=2.56$ V, zero differential voltage between AV and AC, the Error (E_{ADC}) is equal to 2 LSBs.

$$E_{ADC} = (2mV + 0.05|V_{AV} - V_{AC}|) \times (10V)/V \times \frac{2^{N}}{V_{AREF}}$$

EQ 2-3

where

N is the number of bits V_{AREF} is the Reference voltage V_{AV} is the voltage at AV pad V_{AC} is the voltage at AC pad

Advanced v1.4 2-83

Gate Driver

The Fusion Analog Quad includes a Gate Driver connected to the Quad's AG pin (Figure 2-74). Designed to work with external p- or n-channel MOSFETs, the Gate driver is a configurable current sink or source and requires an external pull-up or pull-down resistor. The AG supports 4 selectable gate drive levels: 1 μ A, 3 μ A, 10 μ A, and 30 μ A (Figure 2-75 on page 2-85). The AG also supports a High Current Drive mode in which it can sink 20 mA; in this mode the switching rate is approximately 1.3 MHz with 100 ns turn-on time and 600 ns turn-off

time. Modeled on an open-drain-style output, it does not output a voltage level without an appropriate pull-up or pull-down resistor. If 1 V is forced on the drain, the current sinking/sourcing will exceed the ability of the transistor, and the device could be damaged.

The AG pad is turned on via the corresponding GDON*x* pin in the Analog Block macro, where *x* is the number of the corresponding Analog Quad for the AG pad to be enabled (GDON0 to GDON9).

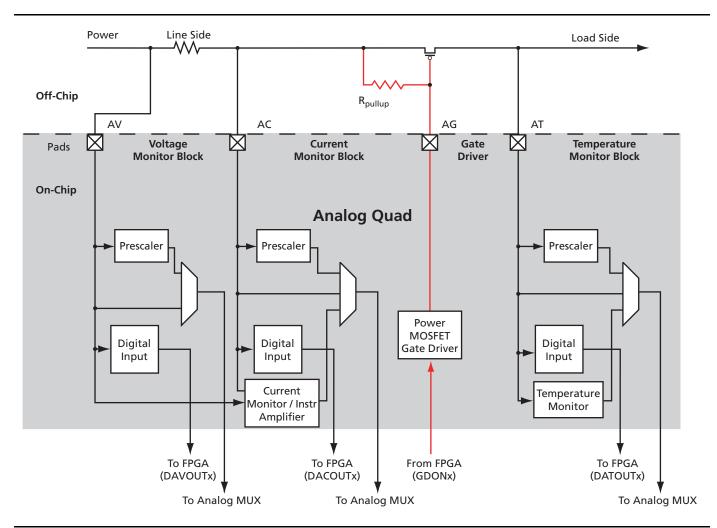


Figure 2-74 • Gate Driver

The gate-to-source voltage (V_{gs}) of the external MOSFET is limited to the programmable drive current times the external pull-up or pull-down resistor value (EQ 2-4).

$$V_{gs} \le I_g \times (R_{pullup} \text{ or } R_{pulldown})$$

EQ 2-4

The rate at which the gate voltage of the external MOSFET slews is determined by the current, I_g , sourced or sunk by the AG pin and the gate-to-source capacitance, C_{GS} , of the external MOSFET. As an approximation, the slew rate is given by EQ 2-5.

$$dv/dt = I_g / C_{GS}$$

EQ 2-5

 C_{GS} is not a fixed capacitance but, depending on the circuitry connected to its drain terminal, can vary significantly during the course of a turn-on or turn-off transient. Thus, EQ 2-5 on page 2-84 can only be used for a first-order estimate of the switching speed of the external MOSFET.

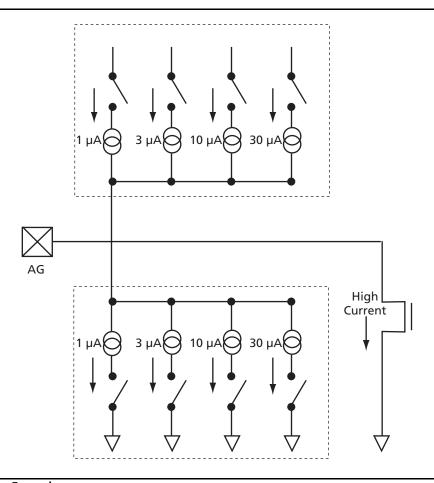


Figure 2-75 • Gate Driver Example

2-85

Temperature Monitor

The final pin in the Analog Quad is the Analog Temperature (AT) pin. The AT pin is used to implement an accurate temperature monitor in conjunction with an external diode-connected bipolar transistor (Figure 2-76). For improved temperature measurement accuracy, it is important to use the ATRTN pin for the return path of the current sourced by the AT pin. Each ATRTN pin is shared

between two adjacent Analog Quads. Additionally, if not used for temperature monitoring, the AT pin can provide functionality similar to that of the AV pad. However, in this mode only positive voltages can be applied to the AT pin, and only two prescaler factors are available (16 V and 4 V ranges—refer to Table 2-54 on page 2-115).

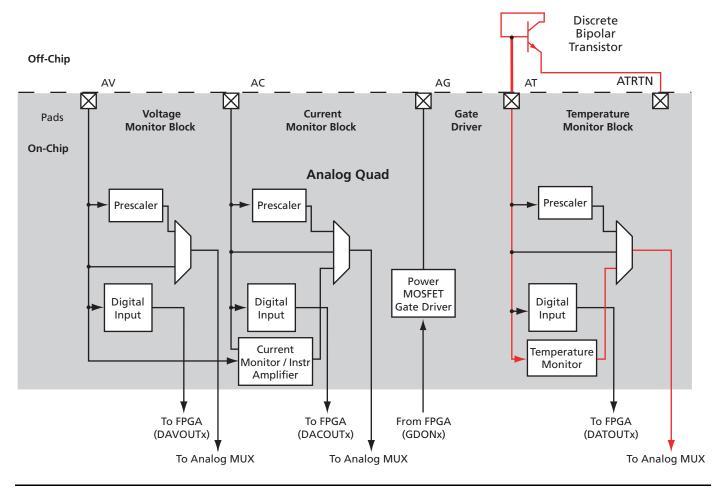


Figure 2-76 • Temperature Monitor Quad

Fusion uses a remote diode as a temperature sensor. The Fusion Temperature Monitor uses a differential input; the AT pin and ATRTN (AT Return) pin are the differential inputs to the Temperature Monitor. There is one Temperature Monitor in each Quad. A simplified block diagram is shown in Figure 2-77.

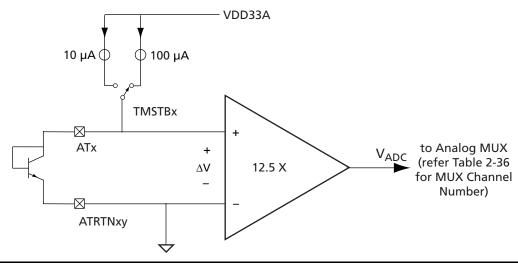


Figure 2-77 • Block Diagram for Temperature Monitor Circuit

The Fusion approach to measuring temperature is forcing two different currents through the diode with a ratio of 10:1. The switch that controls the different currents is controlled by the Temperature Monitor Strobe signal, TMSTB. Setting TMSTB to '1' will initiate a Temperature reading. The TMSTB should remain '1' until the ADC finishes sampling the voltage from the Temperature Monitor. The minimum sample time for the Temperature Monitor cannot be less than the minimum strobe high time minus the setup time. Figure 2-78 shows the timing diagram.

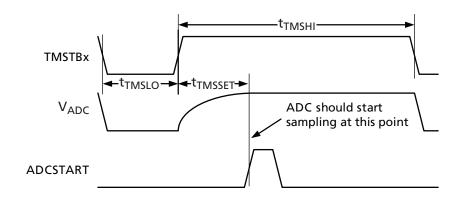


Figure 2-78 • Timing Diagram for the Temperature Monitor Strobe Signal

Advanced v1.4 2-87

The diode's voltage is measured at each current level and the temperature is calculated based on EQ 2-6.

$$V_{\text{TMSLO}} - V_{\text{TMSHI}} = n \frac{kT}{q} \left(\ln \frac{I_{\text{TMSLO}}}{I_{\text{TMSHI}}} \right)$$

EQ 2-6

where

 I_{TMSLO} is the current when the Temperature Strobe is Low, typically 100 μA

 I_{TMSHI} is the current when the Temperature Strobe is High, typically 10 μ A

 V_{TMSLO} is diode voltage while Temperature Strobe is Low

 V_{TMSHI} is diode voltage while Temperature Strobe is High

n is the non-ideality factor of the diode-connected transistor. It is typically 1.004 for the Actelrecommended transistor type 2N3904.

 $K = 1.3806 \times 10^{-23}$ J/K is the Boltzman constant $Q = 1.602 \times 10^{-19}$ C is the charge of a proton

When $I_{TMSLO}/I_{TMSHI} = 10$, the equation can be simplified as shown in EQ 2-7.

$$\Delta V = V_{\text{TMSLO}} - V_{\text{TMSHI}} = 1.986 \times 10^{-4} nT$$

EQ 2-7

In the Fusion TMB, the ideality factor n for 2N3904 is 1.004 and ΔV is amplified 12.5 times by an internal amplifier; hence the voltage before entering the ADC is as given in EQ 2-8.

$$V_{ADC} = \Delta V \times 12.5 = 2.5 \text{ mV}/(K \times T)$$

EQ 2-8

This means the temperature to voltage relationship is 2.5 mV per degree Kelvin. The unique design of Fusion has made the Temperature Monitor System simple for the user. When the 10-bit mode ADC is used, each LSB represents 1 degree Kelvin, as shown in EQ 2-9. That is, e. 25°C is equal to 293°K and is represented by decimal 293 counts from the ADC.

$$1K = 2.5 \text{ mV} \times \frac{2^{10}}{2.56 \text{ V}} = 1 \text{ LSB}$$

EQ 2-9

If 8-bit mode is used for the ADC resolution, each LSB represents 4 degrees Kelvin; however, the resolution remains as 1 degree Kelvin per LSB, even for 12-bit mode, due to the Temperature Monitor design. An example of the temperature data format for 10-bit mode is shown in Table 2-38.

Table 2-38 • **Temperature Data Format**

Temperature	Temperature (K)	Digital Output (ADC 10-bit mode)
-40°C	233	00 1110 1001
−20°C	213	00 1101 0101
0°C	273	01 0001 0001
1°C	274	01 0001 0010
10 °C	284	01 0001 1100
25°C	298	01 0010 1010
50 °C	323	01 0100 0011
85 °C	358	10 0001 1010

Terminology

Resolution

Resolution defines the smallest temperature change Fusion Temperature Monitor can resolve. For ADC configured as 8-bit mode, each LSB represents 4°C, and 1°C per LSB for 10-bit mode. With 12-bit mode, the Temperature Monitor can still only resolve 1°C due to Temperature Monitor design.

Offset

The Fusion Temperature Monitor has a systematic offset of +5°C, excluding error due board resistance and ideality factor of the external diode, between the operation range of -40°C to +85°C. For instance, 25°C will be read by the Temperature Monitor as 30°C plus error. The user can remove any offset error through hardware or software during the calibration routine.

Analog-to-Digital Converter Block

At the heart of the Fusion analog system is a programmable Successive Approximation Register (SAR) ADC. The ADC can support 8-, 10-, or 12-bit modes of operation. In 12-bit mode, the ADC can resolve 500 ksps. All results are MSB-justified in the ADC. The input to the ADC is a large 32:1 analog input multiplexer. A simplified block diagram of the Analog Quads, analog input multiplexer, and ADC is shown in Figure 2-79. The ADC offers multiple self-calibrating modes to ensure consistent high performance both at power-up and during runtime.

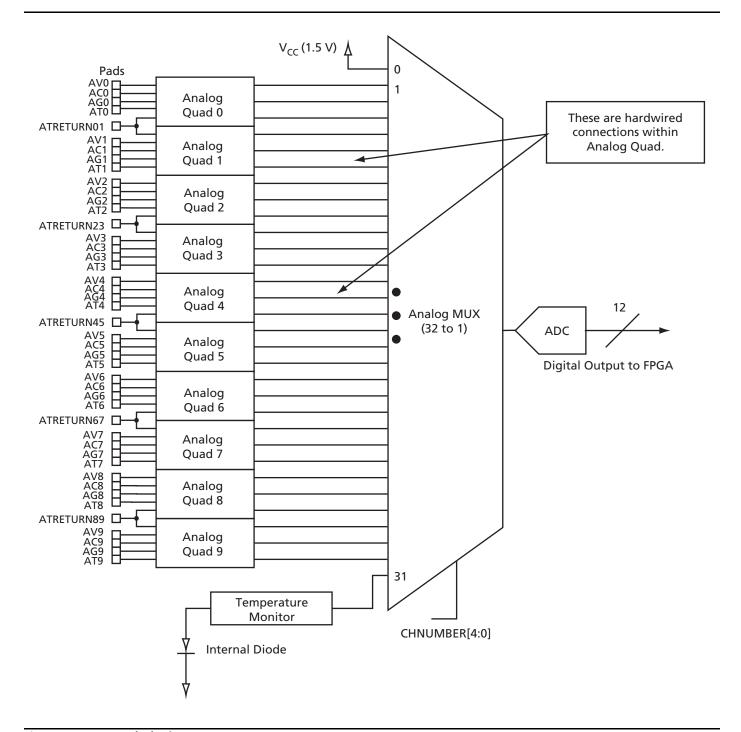


Figure 2-79 • ADC Block Diagram

Advanced v1.4 2-89

ADC Input Multiplexer

At the input to the Fusion ADC is a 32:1 multiplexer. Of the 32 input channels, up to 30 are user definable. Two of these channels are hardwired internally. Channel 31 connects to an internal temperature diode so the temperature of the Fusion device itself can be monitored. Channel 0 is wired to the FPGA's 1.5 V V_{CC} supply, enabling the Fusion device to monitor its own power supply. Doing this internally makes it unnecessary to use an analog I/O to support these functions. The balance of the MUX inputs are connected to Analog Quads (see the "Analog Quad" section on page 2-75). Table 2-39 defines which Analog Quad inputs are associated with which specific analog MUX channels. The number of Analog Quads present is device-dependent; refer to the family list in Table 1 on

page i of this datasheet for the number of quads per device. Regardless of the number of quads populated in a device, the internal connections to both V_{CC} and the internal temperature diode remain on Channels 0 and 31, respectively. To sample the internal temperature monitor, it must be strobed (similar to the AT pads). The TMSTBINT pin on the Analog Block macro is the control for strobing the internal temperature measurement diode.

To determine which channel is selected for conversion, there is a five-pin interface on the Analog Block, CHNUMBER[4:0], defined in Table 2-40 on page 2-91. Table 2-39 shows the correlation between the analog MUX input channels and the analog input pins.

Table 2-39 • Analog MUX Channels

Analog MUX Channel	Signal	Analog Quad Number
0	Vcc_analog	
1	AV0	Analog Quad 0
2	AC0	
3	AT0	
4	AV1	Analog Quad 1
5	AC1	
6	AT1	
7	AV2	Analog Quad 2
8	AC2	
9	AT2	
10	AV3	Analog Quad 3
11	AC3	
12	AT3	
13	AV4	Analog Quad 4
14	AC4	
15	AT4	
16	AV5	Analog Quad 5
17	AC5	
18	AT5	
19	AV6	Analog Quad 6
20	AC6	7
21	AT6	7
22	AV7	Analog Quad 7
23	AC7	7
24	AT7	7

Table 2-39 • Analog MUX Channels (Continued)

Analog MUX Channel	Signal	Analog Quad Number
25	AV8	Analog Quad 8
26	AC8	
27	AT8	
28	AV9	Analog Quad 9
29	AC9	
30	AT9	
31	Internal temperature monitor	

Table 2-40 • Channel Selection

Channel Number	CHNUMBER[4:0]
0	00000
1	00001
2	00010
3	00011
-	· · ·
30	11110
31	11111

ADC Description

The Actel Fusion ADC is a 12-bit SAR ADC. It offers a wide variety of features for different use models. Figure 2-80 shows a block diagram of the Fusion ADC.

- Configurable resolution: 8-bit, 10-bit, and 12-bit mode
- DNL: 0.6 LSB for 10-bit mode
- INL: 0.4 LSB for 10-bit mode
- · No missing code
- Internal VAREF = 2.56 V
- Maximum Sample Rate = 600 ksps
- · Power-up calibration and dynamic calibration after every sample to compensate for temperature drift over time

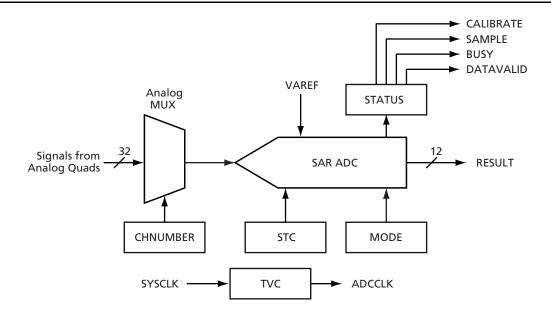


Figure 2-80 • ADC Simplified Block Diagram

ADC Configuration Description

The Fusion ADC can be configured to operate in 8-, 10-, or 12-bit modes, power-down after conversion, and dynamic calibration. This is controlled by MODE[3:0], as defined in Table 2-41.

Table 2-41 • Mode Bits Function

Name	Bits	Function
MODE	3	0 – Internal calibration after every conversion; two ADCCLK cycles are used after the conversion. 1 – No calibration after every conversion
MODE	2	0 – Power-down after conversion 1 – No Power-down after conversion
MODE	1:0	00 – 10-bit 01 – 12-bit 10 – 8-bit 11 – Unused

The speed of the ADC depends on its internal clock, ADCCLK, which is not accessible to users. The ADCCLK is derived from SYSCLK. Input signal TVC[7:0], Time Divider Control, determines the speed of the ADCCLK in relationship to SYSCLK, based on EQ 2-10.

$$t_{ADCCLK} = 4 \times (1 + TVC) \times t_{SYSCLK}$$

EQ 2-10

TVC: Time Divider Control (0-255)

t_{ADCCLK} is the period of ADCCLK, and must be between 0.5 MHz and 10 MHz

t_{SYSCLK} is the period of SYSCLK

Table 2-42 • TVC Bits Function

Name	Bits	Function
TVC	[7:0]	SYSCLK divider control

The frequency of ADCCLK, fADCCLK, must be within 0.5 Hz to 10 MHz.

The inputs to the ADC are synchronized to SYSCLK. A conversion is initiated by asserting the ADCSTART signal on a rising edge of SYSCLK. Figure 2-82 on page 2-96 and Figure 2-83 on page 2-97 show the timing diagram for the ADC.

A conversion is performed in three phases. In the first phase, the analog input voltage is sampled on the input capacitor. This phase is called sample phase. During the sample phase, the output signals BUSY and SAMPLE change from '0' to '1', indicating the ADC is busy and sampling the analog signal. The sample time can be controlled by input signals STC[7:0]. The sample time can be calculated by EQ 2-11. When controlling the sample time for the ADC along with the use of Prescaler or Current Monitor or Temperature Monitor, the minimum sample time for each must be obeyed. Refer to the corresponding section and Table 2-43 for further information.

$$t_{sample} = (2 + STC) \times t_{ADCCLK}$$

EQ 2-11

STC: Sample Time Control value (0-255)

t_{SAMPLF} is the sample time

Table 2-43 • STC Bits Function

Name	Bits	Function
STC	[7:0]	Sample time control

Sample time is computed based on the period of ADCCLK.

The second phase is called the distribution phase. During distribution phase, the ADC computes the equivalent digital value from the value stored in the input capacitor.

In this phase, the output signal SAMPLE goes back to '0', indicating the sample is completed; but the BUSY signal remains '1', indicating the ADC is still busy for distribution. The distribution time depends strictly on the number of bits. If the ADC is configured as a 10-bit ADC, then 10 ADCCLK cycles are needed. EQ 2-12 describes the distribution time.

$$t_{distrib} = N \times t_{ADCCLK}$$

EQ 2-12

N: Number of bits

The last phase is the post-calibration phase. This is an optional phase. The post-calibration phase takes two ADCCLK cycles. The output BUSY signal will remain '1' until the post-calibration phase is completed. If the postcalibration phase is skipped, then the BUSY signal goes to '0' after distribution phase. As soon as BUSY signal goes to '0', the DATAVALID signal goes to '1', indicating the digital result is available on the RESULT output signals. DATAVAILD will remain '1' until the next ADCSTART is asserted. Actel recommends enabling postcalibration to compensate for drift and temperaturedependent effects. This ensures that the ADC remains consistent over time and with temperature. The postcalibration phase is enabled by bit 3 of the Mode register. EQ 2-13 describes the post-calibration time.

$$t_{post-cal} = MODE[3] \times (2 \times t_{ADCCLK})$$

EO 2-13

MODE[3]: Bit 3 of the Mode register, described in Table 2-41 on page 2-92.

The calculation for the conversion time for the ADC is summarized in EQ 2-14.

$$t_{conv} = t_{sync_read} + t_{sample} + t_{distrib} + t_{post-cal} + t_{sync_write}$$

EO 2-14

t_{conv}: conversion time

t_{svnc read}: maximum time for a signal to synchronize with SYSCLK. For calculation purposes, the worst case is a period of SYSCLK,

t_{sample}: Sample time

t_{distrib}: Distribution time

t_{post-cal}: Post-calibration time

t_{sync write}: Maximum time for a signal to synchronize with SYSCLK. For calculation purposes, the worst case is a period of SYSCLK,

 t_{SYSCLK} .

Advanced v1.4 2-93

Example

This example shows how to choose the correct settings to achieve the fastest sample time in 10-bit mode for a system that runs at 66 MHz.

The period of SYSCLK: $t_{SYSCLK} = 1/66 \text{ MHz} = 0.015 \mu s$

Choosing TVC between 1 and 33 will meet the maximum and minimum period for the ADCCLK requirement. A higher TVC leads to a higher ADCCLK period.

The minimum TVC is chosen so that $t_{distrib}$ and $t_{post-cal}$ can be run faster. The period of ADCCLK with a TVC of 1 can be computed by EQ 2-15.

$$t_{ADCCLK} = 4 \times (1 + TVC) \times t_{SYSCLK} = 4 \times (1 + 1) \times 0.015 \ \mu s = 0.12 \ \mu s$$

EO 2-15

From Table 2-47 on page 2-105, minimum conversion for 10-bit mode is 1.8 µs. To compute STC, the calculation will first compute the post-calibration time, second the distribution time, and finally the STC setting.

Since Actel recommends post-calibration for temperature drift over time, post-calibration shall be enabled and the post-calibration time, $t_{post-cal}$, can be computed by EQ 2-16. The post-calibration time is 0.24 μ s.

$$t_{post-cal} = 2 \times t_{ADCCLK} = 0.24 \ \mu s$$

EQ 2-16

The distribution time, t_{distrib}, is equal to 1.2 µs and can be computed using EQ 2-17.

$$t_{distrib} = N \times t_{ADCCLK} = 10 \times 0.12 = 1.2 \mu s$$

EQ 2-17

The STC value can now be computed through EQ 2-18. The sample time is equal to 0.32 μ s. By rearranging EQ 2-11 on page 2-93 with a t_{sample} of 0.35 μ s, the STC can be computed.

$$t_{sample} = t_{conv} - t_{post-cal} - t_{distrib} - t_{sync_read} - t_{sync_write} = 1.8 \ \mu s - 0.24 \ \mu s - 1.2 \ \mu s - 0.15 \ \mu s - 0.15 \ \mu s = 0.32 \ \mu s$$

$$STC = \frac{t_{sample}}{t_{ADCCLK}} - 2 = \frac{0.35 \ \mu s}{0.12 \ \mu s} - 2 = 2.85$$

EQ 2-18

And so, STC will be rounded up to 3 to ensure the minimum conversion time is met. The sample time, t_{sample} , with an STC of 3, is now equal to 0.36 μ s.

The total sample time, using EQ 2-19, can now be summated.

$$t_{conv} = t_{sync_read} + t_{sample} + t_{distrib} + t_{post_cal} + t_{sync_write} = 0.015 \ \mu s + 0.36 \ \mu s + 1.2 \ \mu s + 0.24 \ \mu s + 0.015 \ \mu s =$$
 1.85 μs

EQ 2-19

The optimal setting for the system running at 66 MHz with an ADC for 10-bit mode chosen is listed as follows:

*Note that no power-down after every conversion is chosen in this case; however, if the application is power-sensitive, the MODE[2] can be set to '0', as described above, and it will not affect any performance.

Integrated Voltage Reference

The Fusion device has an integrated on-chip 2.56 V reference voltage for the ADC. The value of this reference voltage was chosen to make the prescaling and postscaling factors for the prescaler blocks change in a binary fashion. However, if desired, an external reference voltage of up to 3.3 V can be connected between the VAREF and GNDREF pins. The VAREFSEL control pin is used to select the reference voltage.

Table 2-44 • VAREF Bit Function

Name	Bit	Function				
VAREF	0	Reference voltage selection				
		0 – Internal voltage reference selected. VAREF pin outputs 2.56 V.				
		1 – Input external voltage reference from VAREF and GNDREF				

ADC Operation Description

The ADC can be powered down independently of the FPGA core, as an additional control or for power-saving considerations, via the PWRDWN pin of the Analog Block. The PWRDWN pin controls only the comparators in the ADC.

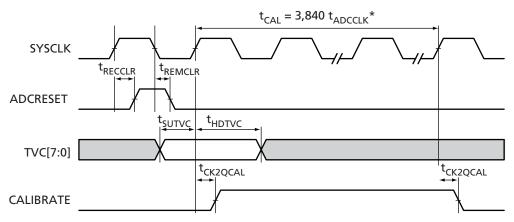
Once the ADC has powered up and been released from reset, ADCRESET, the ADC will initiate a calibration routine designed to provide optimal ADC performance. The Fusion ADC offers a robust calibration scheme to reduce integrated offset and linearity errors. The offset and linearity errors of the main capacitor array are compensated for with an 8-bit calibration capacitor array. The offset/linearity error calibration is carried out in two ways. First, a power-up calibration is carried out when the ADC comes out of reset. This is initiated by the CALIBRATE output of the Analog Block macro and is a fixed number of ADC_CLK cycles (3,840 cycles), as shown in Figure 2-81 on page 2-96. In this mode, the linearity and offset errors of the capacitors are calibrated.

To further compensate for drift and temperaturedependent effects, every conversion is followed by postcalibration of either the offset or a bit of the main capacitor array. The post-calibration ensures that, over time and with temperature, the ADC remains consistent.

After both calibration and the setting of the appropriate configurations, as explained above, the ADC is ready for operation. Setting the ADCSTART signal high for one clock period will initiate the sample and conversion of the analog signal on the channel as configured by CHNUMBER[4:0]. The status signals SAMPLE and BUSY will show when the ADC is sampling and converting (Figure 2-83 on page 2-97). Both SAMPLE and BUSY will initially go high. After the ADC has sampled and held the analog signal, SAMPLE will go low. After the entire operation has completed and the analog signal is

converted, BUSY will go low and DATAVALID will go high. This indicates that the digital result is available on the RESULT[11:0] pins.

DATAVALID will remain high until a subsequent ADC_START is issued. The DATAVALID goes low on the rising edge of SYSCLK as shown in Figure 2-82 on page 2-96. The RESULT signals will be kept constant until the ADC finishes the subsequent sample. The next sampled RESULT will be available when DATAVALID goes high again. It is ideal to read the RESULT when DATAVALID is '1'. The RESULT is latched and remains unchanged until the next DATAVLAID rising edge.


Intra-Conversion

Performing a conversion during power-up, calibration is possible but should be avoided, since the performance is not guaranteed, as shown in Table 2-46 on page 2-102. This is described as intra-conversion.

Injected Conversion

A conversion can be interrupted by another conversion. Before the current conversion is finished, a second conversion can be started by issuing a pulse on signal ADCSTART. When a second conversion is issued before the current conversion is completed, the current conversion would be dropped and the ADC would start the second conversion on the rising edge of the SYSCLK. This is known as injected conversion. Since the ADC is synchronous, the minimum time to issue a second conversion is two clock cycles of SYSCLK after the previous one.

Timing Diagram

Note: *Refer to EQ 2-10 on page 2-93 for the calculation on the period of ADCCLK, t_{ADCCLK}.

Figure 2-81 • Power-Up Calibration Status Signal Timing Diagram

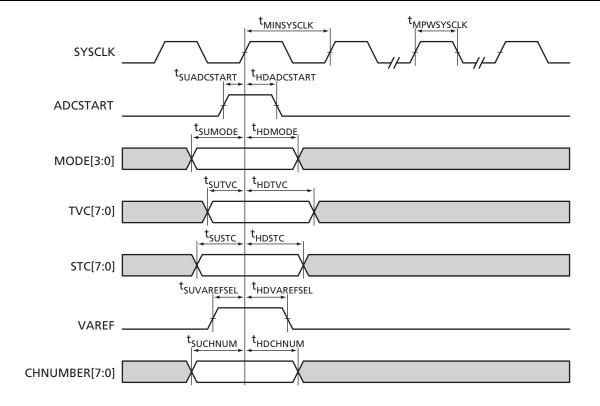
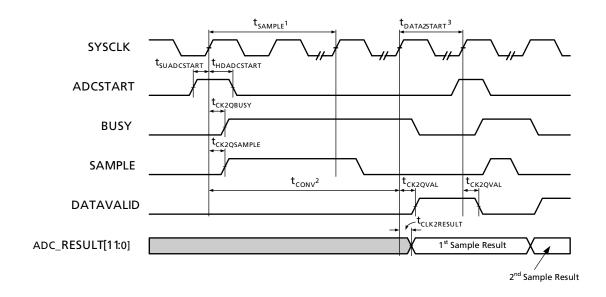



Figure 2-82 • Input Setup Time

- 1. Refer to EQ 2-11 on page 2-93 for the calculation on the sample time, t_{SAMPLE}.
- 2. See EQ 2-19 on page 2-94 for calculation on the conversion time, t_{CONV}.
- 3. Minimum time to issue an ADCSTART after DATAVALID is 1 SYSCLK period

Figure 2-83 • Standard Conversion Status Signal Timing Diagram

ADC Interface Timing

Table 2-45 ◆ ADC Interface Timing Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{SUMODE}	Mode Pin Setup Time	0.56	0.64	0.75	ns
t _{HDMODE}	Mode Pin Hold Time	0.26	0.29	0.34	ns
t _{SUTVC}	Clock Divide Control (TVC) Setup Time	0.68	0.77	0.90	ns
t _{HDTVC}	Clock Divide Control (TVC) Hold Time	0.32	0.36	0.43	ns
t _{SUSTC}	Sample Time Control (STC) Setup Time	1.58	1.79	2.11	ns
t _{HDSTC}	Sample Time Control (STC) Hold Time	1.27	1.45	1.71	ns
t _{SUVAREFSEL}	Voltage Reference Select (VAREFSEL) Setup Time	0.00	0.00	0.00	ns
t _{HDVAREFSEL}	Voltage Reference Select (VAREFSEL) Hold Time	0.67	0.76	0.89	ns
t _{SUCHNUM}	Channel Select (CHNUMBER) Setup Time	0.90	1.03	1.21	ns
t _{HDCHNUM}	Channel Select (CHNUMBER) Hold Time	0.00	0.00	0.00	ns
t _{SUADCSTART}	Start of Conversion (ADCSTART) Setup Time	0.75	0.85	1.00	ns
t _{HDADCSTART}	Start of Conversion (ADCSTART) Hold Time	0.43	0.49	0.57	ns
t _{CK2QBUSY}	Busy Clock-to-Q	1.33	1.51	1.78	ns
t _{CK2QCAL}	Power-Up Calibration Clock-to-Q	0.63	0.71	0.84	ns
t _{CK2QVAL}	Valid Conversion Result Clock-to-Q	3.12	3.55	4.17	ns
t _{CK2QSAMPLE}	Sample Clock-to-Q	0.22	0.25	0.30	ns
t _{CK2QRESULT}	Conversion Result Clock-to-Q	2.53	2.89	3.39	ns
t _{CLR2QBUSY}	Busy Clear-to-Q	2.06	2.35	2.76	ns
t _{CLR2QCAL}	Power-Up Calibration Clear-to-Q	2.15	2.45	2.88	ns
t _{CLR2QVAL}	Valid Conversion Result Clear-to-Q	2.41	2.74	3.22	ns
t _{CLR2QSAMPLE}	Sample Clear-to-Q	2.17	2.48	2.91	ns
t _{CLR2QRESULT}	Conversion result Clear-to-Q	2.25	2.56	3.01	ns
t _{RECCLR}	Recovery Time of Clear	0.00	0.00	0.00	ns
t _{REMCLR}	Removal Time of Clear	0.63	0.72	0.84	ns
t _{MPWSYSCLK}	Clock Minimum Pulse Width for the ADC	4.00	4.00	4.00	ns
t _{FMAXSYSCLK}	Clock Maximum Frequency for the ADC	100.00	100.00	100.00	MHz

Terminology

Conversion Time

Conversion time is the interval between the release of the hold state (imposed by the input circuitry of a track-and-hold) and the instant at which the voltage on the sampling capacitor settles to within one LSB of a new input value.

DNL - Differential Non-Linearity

For an ideal ADC, the analog-input levels that trigger any two successive output codes should differ by one LSB (DNL = 0). Any deviation from one LSB in defined as DNL (Figure 2-84).

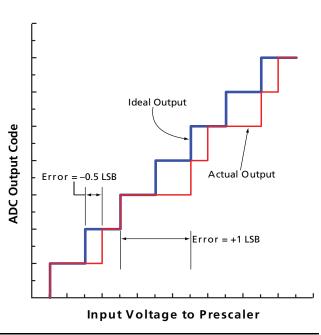


Figure 2-84 • Differential Non-Linearity (DNL)

ENOB - Effective Number of Bits

ENOB specifies the dynamic performance of an ADC at a specific input frequency and sampling rate. An ideal ADC's error consists only of quantization of noise. As the input frequency increases, the overall noise (particularly in the distortion components) also increases, thereby reducing the ENOB and SINAD (also see "Signal-to-Noise and Distortion Ratio (SINAD)".) ENOB for a full-scale, sinusoidal input waveform is computed using EQ 2-20.

$$ENOB = \frac{SINAD - 1.76}{6.02}$$

EQ 2-20

FS Error - Full-Scale Error

Full-scale error is the difference between the actual value that triggers that transition to full-scale and the ideal analog full-scale transition value. Full-scale error equals offset error plus gain error.

Gain Error

The gain error of an ADC indicates how well the slope of an actual transfer function matches the slope of the ideal transfer function. Gain error is usually expressed in LSB or as a percent of full-scale (%FSR). Gain error is the full-scale error minus the offset error (Figure 2-85).

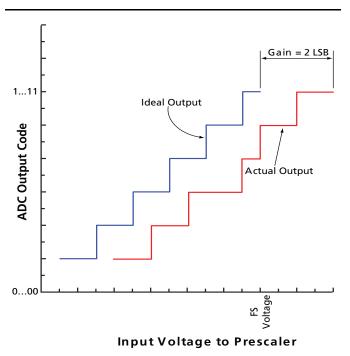


Figure 2-85 • Gain Error

Gain Error Drift

Gain-error drift is the variation in gain error due to a change in ambient temperature, typically expressed in ppm/°C.

INL - Integral Non-Linearity

INL is the deviation of an actual transfer function from a straight line. After nullifying offset and gain errors, the straight line is either a best-fit straight line or a line drawn between the end points of the transfer function (Figure 2-86).

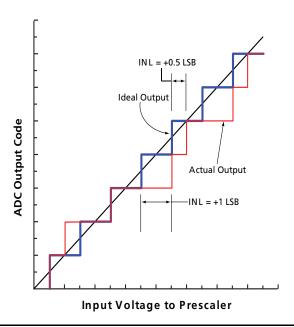


Figure 2-86 • Integral Non-Linearity (INL)

LSB - Least Significant Bit

In a binary number, the LSB is the least weighted bit in the group. Typically, the LSB is the furthest right bit. For an ADC, the weight of an LSB equals the full-scale voltage range of the converter divided by 2^N , where N is the converter's resolution. For a 10-bit ADC with a unipolar full-scale voltage of 2.56 V, 1 LSB = $(2.56 \text{ V} / 2^{10})$ = 2.5 mV.

No Missing Codes

An ADC has no missing codes if it produces all possible digital codes in response to a ramp signal applied to the analog input.

Offset Error

Offset error indicates how well the actual transfer function matches the ideal transfer function at a single point. For an ideal ADC, the first transition occurs at 0.5 LSB above zero. The offset voltage is measured by applying an analog input such that the ADC outputs all zeroes and increases until the first transition occurs (Figure 2-87).

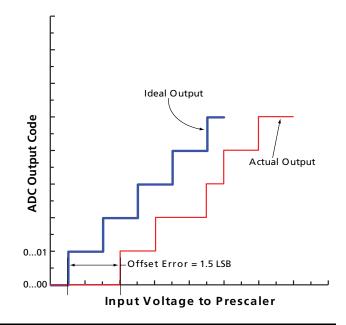


Figure 2-87 • Offset Error

Resolution

ADC resolution is the number of bits used to represent an analog input signal. To more accurately replicate the analog signal, resolution needs to be increased.

Sampling Rate

Sampling rate or sample frequency, specified in samples per second (sps), is the rate at which an ADC acquires (samples) the analog input.

SNR - Signal-to-Noise Ratio

SNR is the ratio of the amplitude of the desired signal to the amplitude of the noise signals at a given point in time. For a waveform perfectly reconstructed from digital samples, the theoretical maximum SNR (EQ 2-21) is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum ADC noise is caused by quantization error only and results directly from the ADC's resolution (N bits):

$$SNR_{dB[MAX]} = 6.02_{dB} \times N + 1.76_{dB}$$

EQ 2-21

SINAD - Signal-to-Noise and Distortion

SINAD is the ratio of the rms amplitude to the mean value of the root-sum-square of the all other spectral components, including harmonics, but excluding DC. SINAD is a good indication of the overall dynamic performance of an ADC because it includes all components which make up noise and distortion.

Total Harmonic Distortion

THD measures the distortion content of a signal, and is specified in decibels relative to the carrier (dBc). THD is the ratio of the RMS sum of the selected harmonics of the input signal to the fundamental itself. Only harmonics within the Nyquist limit are included in the measurement.

TUE - Total Unadjusted Error

TUE is a comprehensive specification that includes linearity errors, gain error, and offset error. It is the worst-case deviation from the ideal device performance. TUE is a static specification (Figure 2-88).

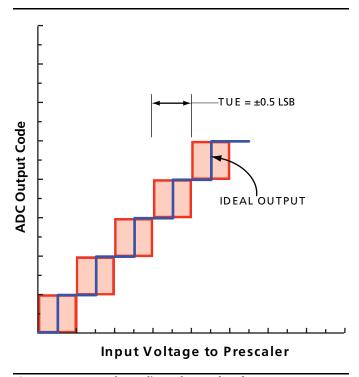


Figure 2-88 • Total Unadjusted Error (TUE)

Analog System Characteristics

Table 2-46 • Analog Channel Specifications
All Values at Industrial Operating Conditions (unless noted otherwise)
Typical: V_{CC33A} = 3.3 V, V_{CC} = 1.5 V, and T_A = 25°C

Parameter	Description	Condition	Minimum	Typical	Maximum	Units
Voltage Monito	r using Analog Pads <i>A</i>	NV, AC and AT (using prescal	er)			<u> </u>
V _{INAP}	Input Voltage	Refer to Table 3-2 on page 3-3.				
	Uncalibrated Gain and Offset Errors	Refer to Table 2-48 on page 2-107.				
	Calibrated Gain and Offset Errors	Refer to Table 2-49 on page 2-108.				
	Bandwidth		100			kHz
	Input Resistance	Refer to Table 3-3 on page 3-4.				
	Scaling Factor	Prescaler modes (Table 2-54 on page 2-115).				
	Sampling Time		10			μs
Current Monito	r using Analog Pads A	V and AC1 (potential on the	AV pad m	ust be gr	eater than the AC pa	ad)
V _{RSM} ¹	Maximum Differential Input				VAREF / 10	mV
	Resolution	See Accuracy specification				
	Common Mode Range	Refer to Table 3-2 on page 3-3 for maximum voltage limits.			-10.5 to +12	V
CMRR	Common Mode Rejection Ratio	DC – 1 kHz		60		dB
		1 kHz – 10 kHz		50		dB
		>10 kHz		30		dB
t _{CMSHI}	Strobe	High time	ADC conv. time		200	μs
t _{CMSLO}		Low time	5			μs
t _{CMSSET}		Setting time	0.02			μs
	Accuracy	Input differential voltage > 50 mV			$-2 - (0.05 \times (AV - AC))$ to $2 + (0.05 \times (AV - AC))$	mV
Temperature Me	 onitor Using Analog P	ad AT		l	1 , , , , , , , , , , , , , , , , , , ,	<u> </u>

- 1. V_{RSM} is the maximum voltage drop across the current sense resistor.
- 2. Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no reliability concern on digital inputs as long as V_{IND} does not exceed these limits.
- 3. V_{IND} is limited to V_{CC33A} + 0.2 to allow reaching 10 MHz input frequency.
- 4. Measurement is done by forcing a temperature on an external diode, with the Fusion device at room temperature.
- 5. The temperature offset is a fixed positive value.
- 6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on voltage on the pad.

Table 2-46 • Analog Channel Specifications (Continued)
All Values at Industrial Operating Conditions (unless noted otherwise)
Typical: V_{CC33A} = 3.3 V, V_{CC} = 1.5 V, and T_A = 25°C

Parameter	Description	Condition	Minimum	Typical	Maximum	Units	
External Temperature	Resolution	8-bit ADC	IVIIIIIIIIIIIIIIII	1 ypicai 4		°C	
Monitor ⁴	Resolution	10-bit ADC		1			
(using external diode 2N3904)		12-bit ADC		1		°C	
211330 1/	Offset ⁵	12-011 ADC		5		°C	
	Accuracy			±3		°C	
	External Sensor	High level		10		μΑ	
	Source Current	nigit level		10		μΑ	
		Low level		100		μΑ	
Internal Temperature	Resolution	8-bit ADC		4		°C	
Monitor		10-bit ADC		1		°C	
		12-bit ADC		°C			
	Offset ⁵			5	°C		
	Accuracy		±3			°C	
t _{TMSHI}	Temperature Monitor	High time	10		105	μs	
t _{TMSLO}	Strobe	Low time	5			μs	
t _{TMSSET}	1	Setting time	5			μs	
Analog Input as a	Digital Input		•	•			
V _{IND} 2, 3	Input Voltage	Refer to Table 3-2 on page 3-3.					
V _{HYSDIN}	Hysteresis			0.3		V	
V _{IHDIN}	Input HIGH			1.2		V	
V _{ILDIN}	Input LOW			0.9		V	
V _{MPWDIN}	Minimum Pulse Width		50			ns	
F _{DIN}	Maximum Frequency				10	MHz	
I _{STBDIN}	Input Leakage Current			2		μΑ	
I _{DYNDIN}	Dynamic Current			20		μΑ	
t _{INDIN}	Input Delay			10		ns	

- 1. V_{RSM} is the maximum voltage drop across the current sense resistor.
- 2. Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no reliability concern on digital inputs as long as V_{IND} does not exceed these limits.
- 3. V_{IND} is limited to V_{CC33A} + 0.2 to allow reaching 10 MHz input frequency.
- 4. Measurement is done by forcing a temperature on an external diode, with the Fusion device at room temperature.
- 5. The temperature offset is a fixed positive value.
- 6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on voltage on the pad.

Table 2-46 • Analog Channel Specifications (Continued)
All Values at Industrial Operating Conditions (unless noted otherwise)
Typical: V_{CC33A} = 3.3 V, V_{CC} = 1.5 V, and T_A = 25°C

Parameter	Description	Condition	Minimum	Typical	Maximum	Units
Gate Driver Ou	utput Using Analog Pac	AG	1			
V _G	Voltage Range	Refer to Table 3-2 on page 3-3.				
I_{G}	Output Current Drive	High Current Mode ⁶ at 1.0 V			±20	mA
		Low Current Mode—± 1 μA		±1		μΑ
		Low Current Mode—± 3 μA		±3		μΑ
		Low Current Mode—± 10 μA		±10		μΑ
		Low Current Mode—± 30 μA		±30		μΑ
l _{OFFG}	Maximum Off Current			100		nA
F _G (maximum	High Current Mode at 1.0 V	1 k Ω resistive load		1.3		MHz
switching rate)	Low Current Mode— ±1 µA	3,000 k Ω resistive load		3		kHz
	Low Current Mode— ±3 µA	1,000 k Ω resistive load		7		kHz
	Low Current Mode— ±10 μA	300 k Ω resistive load		25		kHz
	Low Current Mode— ±30 µA	105 k Ω resistive load		78		kHz

- 1. V_{RSM} is the maximum voltage drop across the current sense resistor.
- 2. Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no reliability concern on digital inputs as long as V_{IND} does not exceed these limits.
- 3. V_{IND} is limited to V_{CC33A} + 0.2 to allow reaching 10 MHz input frequency.
- 4. Measurement is done by forcing a temperature on an external diode, with the Fusion device at room temperature.
- 5. The temperature offset is a fixed positive value.
- 6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on voltage on the pad.

Table 2-47 • ADC Characteristics in Direct Input Mode
All Values at Industrial Operating Conditions (unless noted otherwise)
Typical: V_{CC33A} = 3.3 V, V_{CC} = 1.5 V, and T_A = 25°C

Parameter	Description	Condition	Minimum	Typical	Maximum	Units
All Analog	Inputs					
V _{INADC}	Input Voltage (direct to ADC)	Refer to Table 3-2 on page 3-3.				
C _{INADC}	Input Capacitance	Channel not selected		7		pF
		Channel selected but not sampling		8		pF
		Channel selected and sampling		18		pF
Z _{INADC}	Input Impedance	8-bit mode		2		kΩ
		10-bit mode		2		kΩ
		12-bit mode		2		kΩ
VAREF	Reference Voltage	Internal reference Accuracy at 25°C	2.537	2.56	2.583	V
		Temperature Drift of Internal Reference		65		ppm/°C
		External reference	2.527		V _{CC33A} + 0.05	V
DC Accurac	y (using external reference	e) ^{1, 2}			•	
TUE	Total Unadjusted Error	8-bit mode	0.29			LSB
		10-bit mode	0.72			LSB
		12-bit mode	1.80			LSB
INL	Integral Non-Linearity	8-bit mode		0.20	0.25	LSB
		10-bit mode		0.32	0.43	LSB
		12-bit mode		1.71	1.80	LSB
DNL	Differential Non-Linearity	8-bit mode		0.20	0.24	LSB
	(no missing codes)	10-bit mode		0.60	0.65	LSB
		12-bit mode		2.40	2.48	LSB
	Offset Error	8-bit mode		0.01	0.17	LSB
		10-bit mode		0.05	0.20	LSB
		12-bit mode		0.20	0.40	LSB
	Gain Error	8-bit mode		0.0004	0.003	LSB
		10-bit mode		0.002	0.011	LSB
		12-bit mode		0.007	0.044	LSB
	Gain Error (with internal reference)	All modes		2.0		%FSR

Dynamic Accuracy (using external reference, 100 kHz Sine Wave Input, 2.38 V_{P-P}, 500 ksps, f_{ADCCLK} = 10 MHz)^{1, 2}

- 1. Accuracy of the external reference is 2.56 $V \pm 4.6$ mV.
- 2. Data is based on characterization.
- 3. The sample rate is time-shared among active analog inputs.

Table 2-47 • ADC Characteristics in Direct Input Mode (Continued)
All Values at Industrial Operating Conditions (unless noted otherwise)
Typical: V_{CC33A} = 3.3 V, V_{CC} = 1.5 V, and T_A = 25°C

Parameter	Description	Condition	Minimum	Typical	Maximum	Units
SNR	Signal-to-Noise Ratio	8-bit mode	48.0	49.5		dB
		10-bit mode	58.0	60.0		dB
		12-bit mode	62.9	64.5		dB
SINAD Sign	Signal-to-Noise and Distortion	8-bit mode	47.6	49.5		dB
		10-bit mode	57.4	59.8		dB
		12-bit mode	62.0	64.2		dB
THD To	Total Harmonic Distortion	8-bit mode		-74.4	-63.0	dBc
		10-bit mode		-78.3	-63.0	dBc
		12-bit mode		-77.9	-64.4	dBc
ENOB	Effective Number of Bits	8-bit mode	7.6	7.9		bits
		10-bit mode	9.2	9.6		bits
		12-bit mode	10.0	10.4		bits
Conversion	2					
	Conversion Time	8-bit mode	1.7			μs
		10-bit mode	1.8			μs
		12-bit mode	2.0			μs
	Sample Rate ²	8-bit mode			600	ksps
		10-bit mode			550	ksps
		12-bit mode			500	ksps

- 1. Accuracy of the external reference is 2.56 $V \pm 4.6$ mV.
- 2. Data is based on characterization.
- 3. The sample rate is time-shared among active analog inputs.

Table 2-48 • Uncalibrated Analog Channel Accuracy* Worst-Case Industrial Conditions, T_A = 85°C

		Total	Channe (LSB)	l Error		el Inpu rror (LS	t Offset B)		nel Input Error (m\			nel Gair (%FSR)	
Analog Pad	Prescaler Range (V)	Neg. Max.	Med.	Pos. Max.	Neg Max	Med.	Pos. Max.	Neg. Max.	Med.	Pos. Max.	Min.	Тур.	Max.
Positi	ve Range						ADC in 1	0-Bit Mo	de				
AV, AC	16	-22	-2	12	-11	-2	14	-169	-32	224	3	0	-3
	8	-40	- 5	17	-11	-5	21	-87	-40	166	2	0	-4
	4	-45	-9	24	-16	-11	36	-63	-43	144	2	0	-4
	2	-70	-19	33	-33	-20	66	-66	-39	131	2	0	-4
	1	-25	-7	5	-11	-3	26	-11	-3	26	3	-1	-3
	0.5	-41	-12	8	-12	-7	38	-6	-4	19	3	-1	-3
	0.25	-53	-14	19	-20	-14	40	-5	-3	10	5	0	-4
	0.125	-89	-29	24	-40	-28	88	-5	-4	11	7	0	-5
AT	16	-3	9	15	-4	0	4	-64	5	64	1	0	-1
	4	-10	2	15	-11	-2	11	-44	-8	44	1	0	-1
Negati	ive Range						ADC in 1	10-Bit Mode					
AV, AC	16	-35	-10	9	-24	-6	9	-383	-96	148	5	-1	-6
	8	-65	-19	12	-34	-12	9	-268	-99	75	5	-1	-5
	4	-86	-28	21	-64	-24	19	-254	-96	76	5	-1	-6
	2	-136	-53	37	-115	-42	39	-230	-83	78	6	-2	-7
	1	-98	-35	8	-39	-8	15	-39	-8	15	10	-3	-10
	0.5	-121	-46	7	-54	-14	18	-27	-7	9	10	-4	-11
	0.25	-149	-49	19	-72	-16	40	-18	-4	10	14	-4	-12
	0.125	-188	-67	38	-112	-27	56	-14	-3	7	16	-5	-14

Note: *Channel Accuracy includes prescaler and ADC accuracies. For 12-bit mode, multiply the LSB count by 4. For 8-bit mode, divide the LSB count by 4. Gain remains the same.

Table 2-49 • Calibrated Analog Channel Accuracy ^{1,2,3} Worst-Case Industrial Conditions, T_A = 85°C

		Condition	Total	Channel Erro	r (LSB)
Analog Pad	Prescaler Range (V)	Input Voltage ⁴ (V)	Negative Max.	Median	Positive Max.
Po	sitive Range		Al	DC in 10-Bit M	ode
AV, AC	16	0.300 to 12.0	-6	1	6
	8	0.250 to 8.00	-6	0	6
	4	0.200 to 4.00	- 7	-1	7
	2	0.150 to 2.00	-7	0	7
	1	0.050 to 1.00	-6	-1	6
AT	16	0.300 to 16.0	- 5	0	5
	4	0.100 to 4.00	-7	-1	7
Ne	gative Range		Al	DC in 10-Bit M	ode
AV, AC	16	−0.400 to −10.5	-7	1	9
	8	−0.350 to −8.00	-7	-1	7
	4	−0.300 to −4.00	-7	-2	9
	2	−0.250 to −2.00	-7	-2	7
	1	−0.050 to −1.00	-16	-1	20

Notes:

- 1. Channel Accuracy includes prescaler and ADC accuracies. For 12-bit mode, multiply the LSB count by 4. For 8-bit mode, divide the LSB count by 4. Overall accuracy remains the same.
- 2. Requires enabling Analog Calibration in the Actel tool flow.
- 3. Calibrated with two-point calibration methodology, using 20% and 80% full-scale points.
- 4. The lower limit of the input voltage is determined by the prescaler input offset.

Table 2-50 • Analog Channel Accuracy: Monitoring Standard Positive Voltages
Typical Conditions, T_A = 25°C

	Calib	SR)	Direct ADC ^{2,3} (%FSR)					
Input Voltage (V)	16 V (AT)	16 V (12 V) (AV/AC)	8 V (AV/ AC)	4 V (AT)	4 V (AV/ AC)	2 V (AV/ AC)	1 V (AV/ AC)	VAREF = 2.56 V
15	1							
14	1							
12	1	1						
5	2	2	1					
3.3	2	2	1	1	1			
2.5	3	2	1	1	1			1
1.8	4	4	1	1	1	1		1
1.5	5	5	2	2	2	1		1
1.2	7	6	2	2	2	1		1
0.9	9	9	4	3	3	1	1	1

- 1. Requires enabling Analog Calibration in the Actel tool flow.
- 2. Direct ADC mode using an external VAREF of 2.56V±4.6mV, without Analog Calibration macro.
- 3. For input greater than 2.56 V, the ADC output will saturate. A higher VAREF or prescaler usage is recommended.

Examples

Calculating Accuracy for an Uncalibrated Analog Channel

Formula

```
For a given prescaler range,
```

Output Voltage = (Channel Output Offset in V) + (Input Voltage x Channel Gain)

where

Channel Output offset in V = Channel Output offset in LSBs x Equivalent voltage per LSB Channel Gain Factor = 1+ (% Channel Gain / 100)

Example

```
Input Voltage = 5 V
Chosen Prescaler range = 8 V range
Refer to Table 2-48 on page 2-107.

Max. Output Voltage = (Max Positive output offset) + (Input Voltage x Max Gain Factor)

Max. Positive output offset = (8 LSB) x (8mV per LSB in 10-bit mode)

Max. Positive output offset = 64 mV

Max. Gain = 1 + (2/100)

Max. Gain = 1.02

Max. Output Voltage = (64 mV) + (5 V x 1.02)

Max. Output Voltage = 5.164 V

Similarly,

Min. Output Voltage = (Min. Negative output offset) + (Input Voltage x Min. Gain)
```

Calculating Accuracy for a Calibrated Analog Channel

= (-136 mV) + (5 V x 0.98) = 4.764 V

Formula

```
For a given prescaler range,
```

Output Voltage = Channel TUE in V + Input Voltage

where

Channel TUE in V = Channel TUE in LSBs x Equivalent voltage per LSB

Example

```
Input Voltage = 5 V

Chosen Prescaler range = 8 V range

Refer to Table 2-49 on page 2-108.

Max. Output Voltage = Max. Channel TUE in V + Input Voltage

Max. Channel TUE in V = (6 LSB) × (8 mV per LSB in 10-bit mode) = 48 mV

Max. Output Voltage = 48 mV + 5 V = 5.048 V

Similarly,

Min Output Voltage = Min Channel TUE in V + Input Voltage = (-48 mV) + 5 V = 4.952 V
```

Calculating LSBs from a Given Error Budget

Formula

For a given prescaler range,

LSB count = ± (Input Voltage × Required % error) / (Equivalent voltage per LSB)

Example

Input Voltage = 5 V

Required error margin= 1%

Refer to Table 2-49 on page 2-108.

Equivalent voltage per LSB = $\frac{16mV}{m}$ for a 16V prescaler, with ADC in 10-bit mode

LSB Count = \pm (5.0 V × 1%) / (0.016)

LSB Count = **± 3.125**

Equivalent voltage per LSB = 8 mV for an 8 V prescaler, with ADC in 10-bit mode

LSB Count = \pm (5.0 V × 1%) / (0.008)

LSB Count = **± 6.25**

The 8 V prescaler satisfies the calculated LSB count accuracy requirement (see Table 2-49 on page 2-108).

Analog Configuration MUX (ACM)

The ACM is the interface between the FPGA, the Analog Block configurations, and the real-time counter. Actel Libero IDE will generate IP that will load and configure the Analog Block via the ACM. However, users are not limited to using the Libero IDE IP. This section provides a detailed description of the ACM's register map, truth tables for proper configuration of the Analog Block and RTC, as well as timing waveforms so users can access and control the ACM directly from their designs.

The Analog Block contains four 8-bit latches per Analog Quad that are initialized through the ACM. These latches

act as configuration bits for Analog Quads. The ACM block runs from the core voltage supply (1.5 V).

Access to the ACM is achieved via 8-bit address and data busses with enables. The pin list is provided in Table 2-36 on page 2-73. The ACM clock speed is limited to a maximum of 10 MHz, more than sufficient to handle the low-bandwidth requirements of configuring the Analog Block and the RTC (sub-block of the Analog Block).

Table 2-51 decodes the ACM address space and maps it to the corresponding Analog Quad and configuration byte for that quad.

Table 2-51 • ACM Address Decode Table for Analog Quad

ACMADDR [7:0] in Decimal	Name	Description	Associated Peripheral
0	-	-	Analog Quad
1	AQ0	Byte 0	Analog Quad
2	AQ0	Byte 1	Analog Quad
3	AQ0	Byte 2	Analog Quad
4	AQ0	Byte 3	Analog Quad
5	AQ1	Byte 0	Analog Quad
		·	Analog Quad
36	AQ8	Byte 3	Analog Quad
37	AQ9	Byte 0	Analog Quad
38	AQ9	Byte 1	Analog Quad
39	AQ9	Byte 2	Analog Quad
40	AQ9	Byte 3	Analog Quad
41		Undefined	Analog Quad
		Undefined	Analog Quad
63		Undefined	RTC
64	COUNTER0	Counter bits 7:0	RTC
65	COUNTER1	Counter bits 15:8	RTC
66	COUNTER2	Counter bits 23:16	RTC
67	COUNTER3	Counter bits 31:24	RTC
68	COUNTER4	Counter bits 39:32	RTC
72	MATCHREG0	Match register bits 7:0	RTC
73	MATCHREG1	Match register bits 15:8	RTC
74	MATCHREG2	Match register bits 23:16	RTC
75	MATCHREG3	Match register bits 31:24	RTC

Table 2-51 • ACM Address Decode Table for Analog Quad (Continued)

ACMADDR [7:0] in Decimal	Name	Description	Associated Peripheral
76	MATCHREG4	Match register bits 39:32	RTC
80	MATCHBITS0	Individual match bits 7:0	RTC
81	MATCHBITS1	Individual match bits 15:8	RTC
82	MATCHBITS2	Individual match bits 23:16	RTC
83	MATCHBITS3	Individual match bits 31:24	RTC
84	MATCHBITS4	Individual match bits 39:32	RTC
88	CTRL_STAT	Control (write) / Status (read) register bits 7:0	RTC
89	TEST_REG	Test register(s)	RTC

Note: ACMADDR bytes 1 to 40 pertain to the Analog Quads; bytes 64 to 89 pertain to the RTC.

ACM Characteristics 1

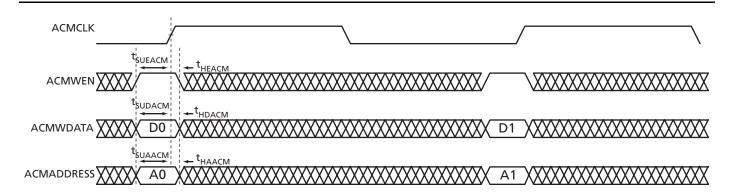


Figure 2-89 • ACM Write Waveform

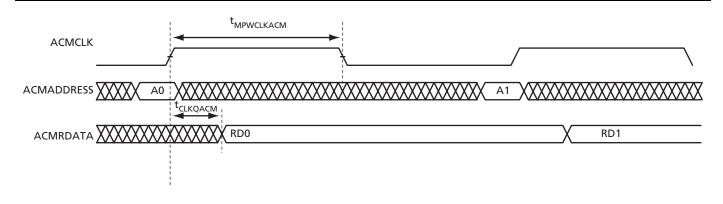


Figure 2-90 • ACM Read Waveform

^{1.} When addressing the RTC addresses (i.e., ACMADDR 64 to 89), there is no timing generator, and the rc_osc, byte_en, and aq_wen signals have no impact.

Timing Characteristics

Table 2-52 • Analog Configuration Multiplexer (ACM) Timing Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{CLKQACM}	Clock-to-Q of the ACM	19.73	22.48	26.42	ns
t _{SUDACM}	Data Setup time for the ACM	4.39	5.00	5.88	ns
t _{HDACM}	Data Hold time for the ACM	0.00	0.00	0.00	ns
t _{SUAACM}	Address Setup time for the ACM	4.73	5.38	6.33	ns
t _{HAACM}	Address Hold time for the ACM	0.00	0.00	0.00	ns
t _{SUEACM}	Enable Setup time for the ACM	3.93	4.48	5.27	ns
t _{HEACM}	Enable Hold time for the ACM	0.00	0.00	0.00	ns
t _{MPWARACM}	Asynchronous Reset Minimum Pulse Width for the ACM	10.00	10.00	10.00	ns
t _{REMARACM}	Asynchronous Reset Removal time for the ACM	12.98	14.79	17.38	ns
t _{RECARACM}	Asynchronous Reset Recovery time for the ACM	12.98	14.79	17.38	ns
t _{MPWCLKACM}	Clock Minimum Pulse Width for the ACM	45.00	45.00	45.00	ns
t _{FMAXCLKACM}	Clock Maximum Frequency for the ACM	10.00	10.00	10.00	MHz

Analog Quad ACM Description

Table 2-53 maps out the ACM space associated with configuration of the Analog Quads within the Analog Block. Table 2-53 shows the byte assignment within each quad and the function of each bit within each byte. Subsequent tables will explain each bit setting and how it corresponds to a particular configuration. After 3.3 V and 1.5 V are applied to Fusion, Analog Quad configuration registers are loaded with default settings until the initialization and configuration state machine changes them to user-defined settings.

Table 2-53 • Analog Quad ACM Byte Assignment

Byte	Bit	Signal (Bx)	Function	Default Setting
Byte 0	0	B0[0]	Scaling factor control – prescaler	Highest voltage range
(AV)	1	B0[1]	7	
	2	B0[2]	7	
	3	B0[3]	Analog MUX select	Prescaler
	4	B0[4]	Current monitor switch	Off
	5	B0[5]	Direct analog input switch	Off
	6	B0[6]	Selects V-pad polarity	Positive
	7	B0[7]	Prescaler op amp mode	Power-down
Byte 1	0	B1[0]	Scaling factor control – prescaler	Highest voltage range
(AC)	1	B1[1]	7	
	2	B1[2]	7	
	3	B1[3]	Analog MUX select	Prescaler
	4	B1[4]	7	
	5	B1[5]	Direct analog input switch	Off
	6	B1[6]	Selects C-pad polarity	Positive
	7	B1[7]	Prescaler op amp mode	Power-down
Byte 2	0	B2[0]	Internal chip temperature monitor	Off
(AG)	1	B2[1]	Spare	-
	2	B2[2]	Current drive control	Lowest current
	3	B2[3]	7	
	4	B2[4]	Spare	-
	5	B2[5]	Spare	-
	6	B2[6]	Selects G-pad polarity	Positive
	7	B2[7]	Selects low/high drive	Low drive
Byte 3	0	B3[0]	Scaling factor control – prescaler	Highest voltage range
(AT)	1	B3[1]	7	
	2	B3[2]	7	
	3	B3[3]	Analog MUX select	Prescaler
	4	B3[4]	7	
	5	B3[5]	Direct analog input switch	Off
	6	B3[6]	-	-
	7	B3[7]	Prescaler op amp mode	Power-down

Table 2-54 details the settings available to control the prescaler values of the AV, AC, and AT pins. Note that the AT pin has a reduced number of available prescaler values.

Table 2-54 • Prescaler Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[2:0]	Scaling Factor, Pad to ADC Input	LSB for an 8-Bit Conversion ² (mV)	LSB for a 10-Bit Conversion ² (mV)	LSB for a 12-Bit Conversion ² (mV)	Full-Scale Voltage	Range Name
000 1	0.15625	64	16	4	16.368 V	16 V
001	0.3125	32	8	2	8.184 V	8 V
010 1	0.625	16	4	1	4.092 V	4 V
011	1.25	8	2	0.5	2.046 V	2 V
100	2.5	4	1	0.25	1.023 V	1 V
101	5.0	2	0.5	0.125	0.5115 V	0.5 V
110	10.0	1	0.25	0.0625	0.25575 V	0.25 V
111	20.0	0.5	0.125	0.03125	0.127875 V	0.125 V

Notes:

- 1. These are the only valid ranges for the Temperature Monitor Block Prescaler.
- 2. LSB voltage equivalences assume VAREF = 2.56 V.

Table 2-55 details the settings available to control the MUX within each of the AV, AC, and AT circuits. This MUX determines whether the signal routed to the ADC is the direct analog input, prescaled signal, or output of either the Current Monitor Block or the Temperature Monitor Block.

Table 2-55 • Analog Multiplexer Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[4]	Control Lines Bx[3]	ADC Connected To
0	0	Prescaler
0	1	Direct input
1	0	Current amplifier / temperature monitor
1	1	Not valid

Table 2-56 details the settings available to control the Direct Analog Input switch for the AV, AC, and AT pins.

Table 2-56 • Direct Analog Input Switch Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[5]	Direct Input Switch
0	Off
1	On

Table 2-57 details the settings available to control the polarity of the signals coming to the AV, AC, and AT pins. Note that the only valid setting for the AT pin is logic 0 to support positive voltages.

Table 2-57 • Voltage Polarity Control Truth Table— AV (x = 0), AC (x = 1), and AT (x = 3)*

Control Lines Bx[6]	Input Signal Polarity
0	Positive
1	Negative

Note: *The B3[6] signal for the AT pad should be kept at logic 0 to accept only positive voltages.

Table 2-58 details the settings available to either power down or enable the prescaler associated with the analog inputs AV, AC, and AT.

Table 2-58 • Prescaler Op Amp Power-Down Truth Table— AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[7]	Prescaler Op Amp
0	Power-down
1	Operational

Table 2-59 details the settings available to enable the Current Monitor Block associated with the AC pin.

Table 2-59 • Current Monitor Input Switch Control Truth Table—AV (x = 0)

Control Lines B0[4]	Current Monitor Input Switch
0	Off
1	On

Table 2-60 details the settings available to configure the drive strength of the gate drive when not in high-drive mode.

Table 2-60 • Low-Drive Gate Driver Current Truth Table (AG)

Control Lines B2[3]	Control Lines B2[2]	Current (μA)
0	0	1
0	1	3
1	0	10
1	1	30

Table 2-61 details the settings available to set the polarity of the gate driver (either p-channel- or n-channel-type devices).

Table 2-61 • Gate Driver Polarity Truth Table (AG)

Control Lines B2[6]	Gate Driver Polarity
0	Positive
1	Negative

Table 2-62 details the settings available to turn on the Gate Driver and set whether high-drive mode is on or off.

Table 2-62 • Gate Driver Control Truth Table (AG)

Control Lines B2[7]	GDON	Gate Driver
0	0	Off
0	1	Low drive on
1	0	Off
1	1	High drive on

Table 2-63 details the settings available to turn on and off the chip internal temperature monitor.

Table 2-63 • Internal Temperature Monitor Control Truth Table

Control Lines B2[0]	PDTMB	Chip Internal Temperature Monitor
0	0	Off
1	1	On

User I/Os

Introduction

Fusion devices feature a flexible I/O structure, supporting a range of mixed voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V) through a bank-selectable voltage. Table 2-65 on page 2-119, Table 2-66 on page 2-119, Table 2-67 on page 2-119, and Table 2-68 on page 2-120 show the voltages and the compatible I/O standards. I/Os provide programmable slew rates, drive strengths, weak pull-up, and weak pull-down circuits. 3.3 V PCI and 3.3 V PCI-X are 5 V-tolerant. See the "5 V Input Tolerance" section on page 2-129 for possible implementations of 5 V tolerance.

All I/Os are in a known state during power-up, and any power-up sequence is allowed without current impact. Refer to the "I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)" section on page 3-5 for more information. In low power standby or sleep mode (V_{CC} is OFF, V_{CC33A} is ON, V_{CCI} is ON) or when the resource is not used, digital inputs are tristated, digital outputs are tristated, and digital bibufs (input/output) are tristated.

I/O Tile

The Fusion I/O tile provides a flexible, programmable structure for implementing a large number of I/O standards. In addition, the registers available in the I/O tile in selected I/O banks can be used to support high-performance register inputs and outputs, with register enable if desired (Figure 2-91 on page 2-118). The registers can also be used to support the JESD-79C DDR standard within the I/O structure (see the "Double Data Rate (DDR) Support" section on page 2-124 for more information).

As depicted in Figure 2-92 on page 2-123, all I/O registers share one CLR port. The output register and output enable register share one CLK port. Refer to the "I/O Registers" section on page 2-123 for more information.

I/O Banks and I/O Standards Compatibility

The digital I/Os are grouped into I/O voltage banks. There are three digital I/O banks on the AFS090 and AFS250 devices and four digital I/O banks on the AFS600 and AFS1500 devices. Figure 2-105 on page 2-143 and Figure 2-106 on page 2-143 show the bank configuration by device. The north side of the I/O in the AFS600 and AFS1500 devices comprises two banks of Actel Pro I/Os. The Actel Pro I/Os support a wide number of voltage-referenced I/O standards in addition to the multitude of single-ended and differential I/O standards common throughout all Actel digital I/Os. Each I/O voltage bank has dedicated I/O supply and ground voltages ($V_{CCI}/GNDQ$ for input buffers and $V_{CCI}/GNDQ$ GND for output buffers). Because of these dedicated supplies, only I/Os with compatible standards can be assigned to the same I/O voltage bank. Table 2-66 and Table 2-67 on page 2-119 show the required voltage compatibility values for each of these voltages.

For more information about I/O and global assignments to I/O banks, refer to the specific pin table of the device in the "Package Pin Assignments" section on page 4-1 and the "User I/O Naming Convention" section on page 2-142.

Each Pro I/O bank is divided into minibanks. Any user I/O in a V_{REF} minibank (a minibank is the region of scope of a V_{REF} pin) can be configured as a V_{REF} pin (Figure 2-91 on page 2-118). Only one V_{REF} pin is needed to control the entire V_{REF} minibank. The location and scope of the V_{REF} minibanks can be determined by the I/O name. For details, see the "User I/O Naming Convention" section on page 2-142.

Table 2-67 on page 2-119 shows the I/O standards supported by Fusion devices and the corresponding voltage levels.

I/O standards are compatible if the following are true:

- Their V_{CCI} values are identical.
- If both of the standards need a V_{REF} their V_{REF} values must be identical (Pro I/O only).

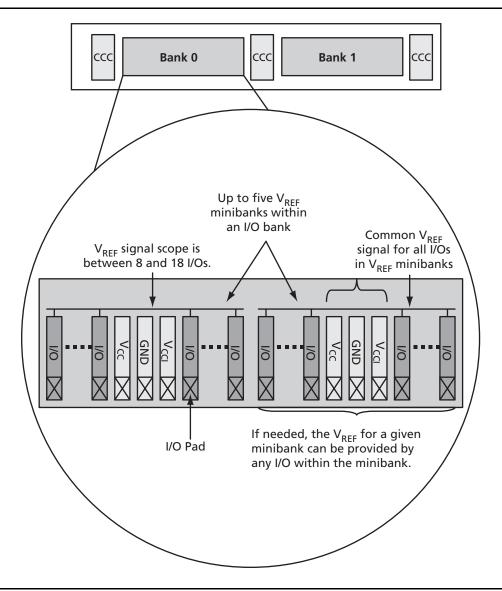


Figure 2-91 • Fusion Pro I/O Bank Detail Showing V_{REF} Minibanks (north side of AFS600 and AFS1500)

Table 2-64 • I/O Standards Supported by Bank Type

I/O Bank	Single-Ended I/O Standards	Differential I/O Standards	Voltage-Referenced	Hot- Swap
Standard I/O	LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V / 1.8 V / 1.5 V, LVCMOS 2.5/5.0 V	-	-	Yes
Advanced I/O	LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V / 1.8 V / 1.5 V, LVCMOS 2.5/5.0 V, 3.3 V PCI / 3.3 V PCI-X	LVPECL and LVDS	_	-
Pro I/O	LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V / 1.8 V / 1.5 V, LVCMOS 2.5/5.0 V, 3.3 V PCI / 3.3 V PCI-X	LVPECL and LVDS	GTL+ 2.5 V / 3.3 V, GTL 2.5 V / 3.3 V, HSTL Class I and II, SSTL2 Class I and II, SSTL3 Class I and II	Yes

Table 2-65 • I/O Bank Support by Device

I/O Bank	AFS090	AFS250	AFS600	AFS1500
Standard I/O	N	N	-	-
Advanced I/O	E, W	E, W	E, W	E, W
Pro I/O	_	-	N	N
Analog Quad	S	S	S	S

Note: $E = East \ side \ of \ the \ device$ $W = West \ side \ of \ the \ device$ $N = North \ side \ of \ the \ device$ $S = South \ side \ of \ the \ device$

Table 2-66 ● Fusion V_{CCI} Voltages and Compatible Standards

V _{CCI} (typical)	Compatible Standards
3.3 V	LVTTL/LVCMOS 3.3, PCI 3.3, SSTL3 (Class I and II),* GTL+ 3.3, GTL 3.3,* LVPECL
2.5 V	LVCMOS 2.5, LVCMOS 2.5/5.0, SSTL2 (Class I and II),* GTL+ 2.5,* GTL 2.5,* LVDS, BLVDS, M-LVDS
1.8 V	LVCMOS 1.8
1.5 V	LVCMOS 1.5, HSTL (Class I),* HSTL (Class II)*

Note: *I/O standard supported by Pro I/O banks.

Table 2-67 ● Fusion V_{REF} Voltages and Compatible Standards*

V _{REF} (typical)	Compatible Standards						
1.5 V	SSTL3 (Class I and II)						
1.25 V	SSTL2 (Class I and II)						
1.0 V	GTL+ 2.5, GTL+ 3.3						
0.8 V	GTL 2.5, GTL 3.3						
0.75 V	HSTL (Class I), HSTL (Class II)						

Note: *I/O standards supported by Pro I/O banks.

Table 2-68 • Fusion Standard and Advanced I/O Features

I/O Bank Voltage (typical)	Minibank Voltage (typical)	LVTT/LVCMOS 3.3 V	LVCM0S 2.5 V	LVCMOS 1.8 V	LVCMOS 1.5 V	3.3 V PCI / PCI-X	GTL + (3.3 V)	GTL + (2.5 V)	GTL (3.3 V)	GTL (2.5 V)	HSTL Class I and II (1.5 V)	SSTL2 Class I and II (2.5 V)	SSTL3 Class I and II (3.3 V)	LVDS (2.5 V ± 5%)	LVPECL (3.3 V)
3.3 V	-														
	0.80 V														
	1.00 V														
	1.50 V														
2.5 V	-														
	0.80 V														
	1.00 V														
	1.25 V														
1.8 V	_														
1.5 V	_														
	0.75 V														

Note: White box: Allowable I/O standard combinations Gray box: Illegal I/O standard combinations

Features Supported on Pro I/Os

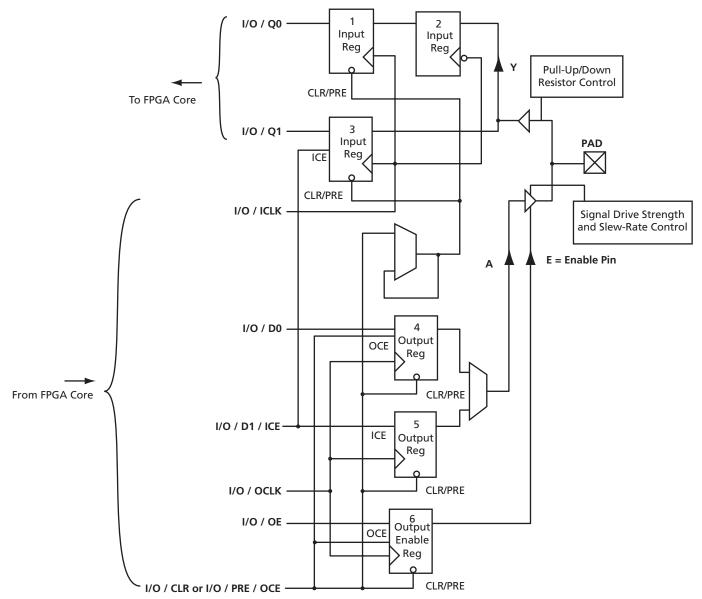
Table 2-69 lists all features supported by transmitter/receiver for single-ended and differential I/Os.

Table 2-69 • Fusion Pro I/O Features

Feature	Description				
Single-ended and voltage-referenced transmitter features	Hot insertion in every mode except PCI or 5 V input tolerant (these modes use clamp diodes and do not allow hot insertion)				
	Activation of hot insertion (disabling the clamp diode) is selectable by I/Os.				
	Weak pull-up and pull-down				
	Two slew rates				
	 Skew between output buffer enable/disable time: 2 ns delay (rising edge) and 0 ns delay (falling edge); see "Selectable Skew between Output Buffer Enable/ Disable Time" on page 2-134 for more information 				
	Five drive strengths				
	• 5 V-tolerant receiver ("5 V Input Tolerance" section on page 2-129)				
	 LVTTL/LVCMOS 3.3 V outputs compatible with 5 V TTL inputs ("5 V Output Toler- ance" section on page 2-132) 				
	High performance (Table 2-73 on page 2-128)				
Single-ended receiver features	Schmitt trigger option				
	ESD protection				
	• Programmable delay: 0 ns if bypassed, 0.625 ns with '000' setting, 6.575 ns with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V)				
	High performance (Table 2-73 on page 2-128)				
	 Separate ground planes, GND/GNDQ, for input buffers only to avoid output- induced noise in the input circuitry 				
Voltage-referenced differential receiver features	• Programmable Delay: 0 ns if bypassed, 0.625 ns with '000' setting, 6.575 ns with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V)				
	High performance (Table 2-73 on page 2-128)				
	 Separate ground planes, GND/GNDQ, for input buffers only to avoid output- induced noise in the input circuitry 				
CMOS-style LVDS, BLVDS, M-LVDS, or LVPECL transmitter	Two I/Os and external resistors are used to provide a CMOS-style LVDS, BLVDS, M-LVDS, or LVPECL transmitter solution.				
	Activation of hot insertion (disabling the clamp diode) is selectable by I/Os.				
	Weak pull-up and pull-down				
	Fast slew rate				
LVDS/LVPECL differential receiver features	ESD protection				
	High performance (Table 2-73 on page 2-128)				
	 Programmable delay: 0.625 ns with '000' setting, 6.575 ns with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V) 				
	Separate input buffer ground and power planes to avoid output-induced noise in the input circuitry				

Table 2-70 • Maximum I/O Frequency for Single-Ended, Voltage-Referenced, and Differential I/Os; All I/O Bank Types (maximum drive strength and high slew selected)

Specification	Performance Up To
LVTTL/LVCMOS 3.3 V	200 MHz
LVCMOS 2.5 V	250 MHz
LVCMOS 1.8 V	200 MHz
LVCMOS 1.5 V	130 MHz
PCI	200 MHz
PCI-X	200 MHz
HSTL-I	300 MHz
HSTL-II	300 MHz
SSTL2-I	300 MHz
SSTL2-II	300 MHz
SSTL3-I	300 MHz
SSTL3-II	300 MHz
GTL+ 3.3 V	300 MHz
GTL+ 2.5 V	300 MHz
GTL 3.3 V	300 MHz
GTL 2.5 V	300 MHz
LVDS	350 MHz
LVPECL	300 MHz



I/O Registers

Each I/O module contains several input, output, and enable registers. Refer to Figure 2-92 for a simplified representation of the I/O block.

The number of input registers is selected by a set of switches (not shown in Figure 2-92) between registers to implement single or differential data transmission to and from the FPGA core. The Designer software sets these switches for the user.

A common CLR/PRE signal is employed by all I/O registers when I/O register combining is used. Input register 2 does not have a CLR/PRE pin, as this register is used for DDR implementation. The I/O register combining must satisfy some rules.

Note: Fusion I/Os have registers to support DDR functionality (see the "Double Data Rate (DDR) Support" section on page 2-124 for more information).

Figure 2-92 • I/O Block Logical Representation

Double Data Rate (DDR) Support

Fusion Pro I/Os support 350 MHz DDR inputs and outputs. In DDR mode, new data is present on every transition of the clock signal. Clock and data lines have identical bandwidths and signal integrity requirements, making it very efficient for implementing very high-speed systems.

DDR interfaces can be implemented using HSTL, SSTL, LVDS, and LVPECL I/O standards. In addition, high-speed DDR interfaces can be implemented using LVDS I/O.

Input Support for DDR

The basic structure to support a DDR input is shown in Figure 2-93. Three input registers are used to capture

incoming data, which is presented to the core on each rising edge of the I/O register clock.

Each I/O tile on Fusion devices supports DDR inputs.

Output Support for DDR

The basic DDR output structure is shown in Figure 2-94 on page 2-125. New data is presented to the output every half clock cycle. Note: DDR macros and I/O registers do not require additional routing. The combiner automatically recognizes the DDR macro and pushes its registers to the I/O register area at the edge of the chip. The routing delay from the I/O registers to the I/O buffers is already taken into account in the DDR macro.

Refer to the Actel application note *Using DDR for Fusion Devices* for more information.

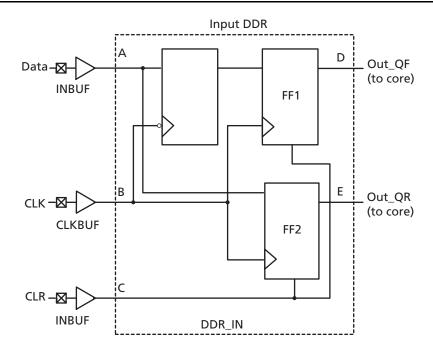


Figure 2-93 • DDR Input Register Support in Fusion Devices

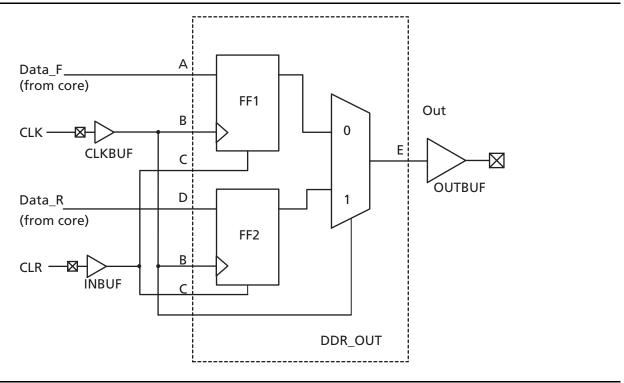


Figure 2-94 • DDR Output Support in Fusion Devices

Hot-Swap Support

Hot-swapping (also called hot plugging) is the operation of hot insertion or hot removal of a card in (or from) a powered-up system. The levels of hot-swap support and examples of related applications are described in Table 2-71. The I/Os also need to be configured in hot insertion mode if hot plugging compliance is required.

Table 2-71 • Levels of Hot-Swap Support

Hot Swapping Level	Description	Power Applied to Device	Bus State	Card Ground Connection	Device Circuitry Connected to Bus Pins	Example of Application with Cards that Contain Fusion Devices	Compliance of Fusion Devices
1	Cold-swap	No	-	-	-	System and card with Actel FPGA chip are powered down, then card gets plugged into system, then power supplies are turned on for system but not for FPGA on card.	do not have to be set to hot insertion mode.
2	Hot-swap while reset	Yes	Held in reset state	Must be made and maintained for 1 ms before, during, and after insertion/ removal	-	In PCI hot plug specification, reset control circuitry isolates the card busses until the card supplies are at their nominal operating levels and stable.	hot insertion mode.
3	Hot-swap while bus idle	Yes	Held idle (no ongoing I/O processes during insertion/ removal)	Same as Level 2	glitch-free during power-up or	Board bus shared with card bus is "frozen," and there is no toggling activity on bus. It is critical that the logic states set on the bus signal do not get disturbed during card insertion/removal.	with two levels of staging. I/Os have to be set to hot insertion mode.
4	Hot-swap on an active bus	Yes	Bus may have active I/O processes ongoing, but device being inserted or removed must be idle.	Same as Level 2	Same as Level 3	states set on the bus	with two levels of staging. I/Os have to be set to hot insertion mode.

For Fusion devices requiring Level 3 and/or Level 4 compliance, the board drivers connected to Fusion I/Os need to have 10 k Ω (or lower) output drive resistance at hot insertion, and 1 k Ω (or lower) output drive resistance at hot removal. This is the resistance of the transmitter sending a signal to the Fusion I/O, and no additional resistance is needed on the board. If that cannot be assured, three levels of staging can be used to meet Level 3 and/or Level 4 compliance. Cards with two levels of staging should have the following sequence:

- 1. Grounds
- 2. Powers, I/Os, other pins

Cold-Sparing Support

Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically connected to the system that is in operation. This means that all input buffers of the subsystem must present very high input impedance with no power applied so as not to disturb the operating portion of the system.

Pro I/O banks and standard I/O banks fully support cold-sparing.

For Pro I/O banks, standards such as PCI that require I/O clamp diodes, can also achieve cold-sparing compliance, since clamp diodes get disconnected internally when the supplies are at 0 V.

For Advanced I/O banks, since the I/O clamp diode is always active, cold-sparing can be accomplished either by employing a bus switch to isolate the device I/Os from the rest of the system or by driving each advanced I/O pin to 0 V.

If Standard I/O banks are used in applications requiring cold-sparing, a discharge path from the power supply to ground should be provided. This can be done with a discharge resistor or a switched resistor. This is necessary because the standard I/O buffers do not have built-in I/O clamp diodes.

If a resistor is chosen, the resistor value must be calculated based on decoupling capacitance on a given power supply on the board (this decoupling capacitor is in parallel with the resistor). The RC time constant should ensure full discharge of supplies before cold-sparing functionality is required. The resistor is necessary to ensure that the power pins are discharged to ground every time there is an interruption of power to the device.

I/O cold-sparing may add additional current if the pin is configured with either a pull-up or pull down resistor and driven in the opposite direction. A small static current is induced on each IO pin when the pin is driven to a voltage opposite to the weak pull resistor. The current is equal to the voltage drop across the input pin divided by the pull resistor. Please refer to Table 2-92 on

page 2-155, Table 2-93 on page 2-155, and Table 2-94 on page 2-157 for the specific pull resistor value for the corresponding I/O standard.

For example, assuming an LVTTL 3.3 V input pin is configured with a weak Pull-up resistor, a current will flow through the pull-up resistor if the input pin is driven low. For an LVTTL 3.3 V, pull-up resistor is ~45 k Ω and the resulting current is equal to 3.3 V / 45 k Ω = 73 μ A for the I/O pin. This is true also when a weak pull-down is chosen and the input pin is driven high. Avoiding this current can be done by driving the input low when a weak pull-down resistor is used, and driving it high when a weak pull-up resistor is used.

In Active and Static modes, this current draw can occur in the following cases:

- Input buffers with pull-up, driven low
- Input buffers with pull-down, driven high
- Bidirectional buffers with pull-up, driven low
- Bidirectional buffers with pull-down, driven high
- Output buffers with pull-up, driven low
- Output buffers with pull-down, driven high
- Tristate buffers with pull-up, driven low
- Tristate buffers with pull-down, driven high

Electrostatic Discharge (ESD) Protection

Fusion devices are tested per JEDEC Standard JESD22-A114-B.

Fusion devices contain clamp diodes at every I/O, global, and power pad. Clamp diodes protect all device pads against damage from ESD as well as from excessive voltage transients.

Each I/O has two clamp diodes. One diode has its positive (P) side connected to the pad and its negative (N) side connected to V_{CCI} . The second diode has its P side connected to GND and its N side connected to the pad. During operation, these diodes are normally biased in the Off state, except when transient voltage is significantly above V_{CCI} or below GND levels.

By selecting the appropriate I/O configuration, the diode is turned on or off. Refer to Table 2-72 on page 2-128 and Table 2-73 on page 2-128 for more information about I/O standards and the clamp diode.

The second diode is always connected to the pad, regardless of the I/O configuration selected.

Table 2-72 • Fusion Standard and Advanced I/O – Hot-Swap and 5 V Input Tolerance Capabilities

	Clamp Diode		Hot Insertion		5 V Input	Tolerance ¹		
I/O Assignment	Standard I/O	Advanced I/O	Standard I/O	Advanced I/O	Standard I/O	Advanced I/O	Input Buffer	Output Buffer
3.3 V LVTTL/LVCMOS	No	Yes	Yes	No	Yes ¹	Yes ¹	Enabled/	'Disabled
3.3 V PCI, 3.3 V PCI-X	N/A	Yes	N/A	No	N/A	Yes ¹	Enabled/	'Disabled
LVCMOS 2.5 V	No	Yes	Yes	No	Yes ¹	Yes ²	Enabled/	'Disabled
LVCMOS 2.5 V / 5.0 V	No	Yes	Yes	No	Yes ¹	Yes ²	Enabled/	'Disabled
LVCMOS 1.8 V	No	Yes	Yes	No	No	No	Enabled/	'Disabled
LVCMOS 1.5 V	No	Yes	Yes	No	No	No	Enabled/Disabled	
Differential, LVDS/BLVDS/ M-LVDS/ LVPECL ³	N/A	Yes	N/A	No	N/A	No	Enabled/Disabled	

Notes:

- 1. Can be implemented with an external IDT bus switch, resistor divider, or Zener with resistor.
- 2. Can be implemented with an external resistor and an internal clamp diode.
- 3. Bidirectional LVPECL buffers are not supported. I/Os can be configured as either input buffers or output buffers.

Table 2-73 • Fusion Pro I/O – Hot-Swap and 5 V Input Tolerance Capabilities

I/O Assignment	Clamp Diode	Hot Insertion	5 V Input Tolerance	Input Buffer	Output Buffer	
3.3 V LVTTL/LVCMOS	No	Yes	Yes ¹	Enabled	/Disabled	
3.3 V PCI, 3.3 V PCI-X	Yes	No	Yes ¹	Enabled	/Disabled	
LVCMOS 2.5 V ³	No	Yes	No	Enabled/Disabled		
LVCMOS 2.5 V / 5.0 V ³	Yes	No	Yes ²	Enabled/Disabled		
LVCMOS 1.8 V	No	Yes	No	Enabled/Disabled		
LVCMOS 1.5 V	No	Yes	No	Enabled/Disabled		
Voltage-Referenced Input Buffer	No	Yes	No	Enabled/Disabled		
Differential, LVDS/BLVDS/M-LVDS/LVPECL ⁴	No	Yes	No	Enabled/Disabled		

- 1. Can be implemented with an external IDT bus switch, resistor divider, or Zener with resistor.
- 2. Can be implemented with an external resistor and an internal clamp diode.
- 3. In the SmartGen, FlashROM, Flash Memory System Builder, and Analog System Builder User's Guide, select the LVCMOS5 macro for the LVCMOS 2.5 V / 5.0 V I/O standard or the LVCMOS25 macro for the LVCMOS 2.5 V I/O standard.
- 4. Bidirectional LVPECL buffers are not supported. I/Os can be configured as either input buffers or output buffers.

5 V Input Tolerance

I/Os can support 5 V input tolerance when LVTTL 3.3 V, LVCMOS 3.3 V, LVCMOS 2.5 V / 5 V, and LVCMOS 2.5 V configurations are used (see Table 2-74 on page 2-132 for more details). There are four recommended solutions (see Figure 2-95 to Figure 2-98 on page 2-132 for details of board and macro setups) to achieve 5 V receiver tolerance. All the solutions meet a common requirement of limiting the voltage at the input to 3.6 V or less. In fact, the I/O absolute maximum voltage rating is 3.6 V, and any voltage above 3.6 V may cause long-term gate oxide failures.

Solution 1

The board-level design needs to ensure that the reflected waveform at the pad does not exceed the limits provided in Table 3-4 on page 3-4. This is a long-term reliability requirement.

This scheme will also work for a 3.3 V PCI / PCI-X configuration, but the internal diode should not be used for clamping, and the voltage must be limited by the two external resistors, as explained below. Relying on the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

The following are some examples of possible resistor values (based on a simplified simulation model with no line effects and 10 Ω transmitter output resistance, where Rtx_out_high = (V_{CCI} - V_{OH}) / I_{OH}, Rtx_out_low = V_{OL} / I_{OL}).

Example 1 (high speed, high current):

Rtx_out_high = Rtx_out_low = 10 Ω

R1 = 36 Ω (±5%), P(r1)min = 0.069 Ω

R2 = 82 Ω (±5%), P(r2)min = 0.158 Ω

 $Imax_tx = 5.5 \text{ V} / (82 * 0.95 + 36 * 0.95 + 10) = 45.04 \text{ mA}$

 $t_{RISE} = t_{FALL} = 0.85$ ns at C_pad_load = 10 pF (includes up to 25% safety margin)

t_{RISE} = t_{FALL} = 4 ns at C_pad_load = 50 pF (includes up to 25% safety margin)

Example 2 (low-medium speed, medium current):

Rtx_out_high = Rtx_out_low = 10 Ω

R1 = 220 Ω (±5%), P(r1)min = 0.018 Ω

R2 = 390 Ω (±5%), P(r2)min = 0.032 Ω

 $lmax_tx = 5.5 V/(220 * 0.95 + 390 * 0.95 + 10) = 9.17 mA$

 $t_{RISE} = t_{FALL} = 4 \text{ ns at C_pad_load} = 10 \text{ pF (includes up to 25\% safety margin)}$

t_{RISE} = t_{FALL} = 20 ns at C_pad_load = 50 pF (includes up to 25% safety margin)

Other values of resistors are also allowed as long as the resistors are sized appropriately to limit the voltage at the receiving end to 2.5 V < Vin(rx) < 3.6 V when the transmitter sends a logic 1. This range of Vin_dc(rx) must be assured for any combination of transmitter supply (5 V \pm 0.5 V), transmitter output resistance, and board resistor tolerances.

Temporary overshoots are allowed according to Table 3-4 on page 3-4.

Solution 1

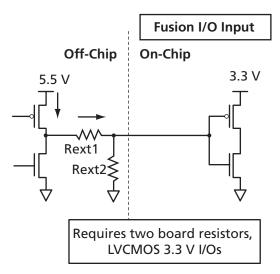


Figure 2-95 • Solution 1

Solution 2

The board-level design must ensure that the reflected waveform at the pad does not exceed limits provided in Table 3-4 on page 3-4. This is a long-term reliability requirement.

This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used for clamping, and the voltage must be limited by the external resistors and Zener, as shown in Figure 2-96. Relying on the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

Solution 2

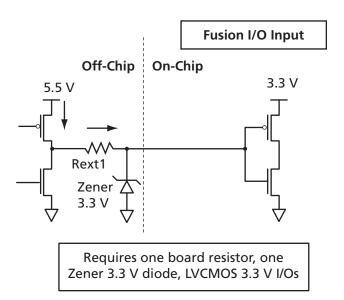


Figure 2-96 • Solution 2

Solution 3

The board-level design must ensure that the reflected waveform at the pad does not exceed limits provided in Table 3-4 on page 3-4. This is a long-term reliability requirement.

This scheme will also work for a 3.3 V PCI/PCIX configuration, but the internal diode should not be used for clamping, and the voltage must be limited by the bus switch, as shown in Figure 2-97. Relying on the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

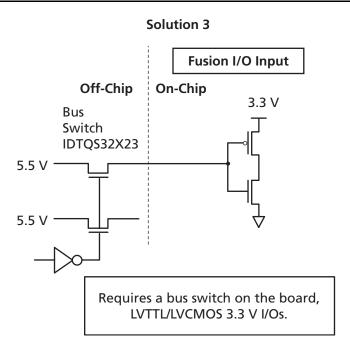


Figure 2-97 • Solution 3

Solution 4

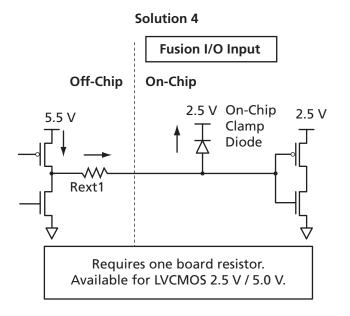


Figure 2-98 • Solution 4

Table 2-74 • Comparison Table for 5 V–Compliant Receiver Scheme

Scheme	Board Components	Speed	Current Limitations
1	Two resistors	Low to high ¹	Limited by transmitter's drive strength
2	Resistor and Zener 3.3 V	Medium	Limited by transmitter's drive strength
3	Bus switch	High	N/A
4	Minimum resistor value ² • $R = 47 \Omega$ at $T_J = 70^{\circ}C$ • $R = 150 \Omega$ at $T_J = 85^{\circ}C$ • $R = 420 \Omega$ at $T_J = 100^{\circ}C$	Medium	Maximum diode current at 100% duty cycle, signal constantly at '1' • 52.7 mA at $T_J = 70^{\circ}\text{C}$ / 10-year lifetime • 16.5 mA at $T_J = 85^{\circ}\text{C}$ / 10-year lifetime • 5.9 mA at $T_J = 100^{\circ}\text{C}$ / 10-year lifetime For duty cycles other than 100%, the currents can be increased by a factor = 1 / (duty cycle). Example: 20% duty cycle at 70°C Maximum current = $(1 / 0.2) * 52.7 \text{ mA} = 5 * 52.7 \text{ mA} = 263.5 \text{ mA}$

Notes:

- 1. Speed and current consumption increase as the board resistance values decrease.
- 2. Resistor values ensure I/O diode long-term reliability.

5 V Output Tolerance

Fusion I/Os must be set to 3.3 V LVTTL or 3.3 V LVCMOS mode to reliably drive 5 V TTL receivers. It is also critical that there be NO external I/O pull-up resistor to 5 V, since this resistor would pull the I/O pad voltage beyond the 3.6 V absolute maximum value and consequently cause damage to the I/O.

When set to 3.3 V LVTTL or 3.3 V LVCMOS mode, Fusion I/Os can directly drive signals into 5 V TTL receivers. In fact, $V_{OL} = 0.4 \text{ V}$ and $V_{OH} = 2.4 \text{ V}$ in both 3.3 V LVTTL and 3.3 V LVCMOS modes exceed the $V_{IL} = 0.8 \text{ V}$ and $V_{IH} = 2 \text{ V}$ level requirements of 5 V TTL receivers. Therefore, level '1' and level '0' will be recognized correctly by 5 V TTL receivers.

Simultaneously Switching Outputs and PCB Layout

Simultaneously switching outputs (SSOs) can produce signal integrity problems on adjacent signals that are not part of the SSO bus. Both inductive and capacitive coupling parasitics of bond wires inside packages and of traces on PCBs will transfer noise from SSO busses onto signals adjacent to those busses. Additionally, SSOs can produce ground bounce noise and $V_{\rm CCI}$ dip noise. These two noise types are caused by rapidly changing currents through GND and $V_{\rm CCI}$ package pin inductances during switching activities:

- Ground bounce noise voltage = L(GND) * di/dt
- V_{CCI} dip noise voltage = L(V_{CCI}) * di/dt

Any group of four or more input pins switching on the same clock edge is considered an SSO bus. The shielding should be done both on the board and inside the package unless otherwise described.

In-package shielding can be achieved in several ways; the required shielding will vary depending on whether pins next to SSO bus are LVTTL/LVCMOS inputs, LVTTL/LVCMOS outputs, or GTL/SSTL/HSTL/LVDS/LVPECL inputs and outputs. Board traces in the vicinity of the SSO bus have to be adequately shielded from mutual coupling and inductive noise that can be generated by the SSO bus. Also, noise generated by the SSO bus needs to be reduced inside the package.

PCBs perform an important function in feeding stable supply voltages to the IC and, at the same time, maintaining signal integrity between devices.

Key issues that need to considered are as follows:

- Power and ground plane design and decoupling network design
- Transmission line reflections and terminations

Selectable Skew between Output Buffer Enable/Disable Time

The configurable skew block is used to delay the output buffer assertion (enable) without affecting deassertion (disable) time.

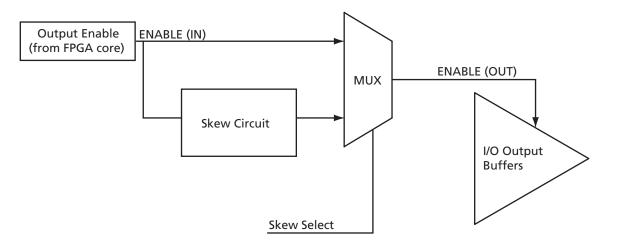


Figure 2-99 • Block Diagram of Output Enable Path

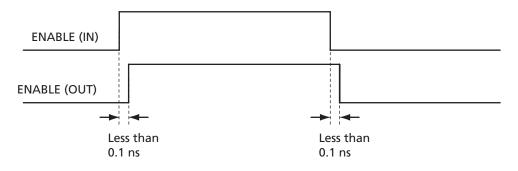


Figure 2-100 • Timing Diagram (option1: bypasses skew circuit)

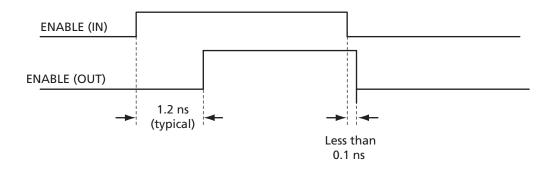


Figure 2-101 • Timing Diagram (option 2: enables skew circuit)

At the system level, the skew circuit can be used in applications where transmission activities on bidirectional data lines need to be coordinated. This circuit, when selected, provides a timing margin that can prevent bus contention and subsequent data loss or transmitter overstress due to transmitter-to-transmitter

current shorts. Figure 2-102 presents an example of the skew circuit implementation in a bidirectional communication system. Figure 2-103 shows how bus contention is created, and Figure 2-104 on page 2-136 shows how it can be avoided with the skew circuit.

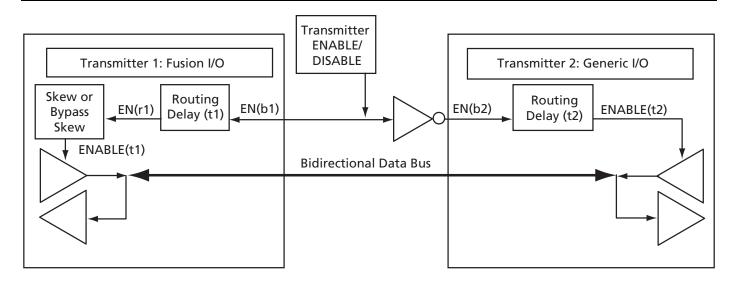


Figure 2-102 • Example of Implementation of Skew Circuits in Bidirectional Transmission Systems Using Fusion Devices

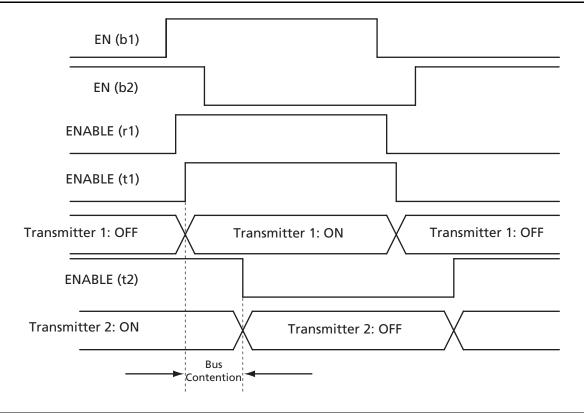
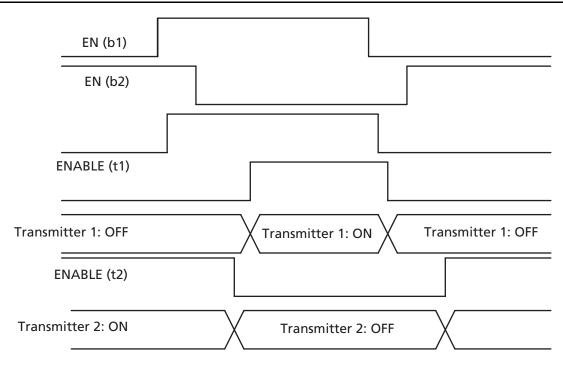



Figure 2-103 • Timing Diagram (bypasses skew circuit)

Advanced v1.4 2-135

Result: No Bus Contention

Figure 2-104 • Timing Diagram (with skew circuit selected)

Weak Pull-Up and Weak Pull-Down Resistors

Fusion devices support optional weak pull-up and pull-down resistors for each I/O pin. When the I/O is pulled up, it is connected to the V_{CCI} of its corresponding I/O bank. When it is pulled down, it is connected to GND. Refer to Table 2-94 on page 2-157 for more information.

Slew Rate Control and Drive Strength

Fusion devices support output slew rate control: high and low. The high slew rate option is recommended to minimize the propagation delay. This high-speed option may introduce noise into the system if appropriate signal integrity measures are not adopted. Selecting a low slew rate reduces this kind of noise but adds some delays in the system. Low slew rate is recommended when bus transients are expected. Drive strength should also be selected according to the design requirements and noise immunity of the system.

The output slew rate and multiple drive strength controls are available in LVTTL/LVCMOS 3.3 V, LVCMOS 2.5 V, LVCMOS 2.5 V / 5.0 V input, LVCMOS 1.8 V, and LVCMOS 1.5 V. All other I/O standards have a high output slew rate by default.

For Fusion slew rate and drive strength specifications, refer to the appropriate I/O bank table:

- Fusion Standard I/O (Table 2-75 on page 2-137)
- Fusion Advanced I/O (Table 2-76 on page 2-137)
- Fusion Pro I/O (Table 2-77 on page 2-137)

Table 2-79 on page 2-139 lists the default values for the above selectable I/O attributes as well as those that are preset for each I/O standard.

Refer to Table 2-75, Table 2-76, and Table 2-77 on page 2-137 for SLEW and OUT_DRIVE settings. Table 2-78 on page 2-138 lists the I/O default attributes. Table 2-79 on page 2-139 lists the voltages for the supported I/O standards.

Table 2-75 ● Fusion Standard I/O Standards—OUT_DRIVE Settings

	OUT_DRIVE (mA)								
I/O Standards	2	4	6	8	Slew				
LVTTL/LVCMOS 3.3 V	/	1	1	✓	High	Low			
LVCMOS 2.5 V	✓	✓	1	1	High	Low			
LVCMOS 1.8 V	✓	✓	-	-	High	Low			
LVCMOS 1.5 V	_	-	-	_	High	Low			

Table 2-76 • Fusion Advanced I/O Standards—SLEW and OUT_DRIVE Settings

		OUT_DRIVE (mA)										
I/O Standards	2	4	6	8	12	16	Slew					
LVTTL/LVCMOS 3.3 V	✓	✓	✓	✓	✓	✓	High	Low				
LVCMOS 2.5 V	✓	✓	✓	✓	✓	_	High	Low				
LVCMOS 1.8 V	✓	✓	✓	✓	-	_	High	Low				
LVCMOS 1.5 V	✓	✓	-	_	-	_	High	Low				

Table 2-77 • Fusion Pro I/O Standards—SLEW and OUT_DRIVE Settings

I/O Standards	2	4	6	8	12	16	24	SI	ew
LVTTL/LVCMOS 3.3 V	1	1	1	✓	1	1	1	High	Low
LVCMOS 2.5 V	1	✓	✓	1	✓	✓	1	High	Low
LVCMOS 2.5 V/5.0 V	✓	✓	✓	✓	✓	✓	1	High	Low
LVCMOS 1.8 V	1	1	1	✓	1	1	_	High	Low
LVCMOS 1.5 V	1	✓	✓	1	✓	-	-	High	Low

Advanced v1.4 2-137

Table 2-78 • Fusion Pro I/O Default Attributes

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (tribuf and bibuf only)	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER	IN_DELAY (input only)	IN_DELAY_VAL (input only)	SCHMITT_TRIGGER (input only)
LVTTL/LVCMOS 3.3 V	Refer to the following tables for more information:	Refer to the following tables for more information:	Off	None	35 pF	_	Off	0	Off
LVCMOS 2.5 V	 Table 2-75 on page 2-137 	Table 2-75 on page 2-137	Off	None	35 pF	_	Off	0	Off
LVCMOS 2.5/5.0 V	 Table 2-76 on page 2-137 	 Table 2-76 on page 2-137 	Off	None	35 pF	-	Off	0	Off
LVCMOS 1.8 V	• Table 2-77 on page 2-137	• Table 2-77 on page 2-137	Off	None	35 pF	_	Off	0	Off
LVCMOS 1.5 V			Off	None	35 pF	_	Off	0	Off
PCI (3.3 V)			Off	None	10 pF	_	Off	0	Off
PCI-X (3.3 V)			Off	None	10 pF	_	Off	0	Off
GTL+ (3.3 V)			Off	None	10 pF	-	Off	0	Off
GTL+ (2.5 V)			Off	None	10 pF	_	Off	0	Off
GTL (3.3 V)			Off	None	10 pF	-	Off	0	Off
GTL (2.5 V)			Off	None	10 pF	_	Off	0	Off
HSTL Class I			Off	None	20 pF	_	Off	0	Off
HSTL Class II			Off	None	20 pF	_	Off	0	Off
SSTL2 Class I and II			Off	None	30 pF	_	Off	0	Off
SSTL3 Class I and II			Off	None	30 pF	_	Off	0	Off
LVDS, BLVDS, M-LVDS			Off	None	0 pF	_	Off	0	Off
LVPECL			Off	None	0 pF	_	Off	0	Off

Table 2-79 • Fusion Pro I/O Supported Standards and Corresponding V_{REF} and V_{TT} Voltages

I/O Standard	Input/Output Supply Voltage (V _{CCI_TYP})	Input Reference Voltage (V _{REF_TYP})	Board Termination Voltage (V _{TT_TYP})
LVTTL/LVCMOS 3.3 V	3.30 V	-	-
LVCMOS 2.5 V	2.50 V	-	-
LVCMOS 2.5 V / 5.0 V Input	2.50 V	-	-
LVCMOS 1.8 V	1.80 V	-	-
LVCMOS 1.5 V	1.50 V	-	-
PCI 3.3 V	3.30 V	-	-
PCI-X 3.3 V	3.30 V	-	-
GTL+ 3.3 V	3.30 V	1.00 V	1.50 V
GTL+ 2.5 V	2.50 V	1.00 V	1.50 V
GTL 3.3 V	3.30 V	0.80 V	1.20 V
GTL 2.5 V	2.50 V	0.80 V	1.20 V
HSTL Class I	1.50 V	0.75 V	0.75 V
HSTL Class II	1.50 V	0.75 V	0.75 V
SSTL3 Class I	3.30 V	1.50 V	1.50 V
SSTL3 Class II	3.30 V	1.50 V	1.50 V
SSTL2 Class I	2.50 V	1.25 V	1.25 V
SSTL2 Class II	2.50 V	1.25 V	1.25 V
LVDS, BLVDS, M-LVDS	2.50 V	-	-
LVPECL	3.30 V	-	-

I/O Software Support

In the Fusion development software, default settings have been defined for the various I/O standards supported. Changes can be made to the default settings via the use of attributes; however, not all I/O attributes are applicable for all I/O standards. Table 2-80 and Table 2-81 list the valid I/O attributes that can be manipulated by the user for each I/O standard.

Single-ended I/O standards in Fusion support up to five different drive strengths.

Table 2-80 • Fusion Standard and Advanced I/O Attributes vs. I/O Standard Applications

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (all macros with OE)*	RES PULL	OUT_LOAD (output only)	COMBINE REGISTER
LVTTL/LVCMOS 3.3 V	✓ /	✓	✓	<u>−</u>	✓	<i>-</i>
LVCMOS 2.5 V	1	√	✓	1	1	✓
LVCMOS 2.5/5.0 V	1	✓	✓	1	1	✓
LVCMOS 1.8 V	1	✓	1	1	√	✓
LVCMOS 1.5 V	1	✓	✓	1	1	✓
PCI (3.3 V)			✓		✓	✓
PCI-X (3.3 V)	✓		✓		✓	✓
LVDS, BLVDS, M-LVDS			1			✓
LVPECL						✓

Note: *This does not apply to the north I/O bank on AFS090 and AFS250 devices.

Table 2-81 • Fusion Pro I/O Attributes vs. I/O Standard Applications

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (all macros with OE)	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER	IN_DELAY (input only)	IN_DELAY_VAL (input only)	SCHMITT_TRIGGER (input only)	HOT_SWAPPABLE
LVTTL/LVCMOS 3.3 V	✓	✓	✓	✓	✓	✓	✓	✓	1	✓
LVCMOS 2.5 V	✓	✓	1	1	✓	✓	✓	✓	1	1
LVCMOS 2.5/5.0 V	✓	✓	√	✓	✓	✓	✓	✓	✓	✓
LVCMOS 1.8 V	✓	✓	1	√	✓	✓	✓	✓	1	✓
LVCMOS 1.5 V	✓	✓	1	1	✓	✓	✓	✓	1	✓
PCI (3.3 V)			1		✓	✓	✓	✓		
PCI-X (3.3 V)	✓		1		✓	✓	✓	✓		
GTL+ (3.3 V)			1		✓	✓	✓	✓		✓
GTL+ (2.5 V)			1		✓	✓	✓	✓		✓
GTL (3.3 V)			1		✓	✓	✓	✓		✓

Table 2-81 • Fusion Pro I/O Attributes vs. I/O Standard Applications (Continued)

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (all macros with OE)	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER	IN_DELAY (input only)	IN_DELAY_VAL (input only)	SCHMITT_TRIGGER (input only)	HOT_SWAPPABLE
GTL (2.5 V)			✓		✓	✓	✓	✓		✓
HSTL Class I			1		1	✓	1	✓		✓
HSTL Class II			√		√	✓	✓	✓		✓
SSTL2 Class I and II			1		1	✓	1	✓		✓
SSTL3 Class I and II			1		1	1	1	1		✓
LVDS, BLVDS, M-LVDS			1			1	1	1		✓
LVPECL						✓	1	1		✓

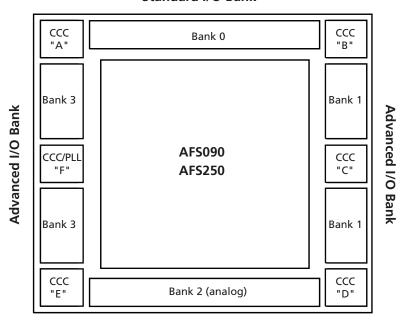
Table 2-82 lists the default values for the above selectable I/O attributes as well as those that are preset for each I/O standard. See Table 2-75, Table 2-76, and Table 2-77 on page 2-137 for SLEW and OUT_DRIVE settings.

Table 2-82 • I/O Default Attributes

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (tribuf and bibuf only)	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER
LVTTL/LVCMOS 3.3 V	Refer to the following tables for		Off	None	35 pF	_
LVCMOS 2.5 V	more information: Table 2-75 on page 2-137	more information: Table 2-75 on page 2-137	Off	None	35 pF	_
LVCMOS 2.5/5.0 V	• Table 2-76 on page 2-137	 Table 2-76 on page 2-137 	Off	None	35 pF	_
LVCMOS 1.8 V	• Table 2-77 on page 2-137	• Table 2-77 on page 2-137	Off	None	35 pF	_
LVCMOS 1.5 V			Off	None	35 pF	_
PCI (3.3 V)			Off	None	10 pF	_
PCI-X (3.3 V)			Off	None	10 pF	_
LVDS, BLVDS, M-LVDS			Off	None	_	_
LVPECL			Off	None	-	_

User I/O Naming Convention

Due to the comprehensive and flexible nature of Fusion device user I/Os, a naming scheme is used to show the details of the I/O (Figure 2-105 on page 2-143 and Figure 2-106 on page 2-143). The name identifies to which I/O bank it belongs, as well as the pairing and pin polarity for differential I/Os.


I/O Nomenclature = Gmn/IOuxwByVz

Gmn is only used for I/Os that also have CCC access—i.e., global pins.

- G = Global
- m = Global pin location associated with each CCC on the device: A (northwest corner), B (northeast corner), C (east middle), D (southeast corner), E (southwest corner), and F (west middle).
- n = Global input MUX and pin number of the associated Global location m, either A0, A1, A2, B0, B1, B2, C0, C1, or C2. Figure 2-22 on page 2-25 shows the three input pins per clock source MUX at CCC location m.
- u = I/O pair number in the bank, starting at 00 from the northwest I/O bank and proceeding in a clockwise direction.
- x = P (Positive) or N (Negative) for differential pairs, or R (Regular single-ended) for the I/Os that support single-ended and voltage-referenced I/O standards only. U (Positive-LVDS only) or V (Negative-LVDS only) restrict the I/O differential pair from being selected as an LVPECL pair.
- w = D (Differential Pair), P (Pair), or S (Single-Ended). D (Differential Pair) if both members of the pair are bonded out to adjacent pins or are separated only by one GND or NC pin; P (Pair) if both members of the pair are bonded out but do not meet the adjacency requirement; or S (Single-Ended) if the I/O pair is not bonded out. For Differential (D) pairs, adjacency for ball grid packages means only vertical or horizontal. Diagonal adjacency does not meet the requirements for a true differential pair.
- B = Bank
- y = Bank number (0-3). The Bank number starts at 0 from the northwest I/O bank and proceeds in a clockwise direction.
- V = Reference voltage
- z = Minibank number

Standard I/O Bank

Analog Quads

Figure 2-105 • Naming Conventions of Fusion Devices with Three Digital I/O Banks

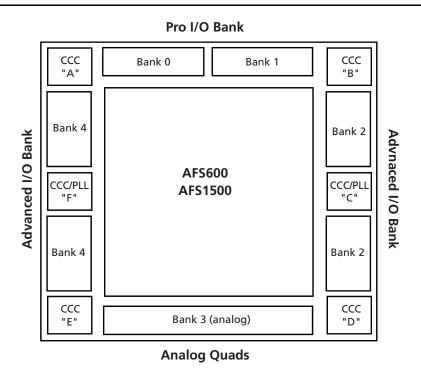


Figure 2-106 • Naming Conventions of Fusion Devices with Four I/O Banks

User I/O Characteristics

Timing Model

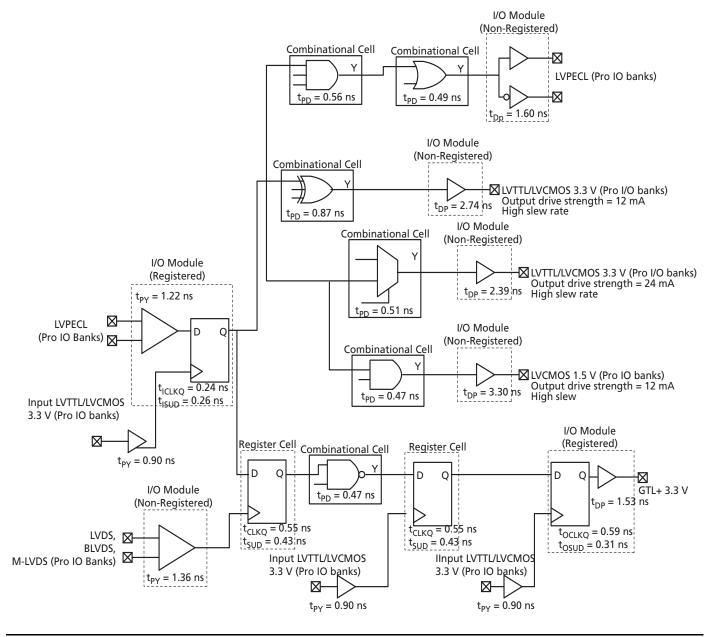
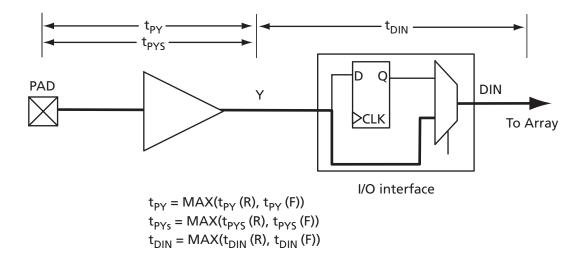



Figure 2-107 • Timing Model

Operating Conditions: –2 Speed, Commercial Temperature Range (T_J = 70°C), Worst-Case V_{CC} = 1.425 V

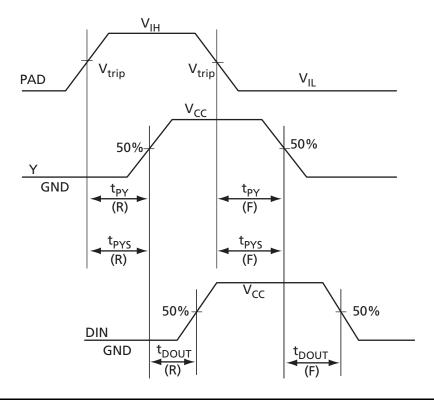


Figure 2-108 • Input Buffer Timing Model and Delays (example)

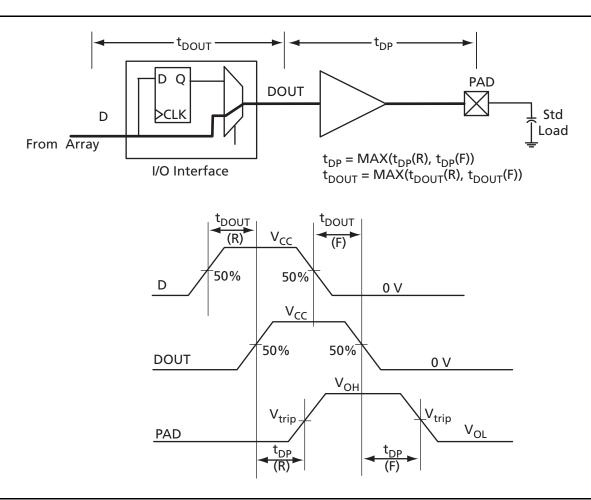


Figure 2-109 • Output Buffer Model and Delays (example)

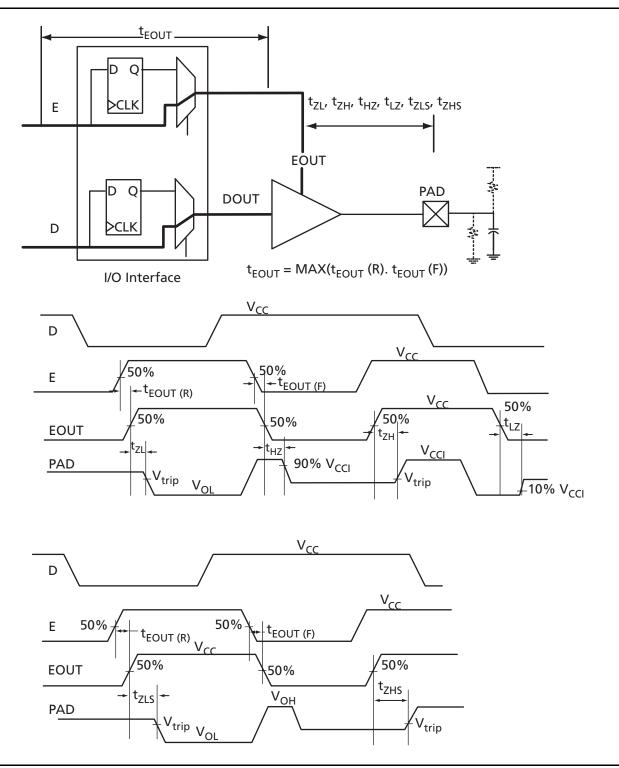


Figure 2-110 • Tristate Output Buffer Timing Model and Delays (example)

Overview of I/O Performance

Summary of I/O DC Input and Output Levels – Default I/O Software Settings

Table 2-83 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions

Applicable to Pro I/Os

	Drive	Slew	,	V _{IL}	V _{IH}		V _{OL}	V _{OH}	I _{OL}	I _{OH}
I/O Standard	Strength	Rate	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
2.5 V LVCMOS	12 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	12	12
1.8 V LVCMOS	12 mA	High	-0.3	0.35 * V _{CCI}	0.65*V _{CCI}	3.6	0.45	V _{CCI} – 0.45	12	12
1.5 V LVCMOS	12 mA	High	-0.3	0.30 V _{CCI}	0.7*V _{CCI}	3.6	0.25 * V _{CCI}	0.75 * V _{CCI}	12	12
3.3 V PCI		•	•		Per PCI Spec	ification				
3.3 V PCI-X					Per PCI-X Spe	cification				
3.3 V GTL	25 mA ²	High	-0.3	V _{REF} -0.05	V _{REF} + 0.05	3.6	0.4	_	25	25
2.5 V GTL	25 mA ²	High	-0.3	V _{REF} -0.05	V _{REF} + 0.05	3.6	0.4	_	25	25
3.3 V GTL+	35 mA	High	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.6	_	51	51
2.5 V GTL+	33 mA	High	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.6	_	40	40
HSTL (I)	8 mA	High	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCI} – 0.4	8	8
HSTL (II)	15 mA ²	High	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.4	V _{CCI} – 0.4	15	15
SSTL2 (I)	15 mA	High	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.54	V _{CCI} – 0.62	15	15
SSTL2 (II)	18 mA	High	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.35	V _{CCI} – 0.43	18	18
SSTL3 (I)	14 mA	High	-0.3	V _{REF} – 0.2	V _{REF} + 0.2	3.6	0.7	V _{CCI} – 1.1	14	14
SSTL3 (II)	21 mA	High	-0.3	V _{REF} - 0.2	V _{REF} + 0.2	3.6	0.5	V _{CCI} – 0.9	21	21

- 1. Currents are measured at 85°C junction temperature.
- 2. Output drive strength is below JEDEC specification.
- 3. Output slew rate can be extracted by the IBIS models.

Table 2-84 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions

Applicable to Advanced I/Os

	Drive	Slew	1	V _{IL}	V _{IH}		V _{OL}	V _{OH}	I _{OL}	I _{OH}
I/O Standard	Strength	Rate	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
2.5 V LVCMOS	12 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	12	12
1.8 V LVCMOS	12 mA	High	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	12	12
1.5 V LVCMOS	12 mA	High	-0.3	0.30 * V _{CCI}	0.7 * V _{CCI}	3.6	0.25 * V _{CCI}	0.75 * V _{CCI}	12	12
3.3 V PCI					Per PCI speci	fications				
3.3 V PCI-X					Per PCI-X spec	cifications				

Notes:

- 1. Currents are measured at 85°C junction temperature.
- 2. Output drive strength is below JEDEC specification.

Table 2-85 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions

Applicable to Standard I/Os

	Drive	Slew	'	V _{IL}	V _{IH}		V _{OL}	V _{OH}	l _{OL}	I _{OH}
I/O Standard	Strength	Rate	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	High	-0.3	0.8	2	3.6	0.4	2.4	8	8
2.5 V LVCMOS	8 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	8	8
1.8 V LVCMOS	4 mA	High	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	4	4
1.5 V LVCMOS	2 mA	High	-0.3	0.30 * V _{CCI}	0.7 * V _{CCI}	3.6	0.25 * V _{CCI}	0.75 * V _{CCI}	2	2

- 1. Currents are measured at 85°C junction temperature.
- 2. Output drive strength is below JEDEC specification.

Table 2-86 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions Applicable to All I/O Bank Types

	Comm	nercial ¹	Indus	trial ²
	I _{IL}	I _{IH}	I _{IL}	I _{IH}
DC I/O Standards	μΑ	μΑ	μΑ	μΑ
3.3 V LVTTL / 3.3 V LVCMOS	10	10	15	15
2.5 V LVCMOS	10	10	15	15
1.8 V LVCMOS	10	10	15	15
1.5 V LVCMOS	10	10	15	15
3.3 V PCI	10	10	15	15
3.3 V PCI-X	10	10	15	15
3.3 V GTL	10	10	15	15
2.5 V GTL	10	10	15	15
3.3 V GTL+	10	10	15	15
2.5 V GTL+	10	10	15	15
HSTL (I)	10	10	15	15
HSTL (II)	10	10	15	15
SSTL2 (I)	10	10	15	15
SSTL2 (II)	10	10	15	15
SSTL3 (I)	10	10	15	15
SSTL3 (II)	10	10	15	15

^{1.} Commercial range (0°C < T_A < 70°C)

^{2.} Industrial range (-40°C < T_A < 85°C)

Summary of I/O Timing Characteristics - Default I/O Software Settings

Table 2-87 • Summary of AC Measuring Points
Applicable to All I/O Bank Types

Standard	Input Reference Voltage (V _{REF_TYP})	Board Termination Voltage (V _{TT_REF})	Measuring Trip Point (V _{trip})
3.3 V LVTTL / 3.3 V LVCMOS	-	-	1.4 V
2.5 V LVCMOS	-	-	1.2 V
1.8 V LVCMOS	-	-	0.90 V
1.5 V LVCMOS	_	-	0.75 V
3.3 V PCI	-	-	0.285 * V _{CCI} (RR) 0.615 * V _{CCI} (FF))
3.3 V PCI-X	-	-	0.285 * V _{CCI} (RR) 0.615 * V _{CCI} (FF)
3.3 V GTL	0.8 V	1.2 V	V_{REF}
2.5 V GTL	0.8 V	1.2 V	V_{REF}
3.3 V GTL+	1.0 V	1.5 V	V_{REF}
2.5 V GTL+	1.0 V	1.5 V	V_{REF}
HSTL (I)	0.75 V	0.75 V	V_{REF}
HSTL (II)	0.75 V	0.75 V	V_{REF}
SSTL2 (I)	1.25 V	1.25 V	V_{REF}
SSTL2 (II)	1.25 V	1.25 V	V_{REF}
SSTL3 (I)	1.5 V	1.485 V	V_{REF}
SSTL3 (II)	1.5 V	1.485 V	V_{REF}
LVDS	-	-	Cross point
LVPECL	-	-	Cross point

Table 2-88 • I/O AC Parameter Definitions

Parameter	Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer with Schmitt trigger disabled
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{PYS}	Pad to Data delay through the Input Buffer with Schmitt trigger enabled
t _{HZ}	Enable to Pad delay through the Output Buffer—HIGH to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to HIGH
t _{LZ}	Enable to Pad delay through the Output Buffer—LOW to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to LOW
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to HIGH
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to LOW

Table 2-89 • Summary of I/O Timing Characteristics – Software Default Settings
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V
Applicable to Pro I/Os

I/O Standard	Drive Strength (mA)	Slew Rate	Capacitive Load (pF)	External Resistor (Ohm)	t bou⊤	top	[‡] DIN	tργ	t _p γS	teour	t _{Z1}	tzн	t _{LZ}	tнz	tzıs	tzнs	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	High	35	-	0.49	2.74	0.03	0.90	1.17	0.32	2.79	2.14	2.45	2.70	4.46	3.81	ns
2.5 V LVCMOS	12 mA	High	35	-	0.49	2.80	0.03	1.13	1.24	0.32	2.85	2.61	2.51	2.61	4.52	4.28	ns
1.8 V LVCMOS	12 mA	High	35	-	0.49	2.83	0.03	1.08	1.42	0.32	2.89	2.31	2.79	3.16	4.56	3.98	ns
1.5 V LVCMOS	12 mA	High	35	-	0.49	3.30	0.03	1.27	1.60	0.32	3.36	2.70	2.96	3.27	5.03	4.37	ns
3.3 V PCI	Per PCI spec	High	10	25 ²	0.49	2.09	0.03	0.78	1.25	0.32	2.13	1.49	2.45	2.70	3.80	3.16	ns
3.3 V PCI-X	Per PCI-X spec	High	10	25 ²	0.49	2.09	0.03	0.77	1.17	0.32	2.13	1.49	2.45	2.70	3.80	3.16	ns
3.3 V GTL	25 mA	High	10	25	0.49	1.55	0.03	2.19	-	0.32	1.52	1.55	0.00	0.00	3.19	3.22	ns
2.5 V GTL	25 mA	High	10	25	0.49	1.59	0.03	1.83	-	0.32	1.61	1.59	0.00	0.00	3.28	3.26	ns
3.3 V GTL+	35 mA	High	10	25	0.49	1.53	0.03	1.19	-	0.32	1.56	1.53	0.00	0.00	3.23	3.20	ns
2.5 V GTL+	33 mA	High	10	25	0.49	1.65	0.03	1.13	-	0.32	1.68	1.57	0.00	0.00	3.35	3.24	ns
HSTL (I)	8 mA	High	20	50	0.49	2.37	0.03	1.59	-	0.32	2.42	2.35	0.00	0.00	4.09	4.02	ns
HSTL (II)	15 mA	High	20	25	0.49	2.26	0.03	1.59	ı	0.32	2.30	2.03	0.00	0.00	3.97	3.70	ns
SSTL2 (I)	17 mA	High	30	50	0.49	1.59	0.03	1.00	-	0.32	1.62	1.38	0.00	0.00	3.29	3.05	ns
SSTL2 (II)	21 mA	High	30	25	0.49	1.62	0.03	1.00	-	0.32	1.65	1.32	0.00	0.00	3.32	2.99	ns
SSTL3 (I)	16 mA	High	30	50	0.49	1.72	0.03	0.93	1	0.32	1.75	1.37	0.00	0.00	3.42	3.04	ns
SSTL3 (II)	24 mA	High	30	25	0.49	1.54	0.03	0.93	-	0.32	1.57	1.25	0.00	0.00	3.24	2.92	ns
LVDS	24 mA	High	-	_	0.49	1.57	0.03	1.36	ı	_	_	_	_	_	_	_	ns
LVPECL	24 mA	High	_	_	0.49	1.60	0.03	1.22	_	_	_	_	_	_	_	_	ns

- 1. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-7 for derating values.
- 2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-115 on page 2-177 for connectivity. This resistor is not required during normal operation.

Table 2-90 • Summary of I/O Timing Characteristics – Software Default Settings
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V
Applicable to Advanced I/Os

I/O Standard	Drive Strength (mA)	Slew Rate	Capacitive Load (pF)	External Resistor (Ohm)	t воит	[‡] DP	[‡] DIN	фу	*EOUT	tzı	tzн	tız	tнz	tzıs	tzнs	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	High	35 pF	-	0.49	2.64	0.03	0.90	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
2.5 V LVCMOS	12 mA	High	35pF	_	0.49	2.66	0.03	0.98	0.32	2.71	2.56	2.47	2.57	4.38	4.23	ns
1.8 V LVCMOS	12 mA	High	35pF	_	0.49	2.64	0.03	0.91	0.32	2.69	2.27	2.76	3.05	4.36	3.94	ns
1.5 V LVCMOS	12 mA	High	35pF	_	0.49	3.05	0.03	1.07	0.32	3.10	2.67	2.95	3.14	4.77	4.34	ns
3.3 V PCI	Per PCI spec	High	10pF	25 ²	0.49	2.00	0.03	0.65	0.32	2.04	1.46	2.40	2.68	3.71	3.13	ns
3.3 V PCI-X	Per PCI-X spec	High	10pF	25 ²	0.49	2.00	0.03	0.62	0.32	2.04	1.46	2.40	2.68	3.71	3.13	ns
LVDS	24 mA	High	-	İ	0.49	1.37	0.03	1.20	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ns
LVPECL	24 mA	High	-	-	0.49	1.34	0.03	1.05	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ns

Notes:

- 1. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-7 for derating values.
- 2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-115 on page 2-177 for connectivity. This resistor is not required during normal operation.

Advanced v1.4 2-153

Table 2-91 • Summary of I/O Timing Characteristics – Software Default Settings
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V
Applicable to Standard I/Os

I/O Standard	Drive Strength (mA)	Slew Rate	Capacitive Load (pF)	External Resistor (Ohm)	t bour	top	[‡] DIN	tрү	[‡] EOUT	t _{Z1}	tzн	tız	t _{HZ}	Units
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	High	35 pF	_	0.49	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns
2.5 V LVCMOS	8 mA	High	35pF	_	0.49	3.56	0.03	0.96	0.32	3.40	3.56	1.78	1.91	ns
1.8 V LVCMOS	4 mA	High	35pF	_	0.49	4.74	0.03	0.90	0.32	4.02	4.74	1.80	1.85	ns
1.5 V LVCMOS	2 mA	High	35pF	_	0.49	5.71	0.03	1.06	0.32	4.71	5.71	1.83	1.83	ns

- 1. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-7 for derating values.
- 2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-115 on page 2-177 for connectivity. This resistor is not required during normal operation.

Detailed I/O DC Characteristics

Table 2-92 • Input Capacitance

Symbol	Definition	Conditions	Min.	Max.	Units
C _{IN}	Input capacitance	$V_{IN} = 0$, $f = 1.0 \text{ MHz}$		8	pF
C _{INCLK}	Input capacitance on the clock pin	$V_{IN} = 0$, $f = 1.0 \text{ MHz}$		8	pF

Table 2-93 • I/O Output Buffer Maximum Resistances¹

Standard	Drive Strength	R _{PULL-DOWN} (ohms) ²	R _{PULL-UP} (ohms) ³
Applicable to Pro I/O Banks	-		
3.3 V LVTTL / 3.3 V LVCMOS	4 mA	100	300
	8 mA	50	150
	12 mA	25	75
	16 mA	17	50
	24 mA	11	33
2.5 V LVCMOS	4 mA	100	200
	8 mA	50	100
	12 mA	25	50
	16 mA	20	40
	24 mA	11	22
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
	12 mA	20	22
	16 mA	20	22
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
	6 mA	67	75
	8 mA	33	37
	12 mA	33	37
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75
3.3 V GTL	25 mA	11	_
2.5 V GTL	25 mA	14	_
3.3 V GTL+	35 mA	12	-
2.5 V GTL+	33 mA	15	_

^{1.} These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on V_{CC} , drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at http://www.actel.com/techdocs/models/ibis.html.

^{2.} $R_{(PULL-DOWN-MAX)} = V_{OLspec} / I_{OLspec}$

^{3.} $R_{(PULL-UP-MAX)} = (V_{CCImax} - V_{OHspec}) / I_{OHspec}$

Table 2-93 • I/O Output Buffer Maximum Resistances¹ (Continued)

Standard	Drive Strength	R _{PULL-DOWN} (ohms) ²	R _{PULL-UP} (ohms) ³
HSTL (I)	8 mA	50	50
HSTL (II)	15 mA	25	25
SSTL2 (I)	17 mA	27	31
SSTL2 (II)	21 mA	13	15
SSTL3 (I)	16 mA	44	69
SSTL3 (II)	24 mA	18	32
Applicable to Advanced I/O Ban	ks	•	
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	17	50
	24 mA	11	33
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
	16 mA	20	40
	24 mA	11	22
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
	12 mA	20	22
	16 mA	20	22
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
	6 mA	67	75
	8 mA	33	37
	12 mA	33	37
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

- 2. $R_{(PULL-DOWN-MAX)} = V_{OLspec} / I_{OLspec}$
- 3. $R_{(PULL-UP-MAX)} = (V_{CCImax} V_{OHspec}) / I_{OHspec}$

^{1.} These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on V_{CC} , drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at http://www.actel.com/techdocs/models/ibis.html.

Table 2-93 • I/O Output Buffer Maximum Resistances¹ (Continued)

Standard	Drive Strength	R _{PULL-DOWN} (ohms) ²	R _{PULL-UP} (ohms) ³
Applicable to Standard I/O Banks			
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
1.5 V LVCMOS	2 mA	200	224

Notes:

- 1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on V_{CC} , drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at http://www.actel.com/techdocs/models/ibis.html.
- 2. $R_{(PULL-DOWN-MAX)} = V_{OLspec} / I_{OLspec}$
- 3. $R_{(PULL-UP-MAX)} = (V_{CCImax} V_{OHspec}) / I_{OHspec}$

Table 2-94 • I/O Weak Pull-Up/Pull-Down Resistances
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	R _{(WEAK} (oh	PULL-UP) ¹ ms)	R _(WEAK PULL-DOWN) ² (ohms)			
V _{CCI}	Min.	Max.	Min.	Max.		
3.3 V	10 k	45 k	10 k	45 k		
2.5 V	11 k	55 k	12 k	74 k		
1.8 V	18 k	70 k	17 k	110 k		
1.5 V	19 k	90 k	19 k	140 k		

- 1. $R_{(WEAK\ PULL-DOWN-MAX)} = V_{OLspec} / I_{WEAK\ PULL-DOWN-MIN}$
- 2. $R_{(WEAK\ PULL-UP-MAX)} = (V_{CCImax} V_{OHspec}) / I_{WEAK\ PULL-UP-MIN}$

Table 2-95 ● I/O Short Currents I_{OSH}/I_{OSL}

	Drive Strength	I _{OSH} (mA)*	I _{OSL} (mA)*			
Applicable to Pro I/O Banks	1					
3.3 V LVTTL / 3.3 V LVCMOS	4 mA	25	27			
	8 mA	51	54			
	12 mA	103	109			
	16 mA	132	127			
	24 mA	268	181			
2.5 V LVCMOS	4 mA	16	18			
	8 mA	32	37			
	12 mA	65	74			
	16 mA	83	87			
	24 mA	169	124			
1.8 V LVCMOS	2 mA	9	11			
	4 mA	17	22			
	6 mA	35	44			
	8 mA	45	51			
	12 mA	91	74			
	16 mA	91	74			
1.5 V LVCMOS	2 mA	13	16			
	4 mA	25	33			
	6 mA	32	39			
	8 mA	66	55			
	12 mA	66	55			
Applicable to Advanced I/O Bar	nks					
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	25	27			
	4 mA	25	27			
	6 mA	51	54			
	8 mA	51	54			
	12 mA	103	109			
	16 mA	132	127			
	24 mA	268	181			
3.3 V LVCMOS	2 mA	25	27			
Ţ	4 mA	25	27			
	6 mA	51	54			
	8 mA	51	54			
	12 mA	103	109			
	16 mA	132	127			
-	24 mA	268	181			

Note: $*T_J = 100^{\circ}C$

Table 2-95 • I/O Short Currents I_{OSH}/I_{OSL} (Continued)

	Drive Strength	I _{OSH} (mA)*	I _{OSL} (mA)*
2.5 V LVCMOS	2 mA	16	18
	4 mA	16	18
	6 mA	32	37
	8 mA	32	37
	12 mA	65	74
	16 mA	83	87
	24 mA	169	124
1.8 V LVCMOS	2 mA	9	11
	4 mA	17	22
	6 mA	35	44
	8 mA	45	51
	12 mA	91	74
	16 mA	91	74
1.5 V LVCMOS	2 mA	13	16
	4 mA	25	33
	6 mA	32	39
	8 mA	66	55
	12 mA	66	55
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	103	109
Applicable to Standard I/O Ba	nnks		
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	25	27
	4 mA	25	27
	6 mA	51	54
	8 mA	51	54
2.5 V LVCMOS	2 mA	16	18
	4 mA	16	18
	6 mA	32	37
	8 mA	32	37
1.8 V LVCMOS	2 mA	9	11
	4 mA	17	22
1.5 V LVCMOS	2 mA	13	16

Note: $*T_J = 100^{\circ}C$

The length of time an I/O can withstand I_{OSH}/I_{OSL} events depends on the junction temperature. The reliability data below is based on a 3.3 V, 36 mA I/O setting, which is the worst case for this type of analysis.

For example, at 110°C, the short current condition would have to be sustained for more than three months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

Table 2-96 • Short Current Event Duration before Failure

Temperature	Time before Failure
-40°C	>20 years
0°C	>20 years
25°C	>20 years
70°C	5 years
85°C	2 years
100°C	6 months
110°C	3 months

Table 2-97 • Schmitt Trigger Input Hysteresis
Hysteresis Voltage Value (typ.) for Schmitt Mode Input Buffers

Input Buffer Configuration	Hysteresis Value (typ.)
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode)	240 mV
2.5 V LVCMOS (Schmitt trigger mode)	140 mV
1.8 V LVCMOS (Schmitt trigger mode)	80 mV
1.5 V LVCMOS (Schmitt trigger mode)	60 mV

Table 2-98 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

Input Buffer	Input Rise/Fall Time (min.)	Input Rise/Fall Time (max.)	Reliability
LVTTL/LVCMOS (Schmitt trigger disabled)	No requirement	10 ns*	20 years (110°C)
LVTTL/LVCMOS (Schmitt trigger enabled)	No requirement	No requirement, but input noise voltage cannot exceed Schmitt hysteresis	20 years (110°C)
HSTL/SSTL/GTL	No requirement	10 ns*	10 years (100°C)
LVDS/BLVDS/M-LVDS/LVPECL	No requirement	10 ns*	10 years (100°C)

Note: *The maximum input rise/fall time is related only to the noise induced into the input buffer trace. If the noise is low, the rise time and fall time of input buffers, when Schmitt trigger is disabled, can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Actel recommends signal integrity evaluation/characterization of the system to ensure there is no excessive noise coupling into input signals.

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. The 3.3 V LVCMOS standard is supported as part of the 3.3 V LVTTL support.

Table 2-99 • Minimum and Maximum DC Input and Output Levels

3.3 V LVTTL / 3.3 V LVCMOS	v	'IL	v	ıн .	V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL}	I _{IH}
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA	Max., mA ¹	Max., mA ¹	μA ²	μA ²
Applicable to Pr	o I/O Ban	ks	•	•		•						
4 mA	-0.3	8.0	2	3.6	0.4	2.4	4	4	27	25	10	10
8 mA	-0.3	8.0	2	3.6	0.4	2.4	8	8	54	51	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	109	103	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	127	132	10	10
24 mA	-0.3	0.8	2	3.6	0.4	2.4	24	24	181	268	10	10
Applicable to A	dvanced I/	O Banks	•	•		•						
2 mA	-0.3	8.0	2	3.6	0.4	2.4	2	2	27	25	10	10
4 mA	-0.3	8.0	2	3.6	0.4	2.4	4	4	27	25	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	54	51	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	109	103	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	127	132	10	10
24 mA	-0.3	0.8	2	3.6	0.4	2.4	24	24	181	268	10	10
Applicable to St	andard I/0	O Banks	•	•		•	•					
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	27	25	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	54	51	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10

Notes:

- 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 2. Currents are measured at 85°C junction temperature.
- 3. Software default selection highlighted in gray.

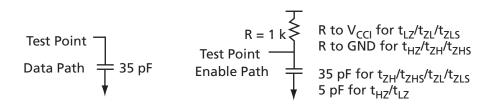


Figure 2-111 • AC Loading

Table 2-100 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	C _{LOAD} (pF)
0	3.3	1.4	1	35

Note: *Measuring point = V_{trip} . See Table 2-87 on page 2-151 for a complete table of trip points.

Timing Characteristics

Table 2-101 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V Applicable to Pro I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
4 mA	Std.	0.66	11.01	0.04	1.20	1.57	0.43	11.21	9.05	2.69	2.44	13.45	11.29	ns
	-1	0.56	9.36	0.04	1.02	1.33	0.36	9.54	7.70	2.29	2.08	11.44	9.60	ns
	-2	0.49	8.22	0.03	0.90	1.17	0.32	8.37	6.76	2.01	1.82	10.04	8.43	ns
8 mA	Std.	0.66	7.86	0.04	1.20	1.57	0.43	8.01	6.44	3.04	3.06	10.24	8.68	ns
	-1	0.56	6.69	0.04	1.02	1.33	0.36	6.81	5.48	2.58	2.61	8.71	7.38	ns
	-2	0.49	5.87	0.03	0.90	1.17	0.32	5.98	4.81	2.27	2.29	7.65	6.48	ns
12 mA	Std.	0.66	6.03	0.04	1.20	1.57	0.43	6.14	5.02	3.28	3.47	8.37	7.26	ns
	-1	0.56	5.13	0.04	1.02	1.33	0.36	5.22	4.27	2.79	2.95	7.12	6.17	ns
	-2	0.49	4.50	0.03	0.90	1.17	0.32	4.58	3.75	2.45	2.59	6.25	5.42	ns
16 mA	Std.	0.66	5.62	0.04	1.20	1.57	0.43	5.72	4.72	3.32	3.58	7.96	6.96	ns
	-1	0.56	4.78	0.04	1.02	1.33	0.36	4.87	4.02	2.83	3.04	6.77	5.92	ns
	-2	0.49	4.20	0.03	0.90	1.17	0.32	4.27	3.53	2.48	2.67	5.94	5.20	ns
24 mA	Std.	0.66	5.24	0.04	1.20	1.57	0.43	5.34	4.69	3.39	3.96	7.58	6.93	ns
	-1	0.56	4.46	0.04	1.02	1.33	0.36	4.54	3.99	2.88	3.37	6.44	5.89	ns
	-2	0.49	3.92	0.03	0.90	1.17	0.32	3.99	3.50	2.53	2.96	5.66	5.17	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-102 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V Applicable to Pro I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
4 mA	Std.	0.66	7.88	0.04	1.20	1.57	0.43	8.03	6.70	2.69	2.59	10.26	8.94	ns
	-1	0.56	6.71	0.04	1.02	1.33	0.36	6.83	5.70	2.29	2.20	8.73	7.60	ns
	-2	0.49	5.89	0.03	0.90	1.17	0.32	6.00	5.01	2.01	1.93	7.67	6.67	ns
8 mA	Std.	0.66	5.08	0.04	1.20	1.57	0.43	5.17	4.14	3.05	3.21	7.41	6.38	ns
	-1	0.56	4.32	0.04	1.02	1.33	0.36	4.40	3.52	2.59	2.73	6.30	5.43	ns
	-2	0.49	3.79	0.03	0.90	1.17	0.32	3.86	3.09	2.28	2.40	5.53	4.76	ns
12 mA	Std.	0.66	3.67	0.04	1.20	1.57	0.43	3.74	2.87	3.28	3.61	5.97	5.11	ns
	-1	0.56	3.12	0.04	1.02	1.33	0.36	3.18	2.44	2.79	3.07	5.08	4.34	ns
	-2	0.49	2.74	0.03	0.90	1.17	0.32	2.79	2.14	2.45	2.70	4.46	3.81	ns
16 mA	Std.	0.66	3.46	0.04	1.20	1.57	0.43	3.53	2.61	3.33	3.72	5.76	4.84	ns
	-1	0.56	2.95	0.04	1.02	1.33	0.36	3.00	2.22	2.83	3.17	4.90	4.12	ns
	-2	0.49	2.59	0.03	0.90	1.17	0.32	2.63	1.95	2.49	2.78	4.30	3.62	ns
24 mA	Std.	0.66	3.21	0.04	1.20	1.57	0.43	3.27	2.16	3.39	4.13	5.50	4.39	ns
	-1	0.56	2.73	0.04	1.02	1.33	0.36	2.78	1.83	2.88	3.51	4.68	3.74	ns
	-2	0.49	2.39	0.03	0.90	1.17	0.32	2.44	1.61	2.53	3.08	4.11	3.28	ns

Table 2-103 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V Applicable to Advanced I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
4 mA	Std.	0.66	10.26	0.04	1.20	0.43	10.45	8.90	2.64	2.46	12.68	11.13	ns
	-1	0.56	8.72	0.04	1.02	0.36	8.89	7.57	2.25	2.09	10.79	9.47	ns
	-2	0.49	7.66	0.03	0.90	0.32	7.80	6.64	1.98	1.83	9.47	8.31	ns
8 mA	Std.	0.66	7.27	0.04	1.20	0.43	7.41	6.28	2.98	3.04	9.65	8.52	ns
	-1	0.56	6.19	0.04	1.02	0.36	6.30	5.35	2.54	2.59	8.20	7.25	ns
	-2	0.49	5.43	0.03	0.90	0.32	5.53	4.69	2.23	2.27	7.20	6.36	ns
12 mA	Std.	0.66	5.58	0.04	1.20	0.43	5.68	4.87	3.21	3.42	7.92	7.11	ns
	-1	0.56	4.75	0.04	1.02	0.36	4.84	4.14	2.73	2.91	6.74	6.05	ns
	-2	0.49	4.17	0.03	0.90	0.32	4.24	3.64	2.39	2.55	5.91	5.31	ns
16 mA	Std.	0.66	5.21	0.04	1.20	0.43	5.30	4.56	3.26	3.51	7.54	6.80	ns
	-1	0.56	4.43	0.04	1.02	0.36	4.51	3.88	2.77	2.99	6.41	5.79	ns
	-2	0.49	3.89	0.03	0.90	0.32	3.96	3.41	2.43	2.62	5.63	5.08	ns
24 mA	Std.	0.66	4.85	0.04	1.20	0.43	4.94	4.54	3.32	3.88	7.18	6.78	ns
	-1	0.56	4.13	0.04	1.02	0.36	4.20	3.87	2.82	3.30	6.10	5.77	ns
	-2	0.49	3.62	0.03	0.90	0.32	3.69	3.39	2.48	2.90	5.36	5.06	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-104 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V
Applicable to Advanced I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
4 mA	Std.	0.66	7.66	0.04	1.20	0.43	7.80	6.59	2.65	2.61	10.03	8.82	ns
	-1	0.56	6.51	0.04	1.02	0.36	6.63	5.60	2.25	2.22	8.54	7.51	ns
	-2	0.49	5.72	0.03	0.90	0.32	5.82	4.92	1.98	1.95	7.49	6.59	ns
8 mA	Std.	0.66	4.91	0.04	1.20	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	1.02	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.90	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
12 mA	Std.	0.66	3.53	0.04	1.20	0.43	3.60	2.82	3.21	3.58	5.83	5.06	ns
	-1	0.56	3.00	0.04	1.02	0.36	3.06	2.40	2.73	3.05	4.96	4.30	ns
	-2	0.49	2.64	0.03	0.90	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
16 mA	Std.	0.66	3.33	0.04	1.20	0.43	3.39	2.56	3.26	3.68	5.63	4.80	ns
	-1	0.56	2.83	0.04	1.02	0.36	2.89	2.18	2.77	3.13	4.79	4.08	ns
	-2	0.49	2.49	0.03	0.90	0.32	2.53	1.91	2.44	2.75	4.20	3.58	ns
24 mA	Std.	0.66	3.08	0.04	1.20	0.43	3.13	2.12	3.32	4.06	5.37	4.35	ns
	-1	0.56	2.62	0.04	1.02	0.36	2.66	1.80	2.83	3.45	4.57	3.70	ns
	-2	0.49	2.30	0.03	0.90	0.32	2.34	1.58	2.48	3.03	4.01	3.25	ns

Table 2-105 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	9.46	0.04	1.00	0.43	9.64	8.54	2.07	2.04	ns
	-1	0.56	8.05	0.04	0.85	0.36	8.20	7.27	1.76	1.73	ns
	-2	0.49	7.07	0.03	0.75	0.32	7.20	6.38	1.55	1.52	ns
4 mA	Std.	0.66	9.46	0.04	1.00	0.43	9.64	8.54	2.07	2.04	ns
	-1	0.56	8.05	0.04	0.85	0.36	8.20	7.27	1.76	1.73	ns
	-2	0.49	7.07	0.03	0.75	0.32	7.20	6.38	1.55	1.52	ns
6 mA	Std.	0.66	6.57	0.04	1.00	0.43	6.69	5.98	2.40	2.57	ns
	-1	0.56	5.59	0.04	0.85	0.36	5.69	5.09	2.04	2.19	ns
	-2	0.49	4.91	0.03	0.75	0.32	5.00	4.47	1.79	1.92	ns
8 mA	Std.	0.66	6.57	0.04	1.00	0.43	6.69	5.98	2.40	2.57	ns
	-1	0.56	5.59	0.04	0.85	0.36	5.69	5.09	2.04	2.19	ns
	-2	0.49	4.91	0.03	0.75	0.32	5.00	4.47	1.79	1.92	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-106 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	7.07	0.04	1.00	0.43	7.20	6.23	2.07	2.15	ns
	-1	0.56	6.01	0.04	0.85	0.36	6.12	5.30	1.76	1.83	ns
	-2	0.49	5.28	0.03	0.75	0.32	5.37	4.65	1.55	1.60	ns
4 mA	Std.	0.66	7.07	0.04	1.00	0.43	7.20	6.23	2.07	2.15	ns
	-1	0.56	6.01	0.04	0.85	0.36	6.12	5.30	1.76	1.83	ns
	-2	0.49	5.28	0.03	0.75	0.32	5.37	4.65	1.55	1.60	ns
6 mA	Std.	0.66	4.41	0.04	1.00	0.43	4.49	3.75	2.39	2.69	ns
	-1	0.56	3.75	0.04	0.85	0.36	3.82	3.19	2.04	2.29	ns
	-2	0.49	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns
8 mA	Std.	0.66	4.41	0.04	1.00	0.43	4.49	3.75	2.39	2.69	ns
	-1	0.56	3.75	0.04	0.85	0.36	3.82	3.19	2.04	2.29	ns
	-2	0.49	3.29	0.03	0.75	0.32	3.36	2.80	1.79	2.01	ns

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications. It uses a 5 V-tolerant input buffer and push-pull output buffer.

Table 2-107 • Minimum and Maximum DC Input and Output Levels

2.5 V LVCMOS	V _{IL}		V _{IH}		V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL}	I _{IH}
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA	Max., mA ¹	Max., mA ¹	μA ²	μA ²
Applicable to Pro I/O Banks												
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	18	16	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	3.6	0.7	1.7	12	12	74	65	10	10
16 mA	-0.3	0.7	1.7	3.6	0.7	1.7	16	16	87	83	10	10
24 mA	-0.3	0.7	1.7	3.6	0.7	1.7	24	24	124	169	10	10
Applicable to A	Advanced	I/O Banks		•	•	•					•	
2 mA	-0.3	0.7	1.7	3.6	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	3.6	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	3.6	0.7	1.7	12	12	74	65	10	10
16 mA	-0.3	0.7	1.7	3.6	0.7	1.7	16	16	87	83	10	10
24 mA	-0.3	0.7	1.7	3.6	0.7	1.7	24	24	124	169	10	10
Applicable to 9	Standard I	O Banks		•	•	•					•	
2 mA	-0.3	0.7	1.7	3.6	0.7	1.7	2	2	18	16	10	10
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	18	16	10	10
6 mA	-0.3	0.7	1.7	3.6	0.7	1.7	6	6	37	32	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	37	32	10	10

Notes:

- 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 2. Currents are measured at 85°C junction temperature.
- 3. Software default selection highlighted in gray.

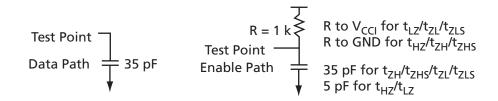


Figure 2-112 • AC Loading

Table 2-108 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	C _{LOAD} (pF)
0	2.5	1.2	_	35

Note: *Measuring point = V_{trip} . See Table 2-87 on page 2-151 for a complete table of trip points.

Advanced v1.4 2-165

Timing Characteristics

Table 2-109 • 2.5 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 2.3 V Applicable to Pro I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
4 mA	Std.	0.60	12.00	0.04	1.51	1.66	0.43	12.23	11.61	2.72	2.20	14.46	13.85	ns
	-1	0.51	10.21	0.04	1.29	1.41	0.36	10.40	9.88	2.31	1.87	12.30	11.78	ns
	-2	0.45	8.96	0.03	1.13	1.24	0.32	9.13	8.67	2.03	1.64	10.80	10.34	ns
8 mA	Std.	0.60	8.73	0.04	1.51	1.66	0.43	8.89	8.01	3.10	2.93	11.13	10.25	ns
	-1	0.51	7.43	0.04	1.29	1.41	0.36	7.57	6.82	2.64	2.49	9.47	8.72	ns
	-2	0.45	6.52	0.03	1.13	1.24	0.32	6.64	5.98	2.32	2.19	8.31	7.65	ns
12 mA	Std.	0.66	6.77	0.04	1.51	1.66	0.43	6.90	6.11	3.37	3.39	9.14	8.34	ns
	-1	0.56	5.76	0.04	1.29	1.41	0.36	5.87	5.20	2.86	2.89	7.77	7.10	ns
	-2	0.49	5.06	0.03	1.13	1.24	0.32	5.15	4.56	2.51	2.53	6.82	6.23	ns
16 mA	Std.	0.66	6.31	0.04	1.51	1.66	0.43	6.42	5.73	3.42	3.52	8.66	7.96	ns
	-1	0.56	5.37	0.04	1.29	1.41	0.36	5.46	4.87	2.91	3.00	7.37	6.77	ns
	-2	0.49	4.71	0.03	1.13	1.24	0.32	4.80	4.28	2.56	2.63	6.47	5.95	ns
24 mA	Std.	0.66	5.93	0.04	1.51	1.66	0.43	6.04	5.70	3.49	4.00	8.28	7.94	ns
	-1	0.56	5.05	0.04	1.29	1.41	0.36	5.14	4.85	2.97	3.40	7.04	6.75	ns
	-2	0.49	4.43	0.03	1.13	1.24	0.32	4.51	4.26	2.61	2.99	6.18	5.93	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-110 • 2.5 V LVCMOS High Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 2.3 V Applicable to Pro I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
4 mA	Std.	0.60	8.82	0.04	1.51	1.66	0.43	8.13	8.82	2.72	2.29	10.37	11.05	ns
	-1	0.51	7.50	0.04	1.29	1.41	0.36	6.92	7.50	2.31	1.95	8.82	9.40	ns
	-2	0.45	6.58	0.03	1.13	1.24	0.32	6.07	6.58	2.03	1.71	7.74	8.25	ns
8 mA	Std.	0.60	5.27	0.04	1.51	1.66	0.43	5.27	5.27	3.10	3.03	7.50	7.51	ns
	-1	0.51	4.48	0.04	1.29	1.41	0.36	4.48	4.48	2.64	2.58	6.38	6.38	ns
	-2	0.45	3.94	0.03	1.13	1.24	0.32	3.93	3.94	2.32	2.26	5.60	5.61	ns
12 mA	Std.	0.66	3.74	0.04	1.51	1.66	0.43	3.81	3.49	3.37	3.49	6.05	5.73	ns
	-1	0.56	3.18	0.04	1.29	1.41	0.36	3.24	2.97	2.86	2.97	5.15	4.87	ns
	-2	0.49	2.80	0.03	1.13	1.24	0.32	2.85	2.61	2.51	2.61	4.52	4.28	ns
16 mA	Std.	0.66	3.53	0.04	1.51	1.66	0.43	3.59	3.12	3.42	3.62	5.83	5.35	ns
	-1	0.56	3.00	0.04	1.29	1.41	0.36	3.06	2.65	2.91	3.08	4.96	4.55	ns
	-2	0.49	2.63	0.03	1.13	1.24	0.32	2.68	2.33	2.56	2.71	4.35	4.00	ns
24 mA	Std.	0.66	3.26	0.04	1.51	1.66	0.43	3.32	2.48	3.49	4.11	5.56	4.72	ns
	-1	0.56	2.77	0.04	1.29	1.41	0.36	2.83	2.11	2.97	3.49	4.73	4.01	ns
	-2	0.49	2.44	0.03	1.13	1.24	0.32	2.48	1.85	2.61	3.07	4.15	3.52	ns

Table 2-111 • 2.5 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 2.3 V

Applicable to Advanced I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
4 mA	Std.	0.66	11.40	0.04	1.31	0.43	11.22	11.40	2.68	2.20	13.45	13.63	ns
	-1	0.56	9.69	0.04	1.11	0.36	9.54	9.69	2.28	1.88	11.44	11.60	ns
	-2	0.49	8.51	0.03	0.98	0.32	8.38	8.51	2.00	1.65	10.05	10.18	ns
8 mA	Std.	0.66	7.96	0.04	1.31	0.43	8.11	7.81	3.05	2.89	10.34	10.05	ns
	-1	0.56	6.77	0.04	1.11	0.36	6.90	6.65	2.59	2.46	8.80	8.55	ns
	-2	0.49	5.94	0.03	0.98	0.32	6.05	5.84	2.28	2.16	7.72	7.50	ns
2 mA	Std.	0.66	6.18	0.04	1.31	0.43	6.29	5.92	3.30	3.32	8.53	8.15	ns
	-1	0.56	5.26	0.04	1.11	0.36	5.35	5.03	2.81	2.83	7.26	6.94	ns
	-2	0.49	4.61	0.03	0.98	0.32	4.70	4.42	2.47	2.48	6.37	6.09	ns
16 mA	Std.	0.66	6.18	0.04	1.31	0.43	6.29	5.92	3.30	3.32	8.53	8.15	ns
	-1	0.56	5.26	0.04	1.11	0.36	5.35	5.03	2.81	2.83	7.26	6.94	ns
	-2	0.49	4.61	0.03	0.98	0.32	4.70	4.42	2.47	2.48	6.37	6.09	ns
24 mA	Std.	0.66	6.18	0.04	1.31	0.43	6.29	5.92	3.30	3.32	8.53	8.15	ns
	-1	0.56	5.26	0.04	1.11	0.36	5.35	5.03	2.81	2.83	7.26	6.94	ns
	-2	0.49	4.61	0.03	0.98	0.32	4.70	4.42	2.47	2.48	6.37	6.09	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-112 • 2.5 V LVCMOS High Slew Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 2.3$ V Applicable to Advanced I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
4 mA	Std.	0.66	8.66	0.04	1.31	0.43	7.83	8.66	2.68	2.30	10.07	10.90	ns
	-1	0.56	7.37	0.04	1.11	0.36	6.66	7.37	2.28	1.96	8.56	9.27	ns
	-2	0.49	6.47	0.03	0.98	0.32	5.85	6.47	2.00	1.72	7.52	8.14	ns
8 mA	Std.	0.66	5.17	0.04	1.31	0.43	5.04	5.17	3.05	3.00	7.27	7.40	ns
	-1	0.56	4.39	0.04	1.11	0.36	4.28	4.39	2.59	2.55	6.19	6.30	ns
	-2	0.49	3.86	0.03	0.98	0.32	3.76	3.86	2.28	2.24	5.43	5.53	ns
2 mA	Std.	0.66	3.56	0.04	1.31	0.43	3.63	3.43	3.30	3.44	5.86	5.67	ns
	-1	0.56	3.03	0.04	1.11	0.36	3.08	2.92	2.81	2.92	4.99	4.82	ns
	-2	0.49	2.66	0.03	0.98	0.32	2.71	2.56	2.47	2.57	4.38	4.23	ns
16 mA	Std.	0.66	3.35	0.04	1.31	0.43	3.41	3.06	3.36	3.55	5.65	5.30	ns
	-1	0.56	2.85	0.04	1.11	0.36	2.90	2.60	2.86	3.02	4.81	4.51	ns
	-2	0.49	2.50	0.03	0.98	0.32	2.55	2.29	2.51	2.65	4.22	3.96	ns
24 mA	Std.	0.66	3.56	0.04	1.31	0.43	3.63	3.43	3.30	3.44	5.86	5.67	ns
	-1	0.56	3.03	0.04	1.11	0.36	3.08	2.92	2.81	2.92	4.99	4.82	ns
	-2	0.49	2.66	0.03	0.98	0.32	2.71	2.56	2.47	2.57	4.38	4.23	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-113 • 2.5 V LVCMOS Low Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 2.3 V

Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	11.00	0.04	1.29	0.43	10.37	11.00	2.03	1.83	ns
	-1	0.56	9.35	0.04	1.10	0.36	8.83	9.35	1.73	1.56	ns
	-2	0.49	8.21	0.03	0.96	0.32	7.75	8.21	1.52	1.37	ns
4 mA	Std.	0.66	11.00	0.04	1.29	0.43	10.37	11.00	2.03	1.83	ns
	-1	0.56	9.35	0.04	1.10	0.36	8.83	9.35	1.73	1.56	ns
	-2	0.49	8.21	0.03	0.96	0.32	7.75	8.21	1.52	1.37	ns
6 mA	Std.	0.66	7.50	0.04	1.29	0.43	7.36	7.50	2.39	2.46	ns
	-1	0.56	6.38	0.04	1.10	0.36	6.26	6.38	2.03	2.10	ns
	-2	0.49	5.60	0.03	0.96	0.32	5.49	5.60	1.78	1.84	ns
8 mA	Std.	0.66	7.50	0.04	1.29	0.43	7.36	7.50	2.39	2.46	ns
	-1	0.56	6.38	0.04	1.10	0.36	6.26	6.38	2.03	2.10	ns
	-2	0.49	5.60	0.03	0.96	0.32	5.49	5.60	1.78	1.84	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-114 • 2.5 V LVCMOS High Slew Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 2.3$ V Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	8.20	0.04	1.29	0.43	7.24	8.20	2.03	1.91	ns
	-1	0.56	6.98	0.04	1.10	0.36	6.16	6.98	1.73	1.62	ns
	-2	0.49	6.13	0.03	0.96	0.32	5.41	6.13	1.52	1.43	ns
4 mA	Std.	0.66	8.20	0.04	1.29	0.43	7.24	8.20	2.03	1.91	ns
	-1	0.56	6.98	0.04	1.10	0.36	6.16	6.98	1.73	1.62	ns
	-2	0.49	6.13	0.03	0.96	0.32	5.41	6.13	1.52	1.43	ns
6 mA	Std.	0.66	4.77	0.04	1.29	0.43	4.55	4.77	2.38	2.55	ns
	-1	0.56	4.05	0.04	1.10	0.36	3.87	4.05	2.03	2.17	ns
	-2	0.49	3.56	0.03	0.96	0.32	3.40	3.56	1.78	1.91	ns
8 mA	Std.	0.66	4.77	0.04	1.29	0.43	4.55	4.77	2.38	2.55	ns
	-1	0.56	4.05	0.04	1.10	0.36	3.87	4.05	2.03	2.17	ns
	-2	0.49	3.56	0.03	0.96	0.32	3.40	3.56	1.78	1.91	ns

1.8 V LVCMOS

Low-Voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.8 V applications. It uses a 1.8 V input buffer and push-pull output buffer.

Table 2-115 • Minimum and Maximum DC Input and Output Levels

1.8 V LVCMOS	V	'IL	V	IH	V _{OL}	V _{OH}	I_{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL}	I _{IH}
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA	Max., mA ¹	Max., mA ¹	μA ²	μA ²
Applicable to Pr	ro I/O Bank	s			•							
2 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	2	2	11	9	10	10
4 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	4	4	22	17	10	10
6 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	6	6	44	35	10	10
8 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	8	8	51	45	10	10
12 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	12	12	74	91	10	10
16 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	16	16	74	91	10	10
Applicable to A	dvanced I/0) Banks								•		_
2 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	2	2	11	9	10	10
4 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	4	4	22	17	10	10
6 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	6	6	44	35	10	10
8 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	8	8	51	45	10	10
12 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	12	12	74	91	10	10
16 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	16	16	74	91	10	10
Applicable to St	tandard I/O	Banks										
2 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	2	2	11	9	10	10
4 mA	-0.3	0.35 * V _{CCI}	0.65 * V _{CCI}	3.6	0.45	V _{CCI} – 0.45	4	4	22	17	10	10

Notes:

- 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 2. Currents are measured at 85°C junction temperature.
- 3. Software default selection highlighted in gray.

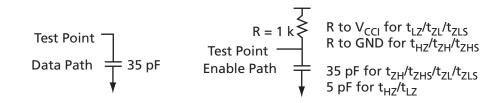


Figure 2-113 • AC Loading

Table 2-116 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input LOW (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	C _{LOAD} (pF)
0	1.8	0.9	_	35

Note: *Measuring point = V_{trip} . See Table 2-87 on page 2-151 for a complete table of trip points.

Timing Characteristics

Table 2-117 • 1.8 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 1.7 V Applicable to Pro I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.66	15.84	0.04	1.45	1.91	0.43	15.65	15.84	2.78	1.58	17.89	18.07	ns
	-1	0.56	13.47	0.04	1.23	1.62	0.36	13.31	13.47	2.37	1.35	15.22	15.37	ns
	-2	0.49	11.83	0.03	1.08	1.42	0.32	11.69	11.83	2.08	1.18	13.36	13.50	ns
4 mA	Std.	0.66	11.39	0.04	1.45	1.91	0.43	11.60	10.76	3.26	2.77	13.84	12.99	ns
	-1	0.56	9.69	0.04	1.23	1.62	0.36	9.87	9.15	2.77	2.36	11.77	11.05	ns
	-2	0.49	8.51	0.03	1.08	1.42	0.32	8.66	8.03	2.43	2.07	10.33	9.70	ns
8 mA	Std.	0.66	8.97	0.04	1.45	1.91	0.43	9.14	8.10	3.57	3.36	11.37	10.33	ns
	-1	0.56	7.63	0.04	1.23	1.62	0.36	7.77	6.89	3.04	2.86	9.67	8.79	ns
	-2	0.49	6.70	0.03	1.08	1.42	0.32	6.82	6.05	2.66	2.51	8.49	7.72	ns
12 mA	Std.	0.66	8.35	0.04	1.45	1.91	0.43	8.50	7.59	3.64	3.52	10.74	9.82	ns
	-1	0.56	7.10	0.04	1.23	1.62	0.36	7.23	6.45	3.10	3.00	9.14	8.35	ns
	-2	0.49	6.24	0.03	1.08	1.42	0.32	6.35	5.66	2.72	2.63	8.02	7.33	ns
16 mA	Std.	0.66	7.94	0.04	1.45	1.91	0.43	8.09	7.56	3.74	4.11	10.32	9.80	ns
	-1	0.56	6.75	0.04	1.23	1.62	0.36	6.88	6.43	3.18	3.49	8.78	8.33	ns
	-2	0.49	5.93	0.03	1.08	1.42	0.32	6.04	5.65	2.79	3.07	7.71	7.32	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-118 • 1.8 V LVCMOS High Slew
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 1.7 V
Applicable to Pro I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.66	12.10	0.04	1.45	1.91	0.43	9.59	12.10	2.78	1.64	11.83	14.34	ns
	-1	0.56	10.30	0.04	1.23	1.62	0.36	8.16	10.30	2.37	1.39	10.06	12.20	ns
	-2	0.49	9.04	0.03	1.08	1.42	0.32	7.16	9.04	2.08	1.22	8.83	10.71	ns
4 mA	Std.	0.66	7.05	0.04	1.45	1.91	0.43	6.20	7.05	3.25	2.86	8.44	9.29	ns
	-1	0.56	6.00	0.04	1.23	1.62	0.36	5.28	6.00	2.76	2.44	7.18	7.90	ns
	-2	0.49	5.27	0.03	1.08	1.42	0.32	4.63	5.27	2.43	2.14	6.30	6.94	ns
8 mA	Std.	0.66	4.52	0.04	1.45	1.91	0.43	4.47	4.52	3.57	3.47	6.70	6.76	ns
	-1	0.56	3.85	0.04	1.23	1.62	0.36	3.80	3.85	3.04	2.95	5.70	5.75	ns
	-2	0.49	3.38	0.03	1.08	1.42	0.32	3.33	3.38	2.66	2.59	5.00	5.05	ns
12 mA	Std.	0.66	4.12	0.04	1.45	1.91	0.43	4.20	3.99	3.63	3.62	6.43	6.23	ns
	-1	0.56	3.51	0.04	1.23	1.62	0.36	3.57	3.40	3.09	3.08	5.47	5.30	ns
	-2	0.49	3.08	0.03	1.08	1.42	0.32	3.14	2.98	2.71	2.71	4.81	4.65	ns
16 mA	Std.	0.66	3.80	0.04	1.45	1.91	0.43	3.87	3.09	3.73	4.24	6.10	5.32	ns
	-1	0.56	3.23	0.04	1.23	1.62	0.36	3.29	2.63	3.18	3.60	5.19	4.53	ns
	-2	0.49	2.83	0.03	1.08	1.42	0.32	2.89	2.31	2.79	3.16	4.56	3.98	ns

Table 2-119 • 1.8 V LVCMOS Low Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 1.7 V Applicable to Advanced I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.66	15.53	0.04	1.31	0.43	14.11	15.53	2.78	1.60	16.35	17.77	ns
	-1	0.56	13.21	0.04	1.11	0.36	12.01	13.21	2.36	1.36	13.91	15.11	ns
	-2	0.49	11.60	0.03	0.98	0.32	10.54	11.60	2.07	1.19	12.21	13.27	ns
4 mA	Std.	0.66	10.48	0.04	1.31	0.43	10.41	10.48	3.23	2.73	12.65	12.71	ns
	-1	0.56	8.91	0.04	1.11	0.36	8.86	8.91	2.75	2.33	10.76	10.81	ns
	-2	0.49	7.82	0.03	0.98	0.32	7.77	7.82	2.41	2.04	9.44	9.49	ns
3 mA	Std.	0.66	8.05	0.04	1.31	0.43	8.20	7.84	3.54	3.27	10.43	10.08	ns
	-1	0.56	6.85	0.04	1.11	0.36	6.97	6.67	3.01	2.78	8.88	8.57	ns
	-2	0.49	6.01	0.03	0.98	0.32	6.12	5.86	2.64	2.44	7.79	7.53	ns
12 mA	Std.	0.66	7.50	0.04	1.31	0.43	7.64	7.30	3.61	3.41	9.88	9.53	ns
	-1	0.56	6.38	0.04	1.11	0.36	6.50	6.21	3.07	2.90	8.40	8.11	ns
	-2	0.49	5.60	0.03	0.98	0.32	5.71	5.45	2.69	2.55	7.38	7.12	ns
16 mA	Std.	0.66	7.29	0.04	1.31	0.43	7.23	7.29	3.71	3.95	9.47	9.53	ns
	-1	0.56	6.20	0.04	1.11	0.36	6.15	6.20	3.15	3.36	8.06	8.11	ns
	-2	0.49	5.45	0.03	0.98	0.32	5.40	5.45	2.77	2.95	7.07	7.12	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-120 • 1.8 V LVCMOS High Slew Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 1.7$ V Applicable to Advanced I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.66	11.86	0.04	1.22	0.43	9.14	11.86	2.77	1.66	11.37	14.10	ns
	-1	0.56	10.09	0.04	1.04	0.36	7.77	10.09	2.36	1.41	9.67	11.99	ns
	-2	0.49	8.86	0.03	0.91	0.32	6.82	8.86	2.07	1.24	8.49	10.53	ns
4 mA	Std.	0.66	6.91	0.04	1.22	0.43	5.86	6.91	3.22	2.84	8.10	9.15	ns
	-1	0.56	5.88	0.04	1.04	0.36	4.99	5.88	2.74	2.41	6.89	7.78	ns
	-2	0.49	5.16	0.03	0.91	0.32	4.38	5.16	2.41	2.12	6.05	6.83	ns
8 mA	Std.	0.66	4.45	0.04	1.22	0.43	4.18	4.45	3.53	3.38	6.42	6.68	ns
	-1	0.56	3.78	0.04	1.04	0.36	3.56	3.78	3.00	2.88	5.46	5.69	ns
	-2	0.49	3.32	0.03	0.91	0.32	3.12	3.32	2.64	2.53	4.79	4.99	ns
12 mA	Std.	0.66	3.92	0.04	1.22	0.43	3.93	3.92	3.60	3.52	6.16	6.16	ns
	-1	0.56	3.34	0.04	1.04	0.36	3.34	3.34	3.06	3.00	5.24	5.24	ns
	-2	0.49	2.93	0.03	0.91	0.32	2.93	2.93	2.69	2.63	4.60	4.60	ns
16 mA	Std.	0.66	3.53	0.04	1.22	0.43	3.60	3.04	3.70	4.08	5.84	5.28	ns
	-1	0.56	3.01	0.04	1.04	0.36	3.06	2.59	3.15	3.47	4.96	4.49	ns
	-2	0.49	2.64	0.03	0.91	0.32	2.69	2.27	2.76	3.05	4.36	3.94	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-121 • 1.8 V LVCMOS Low Slew Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 1.7$ V Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	15.01	0.04	1.20	0.43	13.15	15.01	1.99	1.99	ns
	-1	0.56	12.77	0.04	1.02	0.36	11.19	12.77	1.70	1.70	ns
	-2	0.49	11.21	0.03	0.90	0.32	9.82	11.21	1.49	1.49	ns
4 mA	Std.	0.66	10.10	0.04	1.20	0.43	9.55	10.10	2.41	2.37	ns
	-1	0.56	8.59	0.04	1.02	0.36	8.13	8.59	2.05	2.02	ns
	-2	0.49	7.54	0.03	0.90	0.32	7.13	7.54	1.80	1.77	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-122 • 1.8 V LVCMOS High Slew Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 1.7$ V Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	11.21	0.04	1.20	0.43	8.53	11.21	1.99	1.21	ns
	-1	0.56	9.54	0.04	1.02	0.36	7.26	9.54	1.69	1.03	ns
	-2	0.49	8.37	0.03	0.90	0.32	6.37	8.37	1.49	0.90	ns
4 mA	Std.	0.66	6.34	0.04	1.20	0.43	5.38	6.34	2.41	2.48	ns
	-1	0.56	5.40	0.04	1.02	0.36	4.58	5.40	2.05	2.11	ns
	-2	0.49	4.74	0.03	0.90	0.32	4.02	4.74	1.80	1.85	ns

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.5 V applications. It uses a 1.5 V input buffer and push-pull output buffer.

Table 2-123 • Minimum and Maximum DC Input and Output Levels

1.5 V LVCMOS	V	/ _{IL}	v	IH	V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL}	I _{IH}
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA	Max., mA ¹	Max., mA ¹	μ Α 2	μ Α 2
Applicable	to Pro I/O I	Banks										
2 mA	-0.3	0.30 * V _{CCI}	0.7 * V _{CCI}	3.6	0.25 * V _{CCI}	0.75 * V _{CCI}	2	2	16	13	10	10
4 mA	-0.3	0.30 * V _{CCI}	0.7 * V _{CCI}	3.6	0.25 * V _{CCI}	0.75 * V _{CCI}	4	4	33	25	10	10
6 mA	-0.3	0.30 * V _{CCI}	0.7 * V _{CCI}	3.6	0.25 * V _{CCI}	0.75 * V _{CCI}	6	6	39	32	10	10
8 mA	-0.3	0.30 * V _{CCI}	0.7 * V _{CCI}	3.6	0.25 * V _{CCI}	0.75 * V _{CCI}	8	8	55	66	10	10
12 mA	-0.3	0.30 * V _{CCI}	0.7 * V _{CCI}	3.6	0.25 * V _{CCI}	0.75 * V _{CCI}	12	12	55	66	10	10
Applicable	to Pro I/O I	Banks										
2 mA	-0.3	0.30 * V _{CCI}	0.7 * V _{CCI}	3.6	0.25 * V _{CCI}	0.75 * V _{CCI}	2	2	16	13	10	10
4 mA	-0.3	0.30 * V _{CCI}	0.7 * V _{CCI}	3.6	0.25 * V _{CCI}	0.75 * V _{CCI}	4	4	33	25	10	10
6 mA	-0.3	0.30 * V _{CCI}	0.7 * V _{CCI}	3.6	0.25 * V _{CCI}	0.75 * V _{CCI}	6	6	39	32	10	10
8 mA	-0.3	0.30 * V _{CCI}	0.7 * V _{CCI}	3.6	0.25 * V _{CCI}	0.75 * V _{CCI}	8	8	55	66	10	10
12 mA	-0.3	0.30 * V _{CCI}	0.7 * V _{CCI}	3.6	0.25 * V _{CCI}	0.75 * V _{CCI}	12	12	55	66	10	10
Applicable	to Pro I/O I	Banks										
2 mA	-0.3	0.30 * V _{CCI}	0.7 * V _{CCI}	3.6	0.25 * V _{CCI}	0.75 * V _{CCI}	2	2	16	13	10	10
Notes:												

Notes:

- 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 2. Currents are measured at 85°C junction temperature.
- 3. Software default selection highlighted in gray.

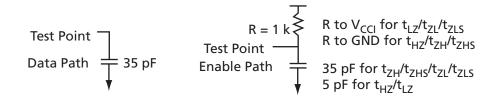


Figure 2-114 • AC Loading

Table 2-124 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	C _{LOAD} (pF)
0	1.5	0.75	-	35

Note: *Measuring point = V_{trip} . See Table 2-87 on page 2-151 for a complete table of trip points.

Timing Characteristics

Table 2-125 • 1.5 V LVCMOS Low Slew Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 1.4$ V Applicable to Pro I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.66	14.11	0.04	1.70	2.14	0.43	14.37	13.14	3.40	2.68	16.61	15.37	ns
	-1	0.56	12.00	0.04	1.44	1.82	0.36	12.22	11.17	2.90	2.28	14.13	13.08	ns
	-2	0.49	10.54	0.03	1.27	1.60	0.32	10.73	9.81	2.54	2.00	12.40	11.48	ns
4 mA	Std.	0.66	11.23	0.04	1.70	2.14	0.43	11.44	9.87	3.77	3.36	13.68	12.10	ns
	-1	0.56	9.55	0.04	1.44	1.82	0.36	9.73	8.39	3.21	2.86	11.63	10.29	ns
	-2	0.49	8.39	0.03	1.27	1.60	0.32	8.54	7.37	2.81	2.51	10.21	9.04	ns
8 mA	Std.	0.66	10.45	0.04	1.70	2.14	0.43	10.65	9.24	3.84	3.55	12.88	11.48	ns
	-1	0.56	8.89	0.04	1.44	1.82	0.36	9.06	7.86	3.27	3.02	10.96	9.76	ns
	-2	0.49	7.81	0.03	1.27	1.60	0.32	7.95	6.90	2.87	2.65	9.62	8.57	ns
12 mA	Std.	0.66	10.02	0.04	1.70	2.14	0.43	10.20	9.23	3.97	4.22	12.44	11.47	ns
	-1	0.56	8.52	0.04	1.44	1.82	0.36	8.68	7.85	3.38	3.59	10.58	9.75	ns
	-2	0.49	7.48	0.03	1.27	1.60	0.32	7.62	6.89	2.97	3.15	9.29	8.56	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-126 • 1.5 V LVCMOS High Slew

Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 1.4 V

Applicable to Pro I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.66	8.53	0.04	1.70	2.14	0.43	7.26	8.53	3.39	2.79	9.50	10.77	ns
	-1	0.56	7.26	0.04	1.44	1.82	0.36	6.18	7.26	2.89	2.37	8.08	9.16	ns
	-2	0.49	6.37	0.03	1.27	1.60	0.32	5.42	6.37	2.53	2.08	7.09	8.04	ns
4 mA	Std.	0.66	5.41	0.04	1.70	2.14	0.43	5.22	5.41	3.75	3.48	7.45	7.65	ns
	-1	0.56	4.60	0.04	1.44	1.82	0.36	4.44	4.60	3.19	2.96	6.34	6.50	ns
	-2	0.49	4.04	0.03	1.27	1.60	0.32	3.89	4.04	2.80	2.60	5.56	5.71	ns
8 mA	Std.	0.66	4.80	0.04	1.70	2.14	0.43	4.89	4.75	3.83	3.67	7.13	6.98	ns
	-1	0.56	4.09	0.04	1.44	1.82	0.36	4.16	4.04	3.26	3.12	6.06	5.94	ns
	-2	0.49	3.59	0.03	1.27	1.60	0.32	3.65	3.54	2.86	2.74	5.32	5.21	ns
12 mA	Std.	0.66	4.42	0.04	1.70	2.14	0.43	4.50	3.62	3.96	4.37	6.74	5.86	ns
	-1	0.56	3.76	0.04	1.44	1.82	0.36	3.83	3.08	3.37	3.72	5.73	4.98	ns
	-2	0.49	3.30	0.03	1.27	1.60	0.32	3.36	2.70	2.96	3.27	5.03	4.37	ns

Table 2-127 • 1.5 V LVCMOS Low Slew Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 1.4$ V Applicable to Advanced I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.66	12.78	0.04	1.31	0.43	12.81	12.78	3.40	2.64	15.05	15.02	ns
	-1	0.56	10.87	0.04	1.11	0.36	10.90	10.87	2.89	2.25	12.80	12.78	ns
	-2	0.49	9.55	0.03	0.98	0.32	9.57	9.55	2.54	1.97	11.24	11.22	ns
4 mA	Std.	0.66	10.01	0.04	1.31	0.43	10.19	9.55	3.75	3.27	12.43	11.78	ns
	-1	0.56	8.51	0.04	1.11	0.36	8.67	8.12	3.19	2.78	10.57	10.02	ns
	-2	0.49	7.47	0.03	0.98	0.32	7.61	7.13	2.80	2.44	9.28	8.80	ns
8 mA	Std.	0.66	9.33	0.04	1.31	0.43	9.51	8.89	3.83	3.43	11.74	11.13	ns
	-1	0.56	7.94	0.04	1.11	0.36	8.09	7.56	3.26	2.92	9.99	9.47	ns
	-2	0.49	6.97	0.03	0.98	0.32	7.10	6.64	2.86	2.56	8.77	8.31	ns
12 mA	Std.	0.66	8.91	0.04	1.31	0.43	9.07	8.89	3.95	4.05	11.31	11.13	ns
	-1	0.56	7.58	0.04	1.11	0.36	7.72	7.57	3.36	3.44	9.62	9.47	ns
	-2	0.49	6.65	0.03	0.98	0.32	6.78	6.64	2.95	3.02	8.45	8.31	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-128 • 1.5 V LVCMOS High Slew
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 1.4 V
Applicable to Advanced I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.66	8.36	0.04	1.44	0.43	6.82	8.36	3.39	2.77	9.06	10.60	ns
	-1	0.56	7.11	0.04	1.22	0.36	5.80	7.11	2.88	2.35	7.71	9.02	ns
	-2	0.49	6.24	0.03	1.07	0.32	5.10	6.24	2.53	2.06	6.76	7.91	ns
4 mA	Std.	0.66	5.31	0.04	1.44	0.43	4.85	5.31	3.74	3.40	7.09	7.55	ns
	-1	0.56	4.52	0.04	1.22	0.36	4.13	4.52	3.18	2.89	6.03	6.42	ns
	-2	0.49	3.97	0.03	1.07	0.32	3.62	3.97	2.79	2.54	5.29	5.64	ns
8 mA	Std.	0.66	4.67	0.04	1.44	0.43	4.55	4.67	3.82	3.56	6.78	6.90	ns
	-1	0.56	3.97	0.04	1.22	0.36	3.87	3.97	3.25	3.03	5.77	5.87	ns
	-2	0.49	3.49	0.03	1.07	0.32	3.40	3.49	2.85	2.66	5.07	5.16	ns
12 mA	Std.	0.66	4.08	0.04	1.44	0.43	4.15	3.58	3.94	4.20	6.39	5.81	ns
	-1	0.56	3.47	0.04	1.22	0.36	3.53	3.04	3.36	3.58	5.44	4.95	ns
	-2	0.49	3.05	0.03	1.07	0.32	3.10	2.67	2.95	3.14	4.77	4.34	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-129 • 1.5 V LVCMOS Low Slew Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 1.4$ V Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	12.33	0.04	1.42	0.43	11.79	12.33	2.45	2.32	ns
	-1	0.56	10.49	0.04	1.21	0.36	10.03	10.49	2.08	1.98	ns
	-2	0.49	9.21	0.03	1.06	0.32	8.81	9.21	1.83	1.73	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-130 • 1.5 V LVCMOS High Slew Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 1.4 V Applicable to Standard I/Os

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.66	7.65	0.04	1.42	0.43	6.31	7.65	2.45	2.45	ns
	-1	0.56	6.50	0.04	1.21	0.36	5.37	6.50	2.08	2.08	ns
	-2	0.49	5.71	0.03	1.06	0.32	4.71	5.71	1.83	1.83	ns

3.3 V PCI, 3.3 V PCI-X

The Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

Table 2-131 • Minimum and Maximum DC Input and Output Levels

3.3 V PCI/PCI-X	V PCI/PCI-X V _{IL}		V _{IH}		V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL}	I _{IH}
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA	Max., mA ¹	Max., mA ¹	μA ²	μA ²
Per PCI specification					Per Po	CI curves					10	10

Notes:

- 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 2. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Actel loadings for enable path characterization are described in Figure 2-115.

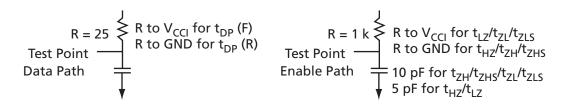


Figure 2-115 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the data path; Actel loading for tristate is described in Table 2-132.

Table 2-132 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	C _{LOAD} (pF)
0	3.3	0.285 * V_{CCI} for $t_{DP(R)}$	-	10
		0.615 * V_{CCI} for $t_{DP(F)}$		

Note: *Measuring point = V_{trip} . See Table 2-87 on page 2-151 for a complete table of trip points.

Timing Characteristics

Table 2-133 • **3.3 V PCI/PCI-X**

Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V Applicable to Pro I/Os

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.66	2.81	0.04	1.05	1.67	0.43	2.86	2.00	3.28	3.61	5.09	4.23	ns
– 1	0.56	2.39	0.04	0.89	1.42	0.36	2.43	1.70	2.79	3.07	4.33	3.60	ns
-2	0.49	2.09	0.03	0.78	1.25	0.32	2.13	1.49	2.45	2.70	3.80	3.16	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

Table 2-134 • **3.3 V PCI/PCI-X**

Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V, Worst-Case V_{CCI} = 3.0 V Applicable to Advanced I/Os

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.66	2.68	0.04	0.86	0.43	2.73	1.95	3.21	3.58	4.97	4.19	0.66	ns
-1	0.56	2.28	0.04	0.73	0.36	2.32	1.66	2.73	3.05	4.22	3.56	0.56	ns
-2	0.49	2.00	0.03	0.65	0.32	2.04	1.46	2.40	2.68	3.71	3.13	0.49	ns

Voltage Referenced I/O Characteristics

3.3 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The V_{CCI} pin should be connected to 3.3 V.

Table 2-135 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL	V	ĪL	V _{IH}		V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL}	I _{IH}
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA	Max., mA ¹	Max., mA ¹	μA ²	μA ²
25 mA ³	-0.3	V _{REF} – 0.05	V _{REF} + 0.05	3.6	0.4	_	25	25	181	268	10	10

Notes:

- 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 2. Currents are measured at 85°C junction temperature.
- 3. Output drive strength is below JEDEC specification.

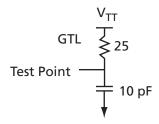


Figure 2-116 • AC Loading

Table 2-136 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	V _{TT} (typ.) (V)	C _{LOAD} (pF)
V _{REF} - 0.05	V _{REF} + 0.05	0.8	0.8	1.2	10

Note: *Measuring point = V_{trip} . See Table 2-87 on page 2-151 for a complete table of trip points.

Timing Characteristics

Table 2-137 • 3.3 V GTL

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 3.0$ V, $V_{REF} = 0.8$ V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.66	2.08	0.04	2.93	0.43	2.04	2.08			4.27	4.31	ns
-1	0.56	1.77	0.04	2.50	0.36	1.73	1.77			3.63	3.67	ns
-2	0.49	1.55	0.03	2.19	0.32	1.52	1.55			3.19	3.22	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

2.5 V GTL

Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The V_{CCI} pin should be connected to 2.5 V.

Table 2-138 • Minimum and Maximum DC Input and Output Levels

2.5 GTL	V	ľL	V_{IH}		V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	ΙL	I _{IH}
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mΑ	mΑ	Max., mA ¹	Max., mA ¹	μA ²	μA ²
25 mA ³	-0.3	V _{REF} – 0.05	$V_{REF} + 0.05$	3.6	0.4	1	25	25	124	169	10	10

Notes:

- 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 2. Currents are measured at 85°C junction temperature.
- 3. Output drive strength is below JEDEC specification.

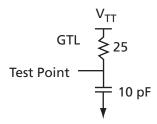


Figure 2-117 • AC Loading

Table 2-139 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	V _{TT} (typ.) (V)	C _{LOAD} (pF)
V _{REF} – 0.05	V _{REF} + 0.05	0.8	0.8	1.2	10

Note: *Measuring point = V_{trip} . See Table 2-87 on page 2-151 for a complete table of trip points.

Timing Characteristics

Table 2-140 • 2.5 V GTL

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 3.0$ V, $V_{REF} = 0.8$ V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.66	2.13	0.04	2.46	0.43	2.16	2.13			4.40	4.36	ns
-1	0.56	1.81	0.04	2.09	0.36	1.84	1.81			3.74	3.71	ns
-2	0.49	1.59	0.03	1.83	0.32	1.61	1.59			3.28	3.26	ns

3.3 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The V_{CCI} pin should be connected to 3.3 V.

Table 2-141 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL+	V _{IL}		V _{IH}		V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL}	I _{IH}
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mΑ	mΑ	Max., mA ¹	Max., mA ¹	μA ²	μA ²
35 mA	-0.3	V _{REF} - 0.1	$V_{REF} + 0.1$	3.6	0.6	-	35	35	181	268	10	10

Notes:

- 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 2. Currents are measured at 85°C junction temperature.

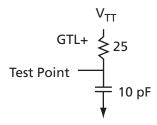


Figure 2-118 • AC Loading

Table 2-142 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	V _{TT} (typ.) (V)	C _{LOAD} (pF)
V _{REF} – 0.1	V _{REF} + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = V_{trip} . See Table 2-87 on page 2-151 for a complete table of trip points.

Timing Characteristics

Table 2-143 • 3.3 V GTL+

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 3.0$ V, $V_{REF} = 1.0$ V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.66	2.06	0.04	1.59	0.43	2.09	2.06			4.33	4.29	ns
-1	0.56	1.75	0.04	1.35	0.36	1.78	1.75			3.68	3.65	ns
-2	0.49	1.53	0.03	1.19	0.32	1.56	1.53			3.23	3.20	ns

2.5 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The V_{CCI} pin should be connected to 2.5 V.

Table 2-144 • Minimum and Maximum DC Input and Output Levels

2.5 V GTL+	•	/ _{IL}	VIH	I	V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL}	I _{IH}
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA	Max., mA ¹	Max., mA ¹	μA ²	μA ²
33 mA	-0.3	V _{REF} - 0.1	V _{REF} + 0.1	3.6	0.6	_	33	33	124	169	10	10

Notes:

- 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 2. Currents are measured at 85°C junction temperature.

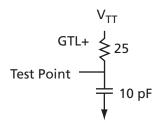


Figure 2-119 • AC Loading

Table 2-145 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	V _{TT} (typ.) (V)	C _{LOAD} (pF)
V _{REF} – 0.1	V _{REF} + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = V_{trip} . See Table 2-87 on page 2-151 for a complete table of trip points.

Timing Characteristics

Table 2-146 • 2.5 V GTL+

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 2.3$ V, $V_{REF} = 1.0$ V

Speed Grade	0.66	2.21	0.04	1.51	0.43	2.25	2.10		4.48	4.34	Units
Std.	0.56	1.88	0.04	1.29	0.36	1.91	1.79		3.81	3.69	ns
-1	0.49	1.65	0.03	1.13	0.32	1.68	1.57		3.35	3.24	ns
-2	0.66	2.21	0.04	1.51	0.43	2.25	2.10		4.48	4.34	ns

HSTL Class I

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). Fusion devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-147 • Minimum and Maximum DC Input and Output Levels

HSTL Class I	V	ĬL	ν	IH	V _{OL}	V _{OH}	I_{OL}	I _{OH}	I _{OSL}	I _{OSH}	∄	I _{IH}
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mΑ	mΑ	Max., mA ¹	Max., mA ¹	μA ²	μA ²
8 mA	-0.3	V _{REF} - 0.1	$V_{REF} + 0.1$	3.6	0.4	V _{CCI} – 0.4	8	8	39	32	10	10

Notes:

- 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 2. Currents are measured at 85°C junction temperature.

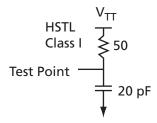


Figure 2-120 • AC Loading

Table 2-148 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	V _{TT} (typ.) (V)	C _{LOAD} (pF)
V _{REF} – 0.1	V _{REF} + 0.1	0.75	0.75	0.75	20

Note: *Measuring point = V_{trip} . See Table 2-87 on page 2-151 for a complete table of trip points.

Timing Characteristics

Table 2-149 • HSTL Class I

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 1.4$ V, $V_{REF} = 0.75$ V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.66	3.18	0.04	2.12	0.43	3.24	3.14			5.47	5.38	ns
-1	0.56	2.70	0.04	1.81	0.36	2.75	2.67			4.66	4.58	ns
-2	0.49	2.37	0.03	1.59	0.32	2.42	2.35			4.09	4.02	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

HSTL Class II

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). Fusion devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-150 • Minimum and Maximum DC Input and Output Levels

HSTL Class II	V	IL.	V _{IH}		V _{OL}	V _{OL} V _{OH}		I _{OH}	I _{OSL}	I _{OSH}	I _{IL}	I _{IH}
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mΑ	mΑ	Max., mA ¹	Max., mA ¹	μA ²	μA ²
15 mA ³	-0.3	V _{REF} - 0.1	$V_{REF} + 0.1$	3.6	0.4	V _{CCI} – 0.4	15	15	55	66	10	10

Notes:

- 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 2. Currents are measured at 85°C junction temperature.
- 3. Output drive strength is below JEDEC specification.

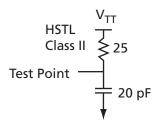


Figure 2-121 • AC Loading

Table 2-151 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	V _{TT} (typ.) (V)	C _{LOAD} (pF)
V _{REF} - 0.1	V _{REF} + 0.1	0.75	0.75	0.75	20

Note: *Measuring point = V_{trip} . See Table 2-87 on page 2-151 for a complete table of trip points.

Timing Characteristics

Table 2-152 • HSTL Class II

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 1.4$ V, $V_{REF} = 0.75$ V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.66	3.02	0.04	2.12	0.43	3.08	2.71			5.32	4.95	ns
-1	0.56	2.57	0.04	1.81	0.36	2.62	2.31			4.52	4.21	ns
-2	0.49	2.26	0.03	1.59	0.32	2.30	2.03			3.97	3.70	ns

SSTL2 Class I

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Fusion devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-153 • Minimum and Maximum DC Input and Output Levels

SSTL2 Class I	V	IL.	٧	IH	V _{OL}	V _{OH}	I_{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL}	I _{IH}
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mΑ	mΑ	Max., mA ¹	Max., mA ¹	μA ²	μA ²
15 mA	-0.3	V _{REF} – 0.2	$V_{REF} + 0.2$	3.6	0.54	V _{CCI} – 0.62	15	15	87	83	10	10

Notes:

- 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 2. Currents are measured at 85°C junction temperature.

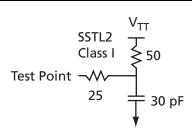


Figure 2-122 • AC Loading

Table 2-154 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	V _{TT} (typ.) (V)	C _{LOAD} (pF)
V _{REF} – 0.2	V _{REF} + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = V_{trip} . See Table 2-87 on page 2-151 for a complete table of trip points.

Timing Characteristics

Table 2-155 • SSTL 2 Class I

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 2.3$ V, $V_{REF} = 1.25$ V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.66	2.13	0.04	1.33	0.43	2.17	1.85			4.40	4.08	ns
-1	0.56	1.81	0.04	1.14	0.36	1.84	1.57			3.74	3.47	ns
-2	0.49	1.59	0.03	1.00	0.32	1.62	1.38			3.29	3.05	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

SSTL2 Class II

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Fusion devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-156 • Minimum and Maximum DC Input and Output Levels

SSTL2 Class II	V	ÎL.	٧	IH	V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL}	I _{IH}
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mΑ	mΑ	Max., mA ¹	Max., mA ¹	μA ²	μA ²
18 mA	-0.3	$V_{REF} - 0.2$	$V_{REF} + 0.2$	3.6	0.35	V _{CCI} – 0.43	18	18	124	169	10	10

Notes:

- 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 2. Currents are measured at 85°C junction temperature.

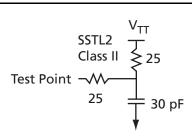


Figure 2-123 • AC Loading

Table 2-157 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	V _{TT} (typ.) (V)	C _{LOAD} (pF)
V _{REF} - 0.2	V _{REF} + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = V_{trip} . See Table 2-87 on page 2-151 for a complete table of trip points.

Timing Characteristics

Table 2-158 • SSTL 2 Class II

Commercial-Case Conditions: $T_J = 70$ °C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 2.3$ V, $V_{REF} = 1.25$ V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.66	2.17	0.04	1.33	0.43	2.21	1.77			4.44	4.01	ns
-1	0.56	1.84	0.04	1.14	0.36	1.88	1.51			3.78	3.41	ns
-2	0.49	1.62	0.03	1.00	0.32	1.65	1.32			3.32	2.99	ns

SSTL3 Class I

Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). Fusion devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-159 • Minimum and Maximum DC Input and Output Levels

SSTL3 Class I	V	IL.	ν	IH	V _{OL}	V _{OH}	I _{OL}	I _{OH}	I _{OSL}	I _{OSH}	I _{IL}	I _{IH}
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mΑ	mΑ	Max., mA ¹	Max., mA ¹	μA ²	μA ²
14 mA	-0.3	V _{REF} - 0.2	$V_{REF} + 0.2$	3.6	0.7	V _{CCI} – 1.1	14	14	54	51	10	10

Notes:

- 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 2. Currents are measured at 85°C junction temperature.

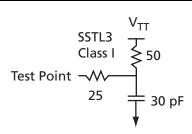


Figure 2-124 • AC Loading

Table 2-160 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	V _{TT} (typ.) (V)	C _{LOAD} (pF)
V _{REF} - 0.2	V _{REF} + 0.2	1.5	1.5	1.485	30

Note: *Measuring point = V_{trip} . See Table 2-87 on page 2-151 for a complete table of trip points.

Timing Characteristics

Table 2-161 • SSTL3 Class I

Commercial-Case Conditions: $T_J = 70^{\circ}C$, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 3.0$ V, $V_{REF} = 1.5$ V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.66	2.31	0.04	1.25	0.43	2.35	1.84			4.59	4.07	ns
-1	0.56	1.96	0.04	1.06	0.36	2.00	1.56			3.90	3.46	ns
-2	0.49	1.72	0.03	0.93	0.32	1.75	1.37			3.42	3.04	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

SSTL3 Class II

Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). Fusion devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

Table 2-162 • Minimum and Maximum DC Input and Output Levels

SSTL3 Class II	V	ĪL	V	IH	V _{OL}	V _{OH}	I_{OL}	I _{OH}	I _{OSL}	I _{OSH}	∄	I _{IH}
Drive Strength	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mΑ	mΑ	Max., mA ¹	Max., mA ¹	μA ²	μA ²
21 mA	-0.3	$V_{REF} - 0.2$	$V_{REF} + 0.2$	3.6	0.5	V _{CCI} – 0.9	21	21	109	103	10	10

Notes:

- 1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 2. Currents are measured at 85°C junction temperature.

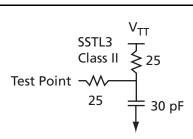


Figure 2-125 • AC Loading

Table 2-163 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	V _{TT} (typ.) (V)	C _{LOAD} (pF)
V _{REF} – 0.2	V _{REF} + 0.2	1.5	1.5	1.485	30

Note: *Measuring point = V_{trip} . See Table 2-87 on page 2-151 for a complete table of trip points.

Timing Characteristics

Table 2-164 • SSTL3- Class II

Commercial-Case Conditions: $T_J = 70^{\circ}C$, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 3.0$ V, $V_{REF} = 1.5$ V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.66	2.07	0.04	1.25	0.43	2.10	1.67			4.34	3.91	ns
-1	0.56	1.76	0.04	1.06	0.36	1.79	1.42			3.69	3.32	ns
-2	0.49	1.54	0.03	0.93	0.32	1.57	1.25			3.24	2.92	ns

Differential I/O Characteristics

Configuration of the I/O modules as a differential pair is handled by the Actel Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with these standards.

LVDS

Low-Voltage Differential Signal (ANSI/TIA/EIA-644) is a high-speed differential I/O standard. It requires that one

data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination. The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-126. The building blocks of the LVDS transmitter–receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

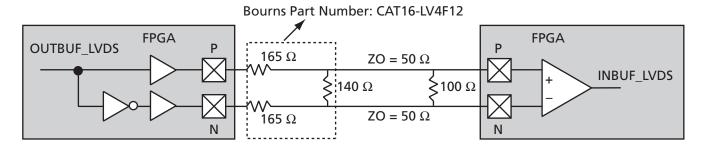


Figure 2-126 • LVDS Circuit Diagram and Board-Level Implementation

Table 2-165 • Minimum and Maximum DC Input and Output Levels

DC Parameter	Description	Min.	Тур.	Мах.	Units
V _{CCI}	Supply Voltage	2.375	2.5	2.625	V
V _{OL}	Output LOW Voltage	0.9	1.075	1.25	V
V _{OH}	Input HIGH Voltage	1.25	1.425	1.6	V
l _{OL} ³	Input LOW Voltage	0.65	0.91	1.16	mA
I _{OH} ³	Output HIGH Voltage	0.65	0.91	1.16	mA
V _I	Input Voltage	0		2.925	V
I _{IL} ⁴	Input LOW Voltage			10	μΑ
l _{IH} ⁴	Output HIGH Voltage			10	μΑ
V _{ODIFF}	Differential Output Voltage	250	350	450	mV
V _{OCM}	Output Common Mode Voltage	1.125	1.25	1.375	V
V _{ICM}	Input Common Mode Voltage	0.05	1.25	2.35	V
V _{IDIFF}	Input Differential Voltage	100	350		mV

Notes:

- 1. ±5%
- 2. Differential input voltage = ±350 mV

Table 2-166 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	V _{REF} (typ.) (V)
1.075	1.325	Cross point	_

Note: *Measuring point = V_{trip} . See Table 2-87 on page 2-151 for a complete table of trip points.

Timing Characteristics

Table 2-167 • LVDS Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case $V_{CC} = 1.425$ V, Worst-Case $V_{CCI} = 2.3$ V Applicable to Pro I/Os

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	2.10	0.04	1.82	ns
-1	0.56	1.79	0.04	1.55	ns
-2	0.49	1.57	0.03	1.36	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

BLVDS/M-LVDS

Bus LVDS (BLVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations can contain any combination of drivers, receivers, and transceivers. Actel LVDS drivers provide the higher drive current required by BLVDS and M-LVDS to accommodate the loading. The driver requires series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus, since the driver can be located anywhere on the bus. These configurations can

be implemented using TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Actel LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-127. The input and output buffer delays are available in the LVDS section in Table 2-165 on page 2-189.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case industrial operating conditions at the farthest receiver: $R_S = 60~\Omega$ and $R_T = 70~\Omega$, given $Z_0 = 50~\Omega$ (2") and $Z_{stub} = 50~\Omega$ (~1.5").

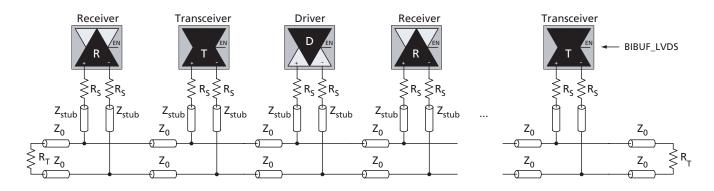


Figure 2-127 • BLVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-128. The

building blocks of the LVPECL transmitter–receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

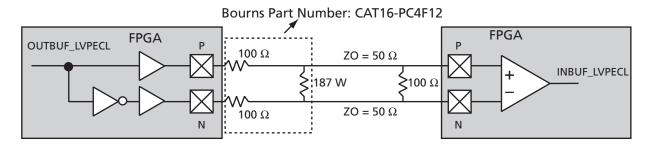


Figure 2-128 • LVPECL Circuit Diagram and Board-Level Implementation

Table 2-168 • Minimum and Maximum DC Input and Output Levels

DC Parameter	Description	Min.	Мах.	Min.	Мах.	Min.	Мах.	Units
V _{CCI}	Supply Voltage	3	.0	3	.3	3	.6	V
V _{OL}	Output LOW Voltage	0.96	1.27	1.06	1.43	1.30	1.57	V
V _{OH}	Output HIGH Voltage	1.8	2.11	1.92	2.28	2.13	2.41	V
V_{IL} , V_{IH}	Input LOW, Input HIGH Voltages	0	3.3	0	3.6	0	3.9	V
V_{ODIFF}	Differential Output Voltage	0.625	0.97	0.625	0.97	0.625	0.97	V
V _{OCM}	Output Common Mode Voltage	1.762	1.98	1.762	1.98	1.762	1.98	V
V _{ICM}	Input Common Mode Voltage	1.01	2.57	1.01	2.57	1.01	2.57	V
V _{IDIFF}	Input Differential Voltage	300		300		300		mV

Table 2-169 • AC Waveforms, Measuring Points, and Capacitive Loads

Input LOW (V)	Input HIGH (V)	Measuring Point* (V)	V _{REF} (typ.) (V)
1.64	1.94	Cross point	-

Note: *Measuring point = V_{trip} . See Table 2-87 on page 2-151 for a complete table of trip points.

Timing Characteristics

Table 2-170 • LVPECL

Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, Worst-Case $V_{CC} = 1.425 \text{ V}$, Worst-Case $V_{CCI} = 3.0 \text{ V}$ Applicable to Pro I/Os

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.66	2.14	0.04	1.63	ns
-1	0.56	1.82	0.04	1.39	ns
-2	0.49	1.60	0.03	1.22	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

I/O Register Specifications

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

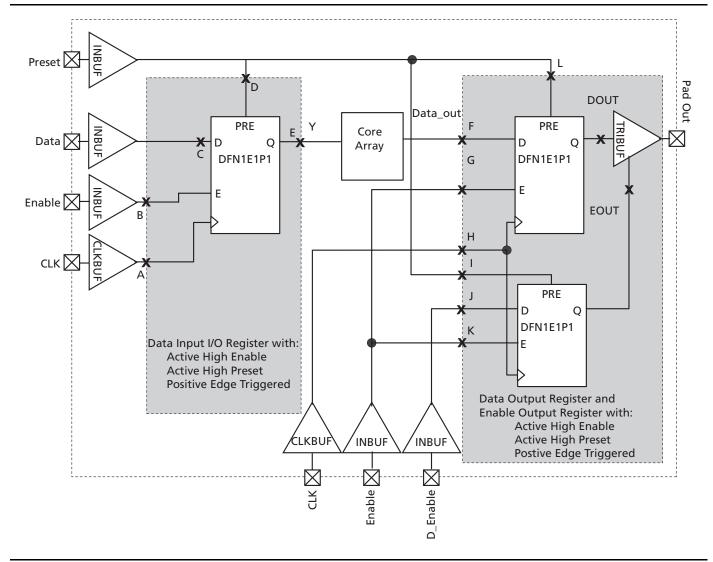


Figure 2-129 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Table 2-171 • Parameter Definitions and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{OCLKQ}	Clock-to-Q of the Output Data Register	H, DOUT
t _{OSUD}	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
t _{OSUE}	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L,DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	H, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
t _{OESUE}	Enable Setup Time for the Output Enable Register	К, Н
t _{OEHE}	Enable Hold Time for the Output Enable Register	К, Н
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Note: *See Figure 2-129 on page 2-192 for more information.

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

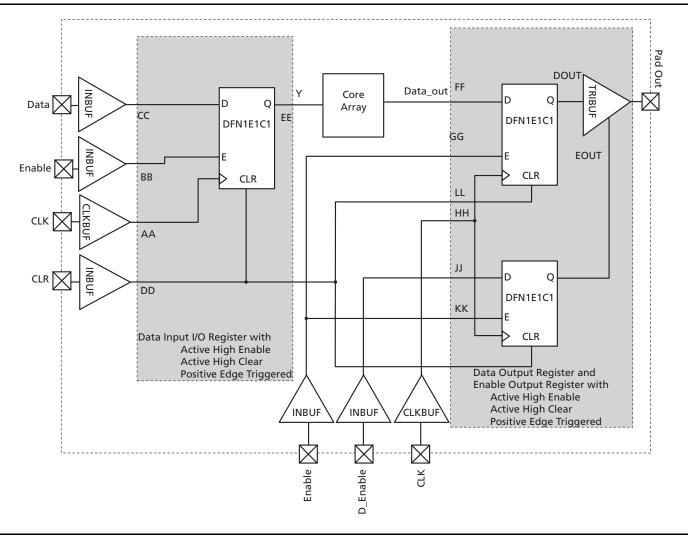


Figure 2-130 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Table 2-172 • Parameter Definitions and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{OCLKQ}	Clock-to-Q of the Output Data Register	HH, DOUT
t _{OSUD}	Data Setup Time for the Output Data Register	FF, HH
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH
t _{OSUE}	Enable Setup Time for the Output Data Register	GG, HH
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
toremclr	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
torecclr	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	HH, EOUT
t _{OESUD}	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
t _{OESUE}	Enable Setup Time for the Output Enable Register	KK, HH
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
t _{ISUD}	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Note: *See Figure 2-130 on page 2-194 for more information.

Input Register

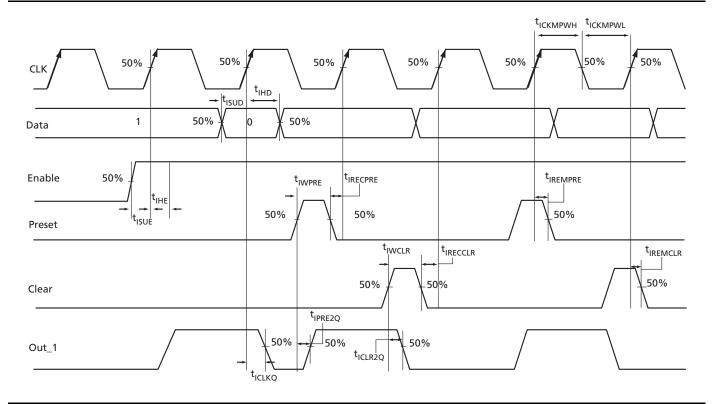


Figure 2-131 • Input Register Timing Diagram

Timing Characteristics

Table 2-173 • Input Data Register Propagation Delays Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, Worst-Case $V_{CC} = 1.425 \text{ V}$

Parameter	Description	-2	-1	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.24	0.27	0.32	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.26	0.30	0.35	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	0.37	0.42	0.50	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.45	0.52	0.61	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.22	0.25	0.30	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{ICKMPWH}	Clock Minimum Pulse Width HIGH for the Input Data Register	0.36	0.41	0.48	ns
t _{ICKMPWL}	Clock Minimum Pulse Width LOW for the Input Data Register	0.32	0.37	0.43	ns

Output Register

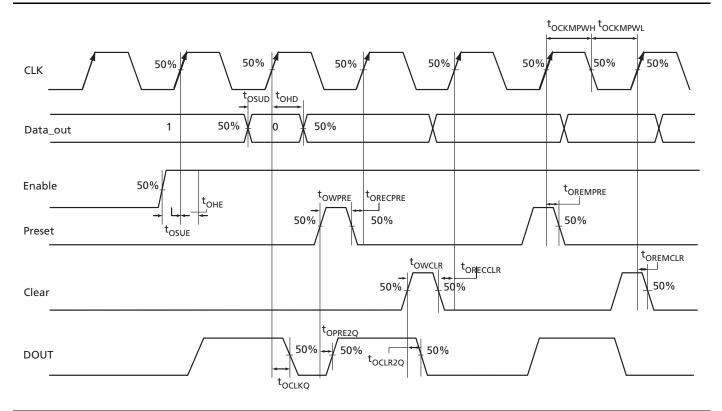


Figure 2-132 • Output Register Timing Diagram

Timing Characteristics

Table 2-174 • Output Data Register Propagation Delays
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	0.59	0.67	0.79	ns
t _{OSUD}	Data Setup Time for the Output Data Register	0.31	0.36	0.42	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	0.00	0.00	ns
t _{OSUE}	Enable Setup Time for the Output Data Register	0.44	0.50	0.59	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	0.00	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	0.80	0.91	1.07	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	0.80	0.91	1.07	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	0.00	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.22	0.25	0.30	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	0.00	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.22	0.25	0.30	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.22	0.25	0.30	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.22	0.25	0.30	ns
t _{OCKMPWH}	Clock Minimum Pulse Width HIGH for the Output Data Register	0.36	0.41	0.48	ns
t _{OCKMPWL}	Clock Minimum Pulse Width LOW for the Output Data Register	0.32	0.37	0.43	ns

Output Enable Register

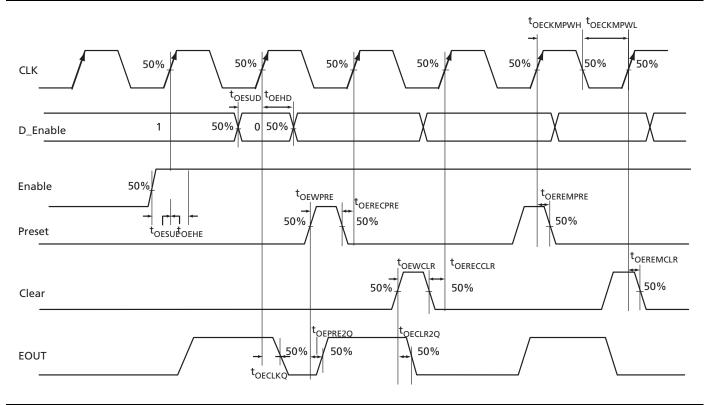


Figure 2-133 • Output Enable Register Timing Diagram

Timing Characteristics

Table 2-175 • Output Enable Register Propagation Delays
Commercial-Case Conditions: T_J = 70°C, Worst-Case V_{CC} = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	0.44	0.51	0.59	ns
t _{OESUD}	Data Setup Time for the Output Enable Register	0.31	0.36	0.42	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OESUE}	Enable Setup Time for the Output Enable Register	0.44	0.50	0.58	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	0.67	0.76	0.89	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	0.00	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.22	0.25	0.30	ns
t _{OECKMPWH}	Clock Minimum Pulse Width HIGH for the Output Enable Register	0.36	0.41	0.48	ns
t _{OECKMPWL}	Clock Minimum Pulse Width LOW for the Output Enable Register	0.32	0.37	0.43	ns

DDR Module Specifications

Input DDR Module

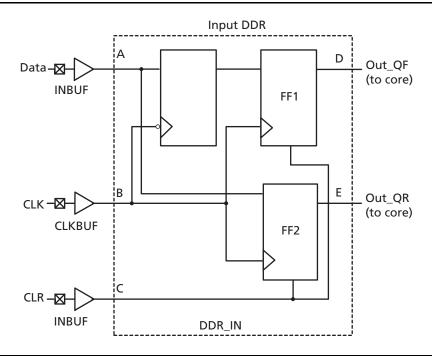


Figure 2-134 • Input DDR Timing Model

Table 2-176 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDRICLKQ1}	Clock-to-Out Out_QR	B, D
t _{DDRICLKQ2}	Clock-to-Out Out_QF	B, E
t _{DDRISUD}	Data Setup Time of DDR Input	A, B
t _{DDRIHD}	Data Hold Time of DDR Input	A, B
t _{DDRICLR2Q1}	Clear-to-Out Out_QR	C, D
t _{DDRICLR2Q2}	Clear-to-Out Out_QF	C, E
t _{DDRIREMCLR}	Clear Removal	C, B
t _{DDRIRECCLR}	Clear Recovery	С, В

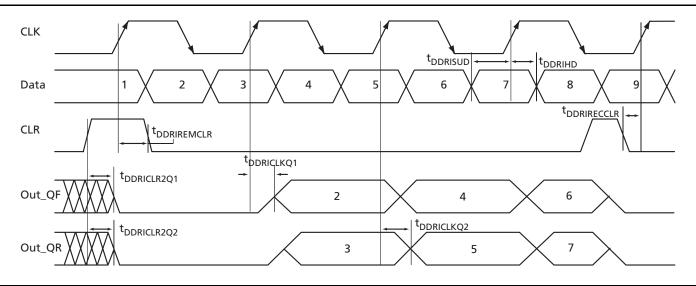


Figure 2-135 • Input DDR Timing Diagram

Timing Characteristics

Table 2-177 • Input DDR Propagation Delays Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, Worst-Case $V_{CC} = 1.425 \text{ V}$

Parameter	Description	-2	-1	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.39	0.44	0.52	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.27	0.31	0.37	ns
t _{DDRISUD}	Data Setup for Input DDR	0.28	0.32	0.38	ns
t _{DDRIHD}	Data Hold for Input DDR	0.00	0.00	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear-to-Out Out_QR for Input DDR	0.57	0.65	0.76	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	0.46	0.53	0.62	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal Time for Input DDR	0.00	0.00	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery Time for Input DDR	0.22	0.25	0.30	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.22	0.25	0.30	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width HIGH for Input DDR	0.36	0.41	0.48	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width LOW for Input DDR	0.32	0.37	0.43	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR				MHz

Output DDR

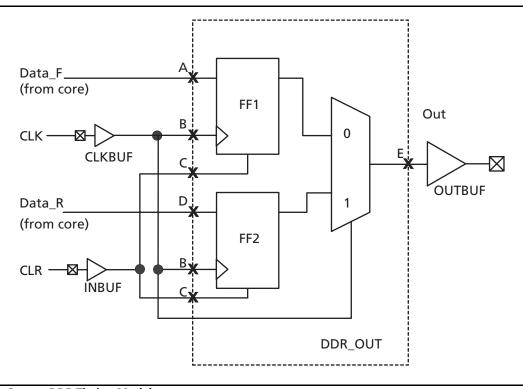


Figure 2-136 • Output DDR Timing Model

Table 2-178 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (From, To)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	С, В
t _{DDRORECCLR}	Clear Recovery	С, В
t _{DDROSUD1}	Data Setup Data_F	А, В
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1}	Data Hold Data_F	A, B
t _{DDROHD2}	Data Hold Data_R	D, B

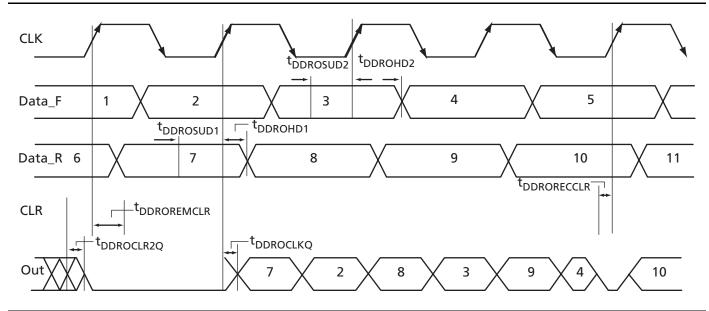


Figure 2-137 • Output DDR Timing Diagram

Timing Characteristics

Table 2-179 • Output DDR Propagation Delays Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, Worst-Case $V_{CC} = 1.425 \text{ V}$

Parameter	Description	-2	-1	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	0.70	0.80	0.94	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	0.38	0.43	0.51	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.38	0.43	0.51	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	0.00	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	0.00	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	0.80	0.91	1.07	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	0.00	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.22	0.25	0.30	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.22	0.25	0.30	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width HIGH for the Output DDR	0.36	0.41	0.48	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width LOW for the Output DDR	0.32	0.37	0.43	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR				MHz

Pin Descriptions

Supply Pins

GND Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ needs to always be connected on the board to GND. Note: In FG256, FG484, and FG676 packages, GNDQ and GND pins are connected within the package and are labeled as GND pins in the respective package pin assignment tables.

ADCGNDREF Analog Reference Ground

Analog ground reference used by the ADC. This pad should be connected to a quiet analog ground.

GNDA Ground (analog)

Quiet ground supply voltage to the Analog Block of Fusion devices. The use of a separate analog ground helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V maximum differential voltage between GND and GNDA/ GNDQ should apply to system implementation.

GNDAQ Ground (analog quiet)

Quiet ground supply voltage to the analog I/O of Fusion devices. The use of a separate analog ground helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation. Note: In FG256, FG484, and FG676 packages, GNDAQ and GNDA pins are connected within the package and are labeled as GNDA pins in the respective package pin assignment tables.

GNDNVM Flash Memory Ground

Ground supply used by the Fusion device's flash memory block module(s).

GNDOSC Oscillator Ground

Ground supply for both integrated RC oscillator and crystal oscillator circuit.

V_{CC15A} Analog Power Supply (1.5 V)

A 1.5 V analog power supply input should be used to provide this input.

V_{CC33A} Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the 3.3 V portion of the analog circuitry.

V_{CC33N} Negative 3.3 V Output

This is the $-3.3\,V$ output from the voltage converter. A 2.2 μF capacitor must be connected from this pin to ground.

V_{CC33PMP} Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the analog charge pump. To avoid high current draw, V_{CC33PMP} should be powered up before or simultaneously with V_{CC33A} .

V_{CCNVM} Flash Memory Block Power Supply (1.5 V)

1.5 V power supply input used by the Fusion device's flash memory block module(s). To avoid high current draw, V_{CC} should be powered up before or simultaneously with V_{CCNVM} .

V_{CCOSC} Oscillator Power Supply (3.3 V)

Power supply for both integrated RC oscillator and crystal oscillator circuit.

V_{CC} Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V. V_{CC} is also required for powering the JTAG state machine, in addition to V_{JTAG} . Even when a Fusion device is in bypass mode in a JTAG chain of interconnected devices, both V_{CC} and V_{JTAG} must remain powered to allow JTAG signals to pass through the Fusion device.

V_{CCI}Bx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are either four (AFS090 and AFS250) or five (AFS600 and AFS1500) I/O banks on the Fusion devices plus a dedicated V_{JTAG} bank. Each bank can have a separate V_{CCI} connection. All I/Os in a bank will run off the same V_{CCI} Bx supply. V_{CCI} can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding V_{CCI} pins tied to GND.

V_{CCPLA/B} PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V, where A and B refer to the PLL. AFS090 and AFS250 each have a single PLL. The AFS600 and AFS1500 devices each have two PLLs. Actel recommends tying V_{CCPLX} to V_{CC} and using proper filtering circuits to decouple V_{CC} noise from PLL.

If unused, $V_{CCPLA/B}$ should be tied to GND.

V_{COMPLA/B} Ground for West and East PLL

 V_{COMPLA} is the ground of the west PLL (CCC location F) and V_{COMPLB} is the ground of the east PLL (CCC location C).

V_{JTAG} JTAG Supply Voltage

Fusion devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned to be used, the V_{JTAG} pin together with the TRST pin could be tied to GND. It should be noted that V_{CC} is required to be powered for JTAG operation; V_{JTAG} alone is insufficient. If a Fusion device is in a JTAG chain of interconnected boards and it is desired to power down the board containing the Fusion device, this may be done provided both V_{JTAG} and V_{CC} to the Fusion part remain powered; otherwise, JTAG signals will not be able to transition the Fusion device, even in bypass mode.

V_{PUMP} Programming Supply Voltage

Fusion devices support single-voltage ISP programming of the configuration flash and FlashROM. For programming, V_{PUMP} should be in the 3.3 V +/-5% range. During normal device operation, V_{PUMP} can be left floating or can be tied to any voltage between 0 V and 3.6 V.

When the V_{PUMP} pin is tied to ground, it shuts off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across V_{PUMP} and GND, and positioned as close to the FPGA pins as possible.

User-Defined Supply Pins

V_{REF} I/O Voltage Reference

Reference voltage for I/O minibanks. Both AFS600 and AFS1500 (north bank only) support Actel Pro I/O. These I/O banks support voltage reference standard I/O. The V_{REF} pins are configured by the user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated as the voltage reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and (II), SSTL3 (I) and (II), and GTL/GTL+. One V_{REF} pin can support the number of I/Os available in its minibank.

VAREF Analog Reference Voltage

The Fusion device can be configured to generate a 2.56 V internal reference voltage that can be used by the ADC.

While using the internal reference, the reference voltage is output on the VAREF pin for use as a system reference. If a different reference voltage is required, it can be supplied by an external source and applied to this pin. The valid range of values that can be supplied to the ADC is 1.0 V to 3.3 V. When VAREF is internally generated by the Fusion device, a bypass capacitor must be connected from this pin to ground. The value of the bypass capacitor should be between 3.3 µF and 22 µF, which is based on the needs of the individual designs. The choice of the capacitor value has an impact on the settling time it takes the VAREF signal to reach the required specification of 2.56 V to initiate valid conversions by the ADC. If the lower capacitor value is chosen, the settling time required for VAREF to achieve 2.56 V will be shorter than when selecting the larger capacitor value. The above range of capacitor values supports the accuracy specification of the ADC, which is detailed in the datasheet. Designers choosing the smaller capacitor value will not obtain as much margin in the accuracy as that achieved with a larger capacitor value. Depending on the capacitor value selected in the Analog System Builder, a tool in Libero IDE, an automatic delay circuit will be generated using logic tiles available within the FPGA to ensure that VAREF has achieved the 2.56 V value. Actel recommends customers use 10 uF as the value of the bypass capacitor. Designers choosing to use an external VAREF need to ensure that a stable and clean VAREF source is supplied to the VAREF pin before initiating conversions by the ADC. Designers should also make sure that the ADCRESET signal is deasserted before initiating valid conversions.²

User Pins

I/O User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected. Unused I/O pins are configured as inputs with pull-up resistors.

During programming, I/Os become tristated and weakly pulled up to V_{CCI} . With the V_{CCI} and V_{CC} supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os get instantly configured to the desired user configuration.

Axy Analog Input/Output

Analog I/O pin, where x is the analog pad type (C = current pad, G = Gate driver pad, T = Temperature pad, V = Voltage pad) and y is the Analog Quad number (0 to 9). There is a minimum 1 M Ω to ground on AV, AC, and AT. This pin can be left floating when it is unused.

^{2.} The ADC is functional with an external reference down to 1 V; however to meet the performance parameters highlighted in the datasheet, refer to the VAREF specification in Table 3-2 on page 3-3.

ATRTNx Temperature Monitor Return

AT returns are the returns for the temperature sensors. The cathode terminal of the external diodes should be connected to these pins. There is one analog return pin for every two Analog Quads. The x in the ATRTNx designator indicates the quad pairing (x = 0 for AQ1 and AQ2, x = 1 for AQ2 and AQ3, ..., x = 4 for AQ8 and AQ9). The signals that drive these pins are called out as ATRETUNxy in the software (where x and y refer to the quads that share the return signal). ATRTN is internally connected to ground. It can be left floating when it is unused.

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as Pro I/Os since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors. See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits" section on page 2-22.

Refer to the "User I/O Naming Convention" section on page 2-142 for a description of naming of global pins.

JTAG Pins

Fusion devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). V_{CC} must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; V_{JTAG} alone is insufficient. Both V_{JTAG} and V_{CC} to the Fusion part must be supplied to allow JTAG signals to transition the Fusion device.

Isolating the JTAG power supply in a separate I/O bank gives greater flexibility with supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned to be used, the $V_{\rm JTAG}$ pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/-down resistor. If JTAG is not used, Actel recommends tying off TCK to GND or V_{JTAG} through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all V_{JTAG} voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 2-180 for more information.

Table 2-180 • Recommended Tie-Off Values for the TCK and TRST Pins

V _{JTAG}	Tie-Off Resistance ^{2, 3}
V _{JTAG} at 3.3 V	200 Ω to 1 kΩ
V _{JTAG} at 2.5 V	200 Ω to 1 kΩ
V _{JTAG} at 1.8 V	500 Ω to 1 kΩ
V _{JTAG} at 1.5 V	500 Ω to 1 kΩ

Notes:

- 1. Equivalent parallel resistance if more than one device is on JTAG chain.
- 2. The TCK pin can be pulled up/down.
- 3. The TRST pin can only be pulled down.

TDI Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

TMS Test Mode Select

The TMS pin controls the use of the IEEE1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the TAP is held in reset mode. The resistor values must be chosen from Table 2-180 and must satisfy the parallel resistance value requirement. The values in Table 2-180 correspond to the resistor recommended when a single device is used and to the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entering an undesired JTAG state. In such cases, Actel recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all V_{JTAG} voltages, 500 Ω to 1 $k\Omega$ will satisfy the requirements.

Special Function Pins

NC No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC Don't Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

NCAP Negative Capacitor

Negative Capacitor is where the negative terminal of the charge pump capacitor is connected. A capacitor, with a 2.2 µF recommended value, is required to connect between PCAP and NCAP.

PCAP Positive Capacitor

Positive Capacitor is where the positive terminal of the charge pump capacitor is connected. A capacitor, with a 2.2 µF recommended value, is required to connect between PCAP and NCAP.

PUB Push Button

Push button is the connection for the external momentary switch used to turn on the 1.5 V voltage regulator and can be floating if not used.

PTBASE Pass Transistor Base

Pass Transistor Base is the control signal of the voltage regulator. This pin should be connected to the base of the external pass transistor used with the 1.5 V internal voltage regulator and can be floating if not used.

PTEM Pass Transistor Emitter

Pass Transistor Emitter is the feedback input of the voltage regulator.

This pin should be connected to the emitter of the external pass transistor used with the 1.5 V internal voltage regulator and can be floating if not used.

XTAL1 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or external clock input. When using an external crystal or ceramic oscillator, external capacitors are also recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).

If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected.

XTAL2 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or external clock input. When using an external crystal or ceramic oscillator, external capacitors are also

recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).

If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected.

Software Tools and Programming

Overview of Tools Flow

The Fusion family of FPGAs is fully supported by both Actel Libero IDE and Designer FPGA development software. Actel Libero IDE is an integrated design manager that seamlessly integrates design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment (see the Libero IDE flow diagram located on the Actel website). Libero IDE includes Synplify® AE from Synplicity,[®] ViewDraw[®] AE from Mentor Graphics,[®] ModelSim® HDL Simulator from Mentor Graphics, WaveFormer Lite™ AE from SynaptiCAD,® PALACE™ AE Physical Synthesis from Magma Design Automation,™ and Designer software from Actel.

Actel Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes the following:

- SmartTime a world-class integrated static timing analyzer and constraints editor that supports timing-driven place-and-route
- NetlistViewer a design netlist schematic viewer
- ChipPlanner a graphical floorplanning viewer and editor
- SmartPower a sophisticated power analysis environment that gives designers the ability to quickly determine the power consumption of an FPGA or its components
- PinEditor a graphical application for editing pin assignments and I/O attributes
- I/O Attribute Editor displays all assigned and unassigned I/O macros and their attributes in a spreadsheet format

With the Designer software, a user can lock the design pins before layout while minimally impacting the results of place-and-route. Additionally, the Actel back-annotation flow is compatible with all major simulators. Included in the Designer software is SmartGen core generator, which easily creates commonly used logic functions for implementation into your Fusion-based schematic or HDL design.

Actel Designer software is compatible with the most popular FPGA design entry and verification tools from EDA vendors, such as Cadence, Magma, Mentor Graphics, Synopsys, and Synplicity. The Designer software is available for both the Windows and UNIX operating systems.

CoreMP7 and Cortex-M1 Software Tools

CoreConsole is the Intellectual Property Deployment Platform (IDP) that assists the developer in programming the soft ARM core onto M7 (CoreMP7) and M1 (Cortex-M1) Fusion devices. CoreConsole provides the seamless environment to work with the Libero IDE and Designer FPGA development software tools concurrently.

Security

Fusion devices have a built-in 128-bit AES decryption core. The decryption core facilitates secure, in-system programming of the FPGA core array fabric and the FlashROM. The FlashROM and the FPGA core fabric can be programmed independently from each other, allowing the FlashROM to be updated without the need for change to the FPGA core fabric. The AES master key is stored in on-chip nonvolatile memory (flash). The AES master key can be preloaded into parts in a secure programming environment (such as the Actel in-house programming center), and then "blank" parts can be shipped to an untrusted programming or manufacturing center for final personalization with an AES-encrypted bitstream. Late stage product changes or personalization can be implemented easily and securely by simply sending a STAPL file with AES-encrypted data. Secure remote field updates over public networks (such as the Internet) are possible by sending and programming a STAPL file with AES-encrypted data. For more information, refer to the Fusion Security application note.

128-Bit AES Decryption

The 128-bit AES standard (FIPS-192) block cipher is the National Institute of Standards and Technology (NIST) replacement for DES (Data Encryption Standard FIPS46-2). AES has been designed to protect sensitive government information well into the 21st century. It replaces the aging DES, which NIST adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect sensitive, unclassified information. The 128-bit AES standard has 3.4×10^{38} possible 128-bit key variants, and it has been estimated that it would take 1,000 trillion years to crack 128-bit AES cipher text using exhaustive techniques. Keys are stored (securely) in Fusion devices in nonvolatile flash memory. All programming files sent to the device can be authenticated by the part prior to programming to

ensure that bad programming data is not loaded into the part that may possibly damage it. All programming verification is performed on-chip, ensuring that the contents of Fusion devices remain secure.

AES decryption can also be used on the 1,024-bit FlashROM to allow for secure remote updates of the FlashROM contents. This allows for easy, secure support for subscription model products. See the application note *Fusion Security* for more details.

AES for Flash Memory

AES decryption can also be used on the flash memory blocks. This allows for the secure update of the flash memory blocks. During runtime, the encrypted data can be clocked in via the JTAG interface. The data can be passed through the internal AES decryption engine, and the decrypted data can then be stored in the flash memory block.

Programming

Programming can be performed using various programming tools, such as Silicon Sculptor II (BP Micro Systems) or FlashPro3 (Actel).

The user can generate STP programming files from the Designer software and can use these files to program a device.

Fusion devices can be programmed in-system. During programming, V_{CCOSC} is needed in order to power the internal 100 MHz oscillator. This oscillator is used as a source for the 20 MHz oscillator that is used to drive the charge pump for programming.

ISP

Fusion devices support IEEE 1532 ISP via JTAG and require a single V_{PUMP} voltage of 3.3 V during programming. In addition, programming via a microcontroller in a target system can be achieved. Refer to the standard or the *In-System Programming (ISP)* of Actel's Low-Power Flash Devices Using FlashPro3 document for more details.

JTAG IEEE 1532

Programming with IEEE 1532

Fusion devices support the JTAG-based IEEE1532 standard for ISP. As part of this support, when a Fusion device is in an unprogrammed state, all user I/O pins are disabled. This is achieved by keeping the global IO_EN signal deactivated, which also has the effect of disabling the input buffers. Consequently, the SAMPLE instruction will have no effect while the Fusion device is in this unprogrammed state—different behavior from that of the ProASICPLUS® device family. This is done because SAMPLE is defined in the IEEE1532 specification as a noninvasive instruction. If the input buffers were to be enabled by SAMPLE temporarily turning on the I/Os, then it would not truly be a

Advanced v1.4 2-207

noninvasive instruction. Refer to the standard or the *In-System Programming (ISP) of Actel's Low-Power Flash Devices Using FlashPro3* document for more details.

Boundary Scan

Fusion devices are compatible with IEEE Standard 1149.1, which defines a hardware architecture and the set of mechanisms for boundary scan testing. The basic Fusion boundary scan logic circuit is composed of the test access port (TAP) controller, test data registers, and instruction register (Figure 2-138 on page 2-209). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS) and the optional IDCODE instruction (Table 2-182 on page 2-209).

Each test section is accessed through the TAP, which has five associated pins: TCK (test clock input), TDI, TDO (test data input and output), TMS (test mode selector), and TRST (test reset input). TMS, TDI, and TRST are equipped with pull-up resistors to ensure proper operation when no input data is supplied to them. These pins are dedicated for boundary scan test usage. Refer to the "JTAG Pins" section on page 2-205 for pull-up/-down recommendations for TDO and TCK pins. The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 2-138 on page 2-209. The 1s and 0s represent the values that must be present on TMS at a rising edge of TCK for the given state transition to occur. IR and DR indicate that the instruction register or the data register is operating in that state.

Table 2-181 • TRST and TCK Pull-Down Recommendations

V _{JTAG}	Tie-Off Resistance*
V _{JTAG} at 3.3 V	200 Ω to 1 kΩ
V _{JTAG} at 2.5 V	200 Ω to 1 kΩ
V _{JTAG} at 1.8 V	500 Ω to 1 kΩ
V _{JTAG} at 1.5 V	500 Ω to 1 kΩ

Note: *Equivalent parallel resistance if more than one device is on JTAG chain.

The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset state. To guarantee a reset of the controller from any of the possible states, TMS must remain HIGH for five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-Logic-Reset state.

Fusion devices support three types of test data registers: bypass, device identification, and boundary scan. The bypass register is selected when no other register needs to be accessed in a device. This speeds up test data transfer to other devices in a test data path. The 32-bit device identification register is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan register observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register cells, each with a serial-in, serial-out, parallel-in, and parallel-out pin.

The serial pins are used to serially connect all the boundary scan register cells in a device into a boundary scan register chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are connected to the internal core logic I/O tile and the input, output, and control ports of an I/O buffer to capture and load data into the register to control or observe the logic state of each I/O.

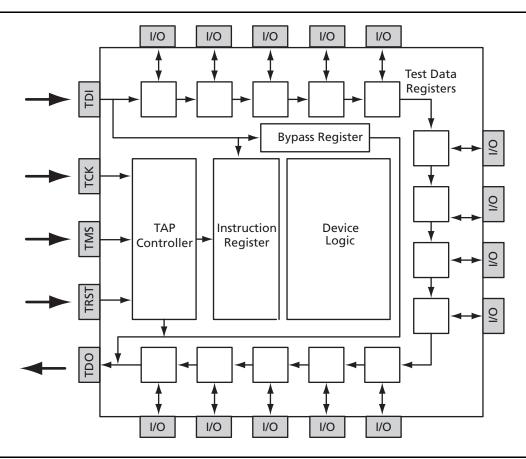


Figure 2-138 • Boundary Scan Chain in Fusion

Table 2-182 • **Boundary Scan Opcodes**

	Hex Opcode
EXTEST	00
HIGHZ	07
USERCODE	0E
SAMPLE/PRELOAD	01
IDCODE	OF
CLAMP	05
BYPASS	FF

IEEE 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/Os" section on page 2-117 for more details.

Table 2-183 • JTAG 1532 Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, $V_{CC} = 1.425 \text{ V}$

Parameter	Description	-2	-1	Std.	Units
t _{DISU}	Test Data Input Setup Time	0.50	0.57	0.67	ns
t _{DIHD}	Test Data Input Hold Time	1.00	1.13	1.33	ns
t _{TMSSU}	Test Mode Select Setup Time	0.50	0.57	0.67	ns
t _{TMDHD}	Test Mode Select Hold Time		1.13	1.33	ns
t _{TCK2Q}	Clock to Q (data out)	6.00	6.80	8.00	ns
t _{RSTB2Q}	Reset to Q (data out)	20.00	22.67	26.67	ns
F _{TCKMAX}	TCK Maximum Frequency	25.00	22.00	19.00	MHz
t _{TRSTREM}	ResetB Removal Time	0.00	0.00	0.00	ns
t _{TRSTREC}	ResetB Recovery Time	0.20	0.23	0.27	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	TBD	TBD	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-9.

DC and Power Characteristics

General Specifications

DC and switching characteristics for -F speed grade targets are based only on simulation.

The characteristics provided for –F speed grade are subject to change after establishing FPGA specifications. Some restrictions might be added and will be reflected in future revisions of this document. The –F speed grade is only supported in the commercial temperature range.

Operating Conditions

Stresses beyond those listed in Table 3-1 may cause permanent damage to the device.

Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating ranges specified in Table 3-2 on page 3-3.

Table 3-1 ● **Absolute Maximum Ratings**

Symbol	Parameter	Commercial	Industrial	Units
V_{CC}	DC core supply voltage	-0.3 to 1.65	-0.3 to 1.65	V
V_{JTAG}	JTAG DC voltage	–0.3 to 3.75	–0.3 to 3.75	V
V_{PUMP}	Programming voltage	–0.3 to 3.75	-0.3 to 3.75	V
V_{CCPLL}	Analog power supply (PLL)	-0.3 to 1.65	-0.3 to 1.65	V
V _{CCI}	DC I/O output buffer supply voltage	–0.3 to 3.75	-0.3 to 3.75	V
VI I/O input voltage ¹		-0.3 V to (V _{CCI} + 1 V) or 3.6	not insertion mode is enabled) 5 V, whichever voltage is lower tion mode is disabled)	V
V _{CC33A}	+3.3 V power supply	-0.3 to 3.75 ²	–0.3 to 3.75 ²	V
VAREF	Voltage reference for ADC	-0.3 to 3.75	-0.3 to 3.75	V
V _{CC15A}	Digital power supply for the analog system	–0.3 to 1.65	–0.3 to 1.65	V
V_{CCNVM}	Embedded flash power supply	–0.3 to 1.65	–0.3 to 1.65	V
V _{CCOSC}	Oscillator power supply	-0.3 to 3.75	-0.3 to 3.75	V
AV, AC	Unpowered, ADC reset asserted or unconfigured	-11.0 to 12.6	–11.0 to 12.4	V
	Analog input (+16 V to +2 V prescaler range)	–0.4 to 12.6	-0.4 to 12.4	V
	Analog input (+1 V to +0.125 V prescaler range)	-0.4 to 3.75	-0.4 to 3.75	V
	Analog input (–16 V to –2 V prescaler range)	-11.0 to 0.4	-11.0 to 0.4	V
	Analog input (–1 V to –0.125 V prescaler range)	-3.75 to 0.4	−3.75 to 0.4	V
	Analog input (direct input to ADC)	-0.4 to 3.75	-0.4 to 3.75	V
	Digital input	-0.4 to 12.6	-0.4 to 12.4	V
AG	Unpowered, ADC reset asserted or unconfigured	-11.0 to 12.6	-11.0 to 12.4	V

- 1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 3-4 on page 3-4.
- 2. Analog data not valid beyond 3.65 V.
- 3. For flash programming and retention maximum limits, refer to Table 3-5 on page 3-4. For recommended operating limits refer to Table 3-2 on page 3-3.

Table 3-1 ● **Absolute Maximum Ratings (Continued)**

Symbol	Parameter	Commercial	Units	
	Low Current Mode (1 μA, 3 μA, 10 μA, 30 μA)	–0.4 to 12.6	-0.4 to 12.4	V
	Low Current Mode (–1 μA, –3 μA, –10 μA, –30 μA)	-11.0 to 0.4	−11.0 to 0.4	V
	High Current Mode ³	–11.0 to 12.6	-11.0 to 12.4	V
AT	Unpowered, ADC reset asserted or unconfigured	–0.4 to 16.5	-0.4 to 16.0	V
	Analog input (+16 V, 4 V prescaler range)	–0.4 to 16.5	-0.4 to 16.0	V
	Analog input (direct input to ADC)	-0.4 to 3.75	–0.4 to 3.75	V
	Digital input	–0.4 to 16.5	–0.4 to 16.0	V
T _{STG} ³	Storage temperature	-65 ·	to +150	°C
T_J^3	Junction temperature	+	-125	°C

- 1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 3-4 on page 3-4.
- 2. Analog data not valid beyond 3.65 V.
- 3. For flash programming and retention maximum limits, refer to Table 3-5 on page 3-4. For recommended operating limits refer to Table 3-2 on page 3-3.

Table 3-2 • Recommended Operating Conditions

Symbol	Parameter		Commercial	Industrial	Units
T_A, T_J	Ambient and junction temperatu	re	0 to +70	-40 to +85	°C
V _{CC}	1.5 V DC core supply voltage		1.425 to 1.575	1.425 to 1.575	V
V_{JTAG}	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
V_{PUMP}	Programming voltage	Programming mode	3.15 to 3.45	3.15 to 3.45	V
		Operation ³	0 to 3.6	0 to 3.6	V
V_{CCPLL}	Analog power supply (PLL)		1.425 to 1.575	1.425 to 1.575	V
V _{CCI}	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.3 V DC supply voltage		3.0 to 3.6	3.0 to 3.6	V
	LVDS differential I/O		2.375 to 2.625	2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V
V _{CC33A}	+3.3 V power supply	+3.3 V power supply		2.97 to 3.63	V
VAREF	Voltage reference for ADC		2.527 to 2.593	2.527 to 2.593	V
V _{CC15A} 6	Digital power supply for the analog system		1.425 to 1.575	1.425 to 1.575	V
V_{CCNVM}	Embedded flash power supply		1.425 to 1.575	1.425 to 1.575	V
V _{CCOSC}	Oscillator power supply		2.97 to 3.63	2.97 to 3.63	V
AV, AC ⁴	Unpowered, ADC reset asserted	or unconfigured	-10.5 to 12.0	-10.5 to 12.0	V
	Analog input (+16 V to +2 V pre	-0.3 to 12.0	-0.3 to 12.0	V	
	Analog input (+1 V to + 0.125 V	prescaler range)	–0.3 to 3.6	–0.3 to 3.6	V
	Analog input (–16 V to –2 V pres	scaler range)	-10.5 to 0.3	-10.5 to 0.3	V
	Analog input (–1 V to –0.125 V p	orescaler range)	-3.6 to 0.3	-3.6 to 0.3	V
	Analog input (direct input to AD	C)	-0.3 to 3.6	–0.3 to 3.6	V
	Digital input		-0.3 to 12.0	-0.3 to 12.0	V
AG ⁴	Unpowered, ADC reset asserted	or unconfigured	-10.5 to 12.0	-10.5 to 12.0	V
	Low Current Mode (1 μA, 3 μA,	10 μΑ, 30 μΑ)	-0.3 to 12.0	-0.3 to 12.0	V
	Low Current Mode (–1 μA, –3 μA	A, −10 μA, −30 μA)	-10.5 to 0.3	-10.5 to 0.3	V
	High Current Mode ⁵		–10.5 to 12.0	-10.5 to 12.0	V
AT ⁴	Unpowered, ADC reset asserted	or unconfigured	-0.3 to 16.0	–0.3 to 15.5	V
	Analog input (+16 V, +4 V presca	aler range)	-0.3 to 16.0	–0.3 to 15.5	V
	Analog input (direct input to AD	C)	-0.3 to 3.6	–0.3 to 3.6	V
	Digital input		-0.3 to 16.0	-0.3 to 15.5	V

- 1. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-83 on page 2-148.
- 2. All parameters representing voltages are measured with respect to GND unless otherwise specified.
- 3. V_{PUMP} can be left floating during normal operation (not programming mode).
- 4. The input voltage may overshoot by up to 500 mV above the Recommended Maximum (150 mV in Direct mode), provided the duration of the overshoot is less than 50% of the operating lifetime of the device.
- 5. The AG pad should also conform to the limits as specified in Table 2-46 on page 2-102.
- 6. Violating the V_{CC15A} recommended voltage supply during an embedded flash program cycle can corrupt the page being programmed.

Table 3-3 • Input Resistance of Analog Pads

Pads	Pad Configuration	Prescaler Range	Input Resistance to Ground
AV, AC	Analog Input (direct input to ADC)	+16 V to +2 V	1 MΩ (typical)
		+1 V to +0.125 V	> 10 MΩ
	Analog Input (positive prescaler)	+16 V to +2 V	1 MΩ (typical)
		+1 V to +0.125 V	> 10 MΩ
	Analog Input (negative prescaler)	−16 V to −2 V	1 MΩ (typical)
		−1 V to −0.125 V	> 10 MΩ
	Digital input	+16 V to +2 V	1 MΩ (typical)
	Current monitor +16 V to +		1 MΩ (typical)
		−16 V to −2 V	1 MΩ (typical)
AT	Analog Input (direct input to ADC)	+16 V, +4 V	1 MΩ (typical)
	Analog Input (positive prescaler)	+16 V, +4 V	1 MΩ (typical)
	Digital input	+16 V, +4 V	1 MΩ (typical)
	Temperature monitor	+16 V, +4 V	> 10 MΩ

Table 3-4 • Overshoot and Undershoot Limits ¹

V _{CCI}	Average V _{CCI} -GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
	5%	1.49 V
3.0 V	10%	1.1 V
	5%	1.19 V
3.3 V	10%	0.79 V
	5%	0.88 V
3.6 V	10%	0.45 V
	5%	0.54 V

Notes:

- 1. Based on reliability requirements at 85°C.
- 2. The duration is allowed at one cycle out of six clock cycle. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

Table 3-5 • FPGA Programming, Storage, and Operating Limits

Product		Grade Programming		Storage Temperature (°C)		
Grade	Element	Cycles	Retention	Minimum	Maximum	
Commercial FPGA/FlashROM		500	20 years ²	0	85	
	Embedded Flash	1 k	20 years ²	0	85	
		15 k	5 years ²	0	85	
Industrial	FPGA/FlashROM	500	20 years	-40	85	
	Embedded Flash	1 k	20 years	-40	85	
		15 k	5 years	-40	85	

- 1. This is a stress rating only. Functional operation at any condition other than those indicated is not implied.
- 2. If the embedded flash has been programmed less than 1 k times, every time it is programmed, the data will hold for 20 years. If the embedded flash has been programmed more than 1 k times but less than 15 k times, every time it is programmed, the data will hold for 5 years.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every Fusion device. These circuits ensure easy transition from the powered off state to the powered up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 3-1 on page 3-6.

There are five regions to consider during power-up.

Fusion I/Os are activated only if ALL of the following three conditions are met:

- 1. V_{CC} and V_{CCI} are above the minimum specified trip points (Figure 3-1).
- 2. $V_{CCI} > V_{CC} 0.75 \text{ V (typical)}$.
- 3. Chip is in the operating mode.

V_{CCI} Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.2 V Ramping down: 0.5 V < trip_point_down < 1.1 V

V_{CC} Trip Point:

Ramping up: 0.6 V < trip_point_up < 1.1 V Ramping down: 0.5 V < trip_point_down < 1 V

V_{CC} and V_{CCI} ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to V_{CCI}.
- JTAG supply, PLL power supplies, and charge pump V_{PUMP} supply have no influence on I/O behavior.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers
- 3. Output buffers, after 200 ns delay from input buffer activation

PLL Behavior at Brownout Condition

Actel recommends using monotonic power supplies or voltage regulators to ensure proper power-up behavior. Power ramp-up should be monotonic at least until V_{CC} and V_{CCPLX} exceed brownout activation levels. The V_{CC} activation level is specified as 1.1 V worst-case (see Figure 3-1 on page 3-6 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V \pm 0.25 V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the *Power-Up/Down of Fusion FPGAs* application note for information on clock and lock recovery.

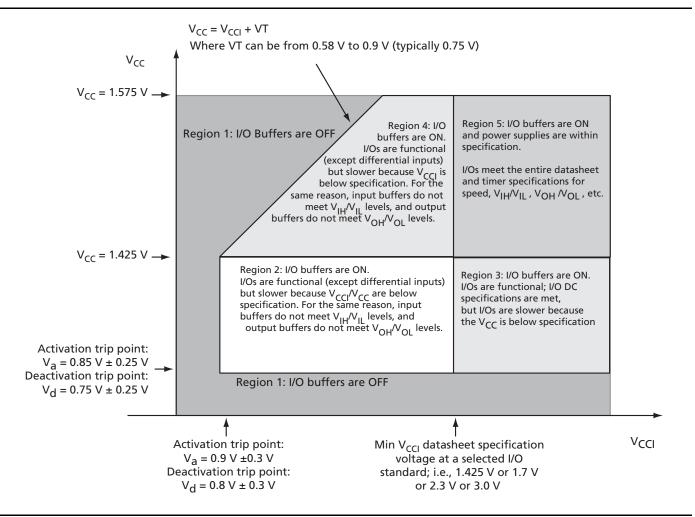


Figure 3-1 • I/O State as a Function of V_{CCI} and V_{CC} Voltage Levels

Thermal Characteristics

Introduction

The temperature variable in the Actel Designer software refers to the junction temperature, not the ambient, case, or board temperatures. This is an important distinction because dynamic and static power consumption will cause the chip's junction temperature to be higher than the ambient, case, or board temperatures. EQ 3-1 through EQ 3-3 give the relationship between thermal resistance, temperature gradient, and power.

$$\theta_{JA} = \frac{T_J - \theta_A}{P}$$

EQ 3-1

 $\theta_{JB} \, = \, \frac{T_J - T_B}{P}$

 $\theta_{JC} \, = \, \frac{T_J - T_C}{P}$

where

 θ_{IA} = Junction-to-air thermal resistance

 θ_{JB} = Junction-to-board thermal resistance

 θ_{JC} = Junction-to-case thermal resistance

T_J = Junction temperature

T_A = Ambient temperature

 T_B = Board temperature (measured 1.0 mm away

from the package edge)

 T_C = Case temperature

P = Total power dissipated by the device

EQ 3-3

EQ 3-2

Table 3-6 • Package Thermal Resistance

	$\theta_{ extsf{JA}}$					
Product	Still Air	1.0 m/s	2.5 m/s	θ J C	θ_{JB}	Units
AFS090-QN108	TBD	TBD	TBD	TBD	TBD	°C/W
AFS090-QN180	TBD	TBD	TBD	TBD	TBD	°C/W
AFS250-QN180	TBD	TBD	TBD	TBD	TBD	°C/W
AFS250-PQ208	TBD	TBD	TBD	TBD	TBD	°C/W
AFS600-PQ208	TBD	TBD	TBD	TBD	TBD	°C/W
AFS090-FG256	37.7	33.9	32.2	11.5	29.7	°C/W
AFS250-FG256	33.7	30.0	28.3	9.3	24.8	°C/W
AFS600-FG256	28.9	25.2	23.5	6.8	19.9	°C/W
AFS1500-FG256	23.3	19.6	18.0	4.3	14.2	°C/W
AFS600-FG484	21.8	18.2	16.7	7.7	16.8	°C/W
AFS1500-FG484	21.6	16.8	15.2	5.6	14.9	°C/W
AFS1500-FG676	TBD	TBD	TBD	TBD	TBD	°C/W

Advanced v1.4 3-7

Theta-JA

Junction-to-ambient thermal resistance (θ_{JA}) is determined under standard conditions specified by JEDEC (JESD-51), but it has little relevance in actual performance of the product. It should be used with caution but is useful for comparing the thermal performance of one package to another.

A sample calculation showing the maximum power dissipation allowed for the AFS600-FG484 package under forced convection of 1.0 m/s and 75°C ambient temperature is as follows:

Maximum Power Allowed =
$$\frac{T_{J(MAX)} - T_{A(MAX)}}{\theta_{JA}}$$

EQ 3-4

where

 θ_{JA} = 19.00°C/W (taken from Table 3-6 on page 3-7). T_A = 75.00°C

Maximum Power Allowed =
$$\frac{110.00^{\circ}\text{C} - 75.00^{\circ}\text{C}}{19.00^{\circ}\text{C/W}} = 1.84 \text{ W}$$

The power consumption of a device can be calculated using the Actel power calculator. The device's power consumption must be lower than the calculated maximum power dissipation by the package. If the power consumption is higher than the device's maximum allowable power dissipation, a heat sink can be attached on top of the case, or the airflow inside the system must be increased.

Theta-JB

Junction-to-board thermal resistance (θ_{JB}) measures the ability of the package to dissipate heat from the surface of the chip to the PCB. As defined by the JEDEC (JESD-51) standard, the thermal resistance from junction to board uses an isothermal ring cold plate zone concept. The ring cold plate is simply a means to generate an isothermal boundary condition at the perimeter. The cold plate is mounted on a JEDEC standard board with a minimum distance of 5.0 mm away from the package edge.

Theta-JC

Junction-to-case thermal resistance (θ_{JC}) measures the ability of a device to dissipate heat from the surface of the chip to the top or bottom surface of the package. It is applicable for packages used with external heat sinks. Constant temperature is applied to the surface in

consideration and acts as a boundary condition. This only applies to situations where all or nearly all of the heat is dissipated through the surface in consideration.

Calculation for Heat Sink

For example, in a design implemented in an AFS600-FG484 package with 2.5 m/s airflow, the power consumption value using the power calculator is 3.00 W. The user-dependent T_a and T_i are given as follows:

$$T_J = 110.00$$
°C
 $T_A = 70.00$ °C

From the datasheet:

$$\theta_{JA}$$
 = 17.00°C/W
 θ_{JC} = 8.28°C/W

$$P = \frac{T_J - T_A}{\theta_{JA}} = \frac{110^{\circ}\text{C} - 70^{\circ}\text{C}}{17.00 \text{ W}} = 2.35 \text{ W}$$

EQ 3-5

The 2.35 W power is less than the required 3.00 W. The design therefore requires a heat sink, or the airflow where the device is mounted should be increased. The design's total junction-to-air thermal resistance requirement can be estimated by EQ 3-6:

$$\theta_{ja(total)} = \frac{T_J - T_A}{P} = \frac{110^{\circ}C - 70^{\circ}C}{3.00 \text{ W}} = 13.33^{\circ}C/W$$

EO 3-6

Determining the heat sink's thermal performance proceeds as follows:

$$\theta_{\text{JA(TOTAL)}} \, = \, \theta_{\text{JC}} + \theta_{\text{CS}} + \theta_{\text{SA}}$$

EQ 3-7

where

 $\theta_{IA} = 0.37$ °C/W

= Thermal resistance of the interface material between the case and the heat sink, usually provided by the thermal interface manufacturer

 θ_{SA} = Thermal resistance of the heat sink in °C/W

$$\theta_{\text{SA}} \; = \; \theta_{\text{JA}(\text{TOTAL})} - \theta_{\text{JC}} - \theta_{\text{CS}}$$

EQ 3-8

$$\theta_{SA} = 13.33$$
°C/W $- 8.28$ °C/W $- 0.37$ °C/W $= 5.01$ °C/W

A heat sink with a thermal resistance of 5.01°C/W or better should be used. Thermal resistance of heat sinks is a function of airflow. The heat sink performance can be significantly improved with increased airflow.

Carefully estimating thermal resistance is important in the long-term reliability of an Actel FPGA. Design engineers should always correlate the power consumption of the device with the maximum allowable power dissipation of the package selected for that device. Note: The junction-to-air and junction-to-board thermal resistances are based on JEDEC standard (JESD-51) and assumptions made in building the model. It may not be realized in actual application and therefore should be used with a degree of caution. Junction-to-case thermal resistance assumes that all power is dissipated through the case.

Temperature and Voltage Derating Factors

Table 3-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T₁ = 70°C, V_{CC} = 1.425 V)

Array Voltage		Junction Temperature (°C)								
V _{CC} (V)	–40°C	0°C	25°C	70°C	85°C	110°C				
1.425	0.88	0.93	0.95	1.00	1.02	1.05				
1.500	0.83	0.88	0.90	0.95	0.96	0.99				
1.575	0.80	0.85	0.87	0.91	0.93	0.96				

Calculating Power Dissipation

Quiescent Supply Current

Table 3-8 • Quiescent Supply Current Characteristics (I_{DDQ})¹

		•			
Parameter	Conditions and Modes	AFS1500	AFS600	AFS250	AFS090
I _{DC1}	Maximum in operating mode (85°C) ²	TBD	45 mA	30 mA	15 mA
	Maximum in operating mode (70°C) ²	TBD	30 mA	20 mA	10 mA
	Typical in operating mode (25°C) ²	TBD	5 mA	3 mA	2 mA
I _{DC2}	Typical in standby mode (25°C) ^{3,5}	TBD	200 μΑ	200 μΑ	200 μΑ
I _{DC3}	Typical in sleep mode (25°C) ^{4,5}	TBD	10 μΑ	10 μΑ	10 μΑ

Notes:

- -F speed grade devices may experience higher Quiescent Supply current of up to five times the standard I_{DD}, and higher I/O leakage.
- 2. I_{DC1} includes V_{CG} , V_{PUMP} , and V_{CCI} , currents. Values do not include I/O static contribution, which is shown in Table 3-9 on page 3-10 and Table 3-10 on page 3-12.
- 3. I_{DC2} represents the current from the V_{CC33A} and V_{CCI} supplies when the RTC (and the 32 kHz crystal oscillator) is ON, the FPGA is OFF, and the voltage regulator is OFF.
- 4. I_{DC3} represents the current from the V_{CC33A} and V_{CCI} supplies when the RTC (and the crystal oscillator), the FPGA, and the voltage regulator are OFF.
- 5. V_{CCI} supply is ON, since the east and west I/O banks are not cold-sparable. Values do not include I/O static contribution, which is shown in Table 3-9 on page 3-10 and Table 3-10 on page 3-12.

Advanced v1.4 3-9

Power per I/O Pin

Table 3-9 • Summary of I/O Input Buffer Power (per pin)—Default I/O Software Settings

	V _{CCI} (V)	Static Power P _{DC7} (mW) ¹	Dynamic Power P _{AC9} (µW/MHz) ²
Applicable to Pro I/O Banks	1		
Single-Ended			
3.3 V LVTTL/LVCMOS	3.3	-	17.39
3.3 V LVTTL/LVCMOS – Schmitt trigger	3.3	-	25.51
2.5 V LVCMOS	2.5	_	5.76
2.5 V LVCMOS – Schmitt trigger	2.5	-	7.16
1.8 V LVCMOS	1.8	_	2.72
1.8 V LVCMOS – Schmitt trigger	1.8	_	2.80
1.5 V LVCMOS (JESD8-11)	1.5	-	2.08
1.5 V LVCMOS (JESD8-11) – Schmitt trigger	1.5	_	2.00
3.3 V PCI	3.3	_	18.82
3.3 V PCI – Schmitt trigger	3.3	-	20.12
3.3 V PCI-X	3.3	_	18.82
3.3 V PCI-X – Schmitt trigger	3.3	-	20.12
Voltage-Referenced			
3.3 V GTL	3.3	2.90	8.23
2.5 V GTL	2.5	2.13	4.78
3.3 V GTL+	3.3	2.81	4.14
2.5 V GTL+	2.5	2.57	3.71
HSTL (I)	1.5	0.17	2.03
HSTL (II)	1.5	0.17	2.03
SSTL2 (I)	2.5	1.38	4.48
SSTL2 (II)	2.5	1.38	4.48
SSTL3 (I)	3.3	3.21	9.26
SSTL3 (II)	3.3	3.21	9.26
Differential	<u>'</u>		•
LVDS	2.5	2.26	1.50
LVPECL	3.3	5.71	2.17

- 1. P_{DC7} is the static power (where applicable) measured on V_{CCI}
- 2. P_{AC9} is the total dynamic power measured on V_{CC} and V_{CCI} .

Table 3-9 • Summary of I/O Input Buffer Power (per pin)—Default I/O Software Settings (Continued)

	V _{CCI} (V)	Static Power P _{DC7} (mW) ¹	Dynamic Power P _{AC9} (μW/MHz) ²	
Applicable to Advanced I/O Banks			•	
Single-Ended				
3.3 V LVTTL/LVCMOS	3.3	_	16.69	
2.5 V LVCMOS	2.5	-	5.12	
1.8 V LVCMOS	1.8	_	2.13	
1.5 V LVCMOS (JESD8-11)	1.5	_	1.45	
3.3 V PCI	3.3	-	18.11	
3.3 V PCI-X	3.3	-	18.11	
Differential			•	
LVDS	2.5	2.26	1.20	
LVPECL	3.3	5.72	1.87	
Applicable to Standard I/O Banks			•	
3.3 V LVTTL/LVCMOS	3.3	-	16.79	
2.5 V LVCMOS	2.5	-		
1.8 V LVCMOS	1.8	- 2.18		
1.5 V LVCMOS (JESD8-11)	1.5	-	1.52	

- 1. P_{DC7} is the static power (where applicable) measured on V_{CCI}
- 2. P_{AC9} is the total dynamic power measured on V_{CC} and V_{CCI} .

Table 3-10 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings¹

	C _{LOAD} (pF)	V _{CCI} (V)	Static Power P _{DC8} (mW) ²	Dynamic Power P _{AC10} (µW/MHz) ³
Applicable to Pro I/O Banks			•	•
Single-Ended				
3.3 V LVTTL/LVCMOS	35	3.3	-	474.70
2.5 V LVCMOS	35	2.5	-	270.73
1.8 V LVCMOS	35	1.8	-	151.78
1.5 V LVCMOS (JESD8-11)	35	1.5	-	104.55
3.3 V PCI	10	3.3	-	204.61
3.3 V PCI-X	10	3.3	-	204.61
Voltage-Referenced			•	•
3.3 V GTL	10	3.3	-	24.08
2.5 V GTL	10	2.5	-	13.52
3.3 V GTL+	10	3.3	-	24.10
2.5 V GTL+	10	2.5	-	13.54
HSTL (I)	20	1.5	7.08	26.22
HSTL (II)	20	1.5	13.88	27.22
SSTL2 (I)	30	2.5	16.69	105.56
SSTL2 (II)	30	2.5	25.91	116.60
SSTL3 (I)	30	3.3	26.02	114.87
SSTL3 (II)	30	3.3	42.21	131.76
Differential				
LVDS	-	2.5	7.70	89.62
LVPECL	-	3.3	19.42	168.02
Applicable to Advanced I/O E	Banks			
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	468.67
2.5 V LVCMOS	35	2.5	-	267.48
1.8 V LVCMOS	35	1.8	-	149.46
1.5 V LVCMOS (JESD8-11)	35	1.5	-	103.12
3.3 V PCI	10	3.3	- 201.02	
3.3 V PCI-X	10	3.3	-	201.02
Differential			-	
LVDS	-	2.5	7.74	88.92
LVPECL	_	3.3	19.54	166.52

- 1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.
- 2. P_{DC8} is the static power (where applicable) measured on V_{CCI} .
- 3. P_{AC10} is the total dynamic power measured on V_{CC} and V_{CCI} .

Table 3-10 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings¹ (Continued)

	C _{LOAD} (pF)	V _{CCI} (V)	Static Power P _{DC8} (mW) ²	Dynamic Power P _{AC10} (μW/MHz) ³			
Applicable to Standard I/O Banks							
Single-Ended							
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	431.08			
2.5 V LVCMOS	35	2.5	-	247.36			
1.8 V LVCMOS	35	1.8	-	128.46			
1.5 V LVCMOS (JESD8-11)	35	1.5	-	89.46			

- 1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.
- 2. P_{DC8} is the static power (where applicable) measured on V_{CCI} .
- 3. P_{AC10} is the total dynamic power measured on V_{CC} and V_{CCI} .

Dynamic Power Consumption of Various Internal Resources

Table 3-11 • Different Components Contributing to the Dynamic Power Consumption in Fusion Devices

		Power	Power Supply		Device-Specific Dynamic Contributions			
Parameter	Definition	Name	Setting	AFS1500	AFS600	AFS250	AFS090	Units
P _{AC1}	Clock contribution of a Global Rib	V _{CC}	1.5 V	14.5	12.8	11	11	μW/MHz
P _{AC2}	Clock contribution of a Global Spine	V _{CC}	1.5 V	2.5	1.9	1.6	0.8	μW/MHz
P _{AC3}	Clock contribution of a VersaTile row	V _{CC}	1.5 V		0.8	31		μW/MHz
P _{AC4}	Clock contribution of a VersaTile used as a sequential module	V _{CC}	1.5 V		0.1	1		μW/MHz
P _{AC5}	First contribution of a VersaTile used as a sequential module	V _{CC}	1.5 V		0.0)7		μW/MHz
P _{AC6}	Second contribution of a VersaTile used as a sequential module	V _{CC}	1.5 V		0.2	29		µW/MHz
P _{AC7}	Contribution of a VersaTile used as a combinatorial module	V _{CC}	1.5 V		0.2	29		µW/MHz
P _{AC8}	Average contribution of a routing net	V _{CC}	1.5 V		0.7	70		μW/MHz
P _{AC9}	Contribution of an I/O input pin (standard dependent)	VMV/V _{CC}	See Table 3-9 on page 3-10					
P _{AC10}	Contribution of an I/O output pin (standard dependent)	VCCIV _{CC}	See Table 3-10 on page 3-12					
P _{AC11}	Average contribution of a RAM block during a read operation	V _{CC}	1.5 V	25			µW/MHz	
P _{AC12}	Average contribution of a RAM block during a write operation	V _{CC}	1.5 V	30			µW/MHz	
P _{AC13}	Dynamic Contribution for PLL	V _{CC}	1.5 V		2.	6		μW/MHz
P _{AC15}	Contribution of NVM block during a read operation (F < 33MHz)	V _{CC}	1.5 V	358			µW/MHz	
P _{AC16}	1st contribution of NVM block during a read operation (F > 33MHz)	V _{CC}	1.5 V	V 12.88			mW	
P _{AC17}	2nd contribution of NVM block during a read operation (F > 33MHz)	V _{CC}	1.5 V	1.5 V 4.8				µW/MHz
P _{AC18}	Crystal Oscillator contribution	V _{CC33A}	3.3 V	3.3 V 0.63			mW	
P _{AC19}	RC Oscillator contribution	V _{CC33A}	3.3 V	3.3			mW	
P _{AC20}	Analog Block dynamic power contribution of ADC	V _{CC}	1.5 V		3			mW

Static Power Consumption of Various Internal Resources

Table 3-12 • Different Components Contributing to the Static Power Consumption in Fusion Devices

				Device-Sp	oecific Sta	atic Conti	ributions	
Parameter	Definition	Power S	upply	AFS1500	AFS600	AFS250	AFS090	Units
P _{DC1}	Core static power contribution in operating mode	V _{CC}	1.5 V	TBD	7.5	4.50	3.00	mW
P _{DC2}	Device static power contribution in standby mode	V _{CC33A}	3.3 V		0.6	56		mW
P _{DC3}	Device static power contribution in sleep mode	V _{CC33A}	3.3 V	V 0.03			mW	
P _{DC4}	NVM static power contribution	V_{CC}	1.5 V	1.19				mW
P _{DC5}	Analog Block static power contribution of ADC	V _{CC33A}	3.3 V	8.25				mW
P _{DC6}	Analog Block static power contribution per Quad	V _{CC33A}	3.3 V 3.3			mW		
P _{DC7}	Static contribution per input pin – standard dependent contribution	VMV/V _{CC}	See Table 3-9 on page 3-10					
P _{DC8}	Static contribution per input pin – standard dependent contribution	VMV/V _{CC}	See Table 3-10 on page 3-12					
P _{DC9}	Static contribution for PLL	V _{CC}	1.5 V		2.5	55		mW

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in the Libero IDE software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- The number of combinatorial and sequential cells used in the design
- The internal clock frequencies
- The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- The number of NVM blocks used in the design
- The number of Analog Quads used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 3-13 on page 3-20.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 3-14 on page 3-20.
- Read rate and write rate to the RAM—quidelines are provided for typical applications in Table 3-14 on page 3-20.
- Read rate to the NVM blocks

The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—P_{TOTAL}

Operating Mode, Standby Mode, and Sleep Mode

$$P_{TOTAL} = P_{STAT} + P_{DYN}$$

P_{STAT} is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—PSTAT

Operating Mode

$$P_{STAT} = P_{DC1} + (N_{NVM-BLOCKS} * P_{DC4}) + P_{DC5} + (N_{OUADS} * P_{DC6}) + (N_{INPUTS} * P_{DC7}) + (N_{OUTPUTS} * P_{DC8}) + (N_{PLLS} * P_{DC9})$$

N_{NVM-BLOCKS} is the number of NVM blocks available in the device.

N_{OUADS} is the number of Analog Quads used in the design.

N_{INPLITS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

N_{PLLS} is the number of PLLs available in the device.

Standby Mode

$$P_{STAT} = P_{DC2}$$

Sleep Mode

$$P_{STAT} = P_{DC3}$$

Total Dynamic Power Consumption—PDYN

Operating Mode

Standby Mode

$$P_{DYN} = P_{XTL-OSC}$$

Sleep Mode

 $P_{DYN} = 0 W$

Global Clock Dynamic Contribution—P_{CLOCK}

Operating Mode

$$P_{CLOCK} = (P_{AC1} + N_{SPINE} * P_{AC2} + N_{ROW} * PAC3 + N_{S-CELL} * P_{AC4}) * F_{CLK}$$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in Table 3-13 on page 3-20.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in Table 3-13 on page 3-20.

F_{CLK} is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

Standby Mode and Sleep Mode

 $P_{CLOCK} = 0 W$

Sequential Cells Dynamic Contribution—P_{S-CELL}

Operating Mode

$$P_{S-CELL} = N_{S-CELL} * (P_{AC5} + (\alpha_1 / 2) * P_{AC6}) * F_{CLK}$$

 N_{S-CELL} is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-13 on page 3-20.

F_{CLK} is the global clock signal frequency.

Standby Mode and Sleep Mode

 $P_{S-CELL} = 0 W$

Combinatorial Cells Dynamic Contribution—P_{C-CELL}

Operating Mode

$$P_{C-CELL} = N_{C-CELL} * (\alpha_1 / 2) * P_{AC7} * F_{CLK}$$

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_{1} is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-13 on page 3-20.

 F_{CLK} is the global clock signal frequency.

Standby Mode and Sleep Mode

$$P_{C-CELL} = 0 W$$

Routing Net Dynamic Contribution—P_{NET}

Operating Mode

$$P_{NET} = (N_{S-CELL} + N_{C-CELL}) * (\alpha_1 / 2) * P_{AC8} * F_{CLK}$$

 $N_{S\text{-}CELL}$ is the number VersaTiles used as sequential modules in the design.

 N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-13 on page 3-20.

F_{CLK} is the global clock signal frequency.

Standby Mode and Sleep Mode

$$P_{NET} = 0 W$$

I/O Input Buffer Dynamic Contribution—PINPUTS

Operating Mode

$$P_{INPUTS} = N_{INPUTS} * (\alpha_2 / 2) * P_{AC9} * F_{CLK}$$

N_{INPUTS} is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 3-13 on page 3-20.

F_{CLK} is the global clock signal frequency.

Standby Mode and Sleep Mode

 $P_{INPUTS} = 0 W$

I/O Output Buffer Dynamic Contribution—POUTPUTS

Operating Mode

$$P_{OUTPUTS} = N_{OUTPUTS} * (\alpha_2 / 2) * \beta_1 * P_{AC10} * F_{CLK}$$

N_{OUTPUTS} is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 3-13 on page 3-20.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 3-14 on page 3-20.

F_{CLK} is the global clock signal frequency.

Standby Mode and Sleep Mode

 $P_{OUTPUTS} = 0 W$

RAM Dynamic Contribution—P_{MEMORY}

Operating Mode

$$P_{MEMORY} = (N_{BLOCKS} * P_{AC11} * \beta_2 * F_{READ-CLOCK}) + (N_{BLOCKS} * P_{AC12} * \beta_3 * F_{WRITE-CLOCK})$$

N_{BLOCKS} is the number of RAM blocks used in the design.

F_{READ-CLOCK} is the memory read clock frequency.

 β_2 is the RAM enable rate for read operations—guidelines are provided in Table 3-14 on page 3-20.

 eta_3 the RAM enable rate for write operations—guidelines are provided in Table 3-14 on page 3-20.

F_{WRITE-CLOCK} is the memory write clock frequency.

Standby Mode and Sleep Mode

 $P_{MEMORY} = 0 W$

PLL/CCC Dynamic Contribution—PPLL

Operating Mode

$$P_{PLL} = P_{AC13} * F_{CLKOUT}$$

F_{CLKIN} is the input clock frequency.

F_{CLKOUT} is the output clock frequency. ¹

Standby Mode and Sleep Mode

 $P_{PLL} = 0 W$

^{1.} The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output clock in the formula output clock by adding its corresponding contribution ($P_{AC14} * F_{CLKOUT}$ product) to the total PLL contribution.

Nonvolatile Memory Dynamic Contribution—P_{NVM}

Operating Mode

The NVM dynamic power consumption is a piecewise linear function of frequency.

 $P_{NVM} = N_{NVM-BLOCKS} * \beta_4 * P_{AC15} * F_{READ-NVM}$ when

when $F_{READ-NVM} \leq 33$ MHz,

 $P_{NVM} = N_{NVM\text{-BLOCKS}} * \beta_4 * (P_{AC16} + P_{AC17} * F_{READ\text{-}NVM}) \\ \text{ when } F_{READ\text{-}NVM} > 33 \\ \text{ MHz}$

 $N_{\text{NVM-BLOCKS}}$ is the number of NVM blocks used in the design (2 in AFS600).

 β_4 is the NVM enable rate for read operations. Default is 0 (NVM mainly in idle state).

F_{READ-NVM} is the NVM read clock frequency.

Standby Mode and Sleep Mode

 $P_{NVM} = 0 W$

Crystal Oscillator Dynamic Contribution—PXTL-OSC

Operating Mode

 $P_{XTL-OSC} = P_{AC18}$

Standby Mode

 $P_{XTL-OSC} = P_{AC18}$

Sleep Mode

 $P_{XTL-OSC} = 0 W$

RC Oscillator Dynamic Contribution—P_{RC-OSC}

Operating Mode

 $P_{RC-OSC} = P_{AC19}$

Standby Mode and Sleep Mode

 $P_{RC-OSC} = 0 W$

Analog System Dynamic Contribution—PAB

Operating Mode

 $P_{AB} = P_{AC20}$

Standby Mode and Sleep Mode

 $P_{AB} = 0 W$

Guidelines

Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that the net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100%, as all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
 - Bit 0 (LSB) = 100%
 - Bit 1 = 50%
 - Bit 2 = 25%
 - ...
 - Bit 7 (MSB) = 0.78125%
 - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . 0.78125%) / 8.

Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When non-tristate output buffers are used, the enable rate should be 100%.

Table 3-13 • Toggle Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
α_1	Toggle rate of VersaTile outputs	10%
α_2	I/O buffer toggle rate	10%

Table 3-14 • Enable Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
β_1	I/O output buffer enable rate	100%
β_2	RAM enable rate for read operations	12.5%
β_3	RAM enable rate for write operations	12.5%
β_4	NVM enable rate for read operations	0%

Example of Power Calculation

This example considers a shift register with 5,000 storage tiles, including a counter and memory that stores analog information. The shift register is clocked at 50 MHz and stores and reads information from a RAM.

The device used is a commercial AFS600 device operating in typical conditions.

The calculation below uses the power calculation methodology previously presented and shows how to determine the dynamic and static power consumption of resources used in the application.

Also included in the example is the calculation of power consumption in operating, standby, and sleep modes to illustrate the benefit of power-saving modes.

Global Clock Contribution—PCLOCK

 $F_{CLK} = 50 \text{ MHz}$

Number of sequential VersaTiles: N_{S-CELL} = 5,000

Estimated number of Spines: $N_{SPINES} = 5$ Estimated number of Rows: $N_{ROW} = 313$

Operating Mode

$$P_{CLOCK} = (P_{AC1} + N_{SPINE} * P_{AC2} + N_{ROW} * PAC3 + N_{S-CELL} * P_{AC4}) * F_{CLK}$$

 $P_{CLOCK} = (0.0128 + 5 * 0.0019 + 313 * 0.00081 + 5,000 * 0.00011) * 50$
 $P_{CLOCK} = 41.28 \text{ mW}$

Standby Mode and Sleep Mode

$$P_{CLOCK} = 0 W$$

Logic—Sequential Cells, Combinational Cells, and Routing Net Contributions—P_{S-CELL}, P_{C-CELL}, and P_{NET}

 $F_{CLK} = 50 \text{ MHz}$

Number of sequential VersaTiles: $N_{S-CELL} = 5,000$ Number of combinatorial VersaTiles: $N_{C-CELL} = 6,000$ Estimated toggle rate of VersaTile outputs: $\alpha_1 = 0.1$ (10%)

Operating Mode

$$\begin{split} & P_{S\text{-CELL}} = N_{S\text{-CELL}} * (P_{AC5} + (\alpha_1 \, / \, 2) * P_{AC6}) * F_{CLK} \\ & P_{S\text{-CELL}} = 5,000 * (0.00007 + (0.1 \, / \, 2) * 0.00029) * 50 \\ & P_{S\text{-CELL}} = 21.13 \text{ mW} \\ & P_{C\text{-CELL}} = N_{C\text{-CELL}} * (\alpha_1 \, / \, 2) * P_{AC7} * F_{CLK} \\ & P_{C\text{-CELL}} = 6,000 * (0.1 \, / \, 2) * 0.00029 * 50 \\ & P_{C\text{-CELL}} = 4.35 \text{ mW} \\ & P_{NET} = (N_{S\text{-CELL}} + N_{C\text{-CELL}}) * (\alpha_1 \, / \, 2) * P_{AC8} * F_{CLK} \\ & P_{NET} = (5,000 + 6,000) * (0.1 \, / \, 2) * 0.0007 * 50 \\ & P_{NET} = 19.25 \text{ mW} \\ & P_{LOGIC} = P_{S\text{-CELL}} + P_{C\text{-CELL}} + P_{NET} \\ & P_{LOGIC} = 21.13 \text{ mW} + 4.35 \text{ mW} + 19.25 \text{ mW} \end{split}$$

Advanced v1.4 3-21

 $P_{I,OGIC} = 44.73 \text{ mW}$

Standby Mode and Sleep Mode

 $P_{S-CELL} = 0 W$

 $P_{C-CELL} = 0 W$

 $P_{NET} = 0 W$

 $P_{LOGIC} = 0 W$

I/O Input and Output Buffer Contribution—P_{I/O}

This example uses LVTTL 3.3 V I/O cells. The output buffers are 12 mA-capable, configured with high output slew and driving a 35 pF output load.

 $F_{CLK} = 50 \text{ MHz}$

Number of input pins used: $N_{INPUTS} = 30$ Number of output pins used: $N_{OUTPUTS} = 40$ Estimated I/O buffer toggle rate: $\alpha_2 = 0.1$ (10%) Estimated IO buffer enable rate: $\beta_1 = 1$ (100%)

Operating Mode

 $P_{INPUTS} = N_{INPUTS} * (\alpha_2 / 2) * P_{AC9} * F_{CLK}$

 $P_{INPUTS} = 30 * (0.1 / 2) * 0.01739 * 50$

 $P_{INPUTS} = 1.30 \text{ mW}$

 $P_{OUTPUTS} = N_{OUTPUTS} * (\alpha_2 / 2) * \beta_1 * P_{AC10} * F_{CLK}$

 $P_{OUTPUTS} = 40 * (0.1 / 2) * 1 * 0.4747 * 50$

 $P_{OUTPUTS} = 47.47 \text{ mW}$

 $P_{I/O} = P_{INPUTS} + P_{OUTPUTS}$

 $P_{I/O} = 1.30 \text{ mW} + 47.47 \text{ mW}$

 $P_{I/O} = 48.77 \text{ mW}$

Standby Mode and Sleep Mode

 $P_{INPLITS} = 0 W$

 $P_{OUTPUTS} = 0 W$

 $P_{I/O} = 0 W$

RAM Contribution—P_{MEMORY}

Frequency of Read Clock: $F_{READ-CLOCK} = 10 \text{ MHz}$

Frequency of Write Clock: F_{WRITE-CLOCK} = 10 MHz

Number of RAM blocks: $N_{BLOCKS} = 20$

Estimated RAM Read Enable Rate: β_2 = 0.125 (12.5%) Estimated RAM Write Enable Rate: β_3 = 0.125 (12.5%)

Operating Mode

 $P_{MEMORY} = (N_{BLOCKS} * P_{AC11} * \beta_2 * F_{READ-CLOCK}) + (N_{BLOCKS} * P_{AC12} * \beta_3 * F_{WRITE-CLOCK})$

 $P_{MEMORY} = (20 * 0.025 * 0.125 * 10) + (20 * 0.030 * 0.125 * 10)$

 $P_{MEMORY} = 1.38 \text{ mW}$

Standby Mode and Sleep Mode

 $P_{MEMORY} = 0 W$

PLL/CCC Contribution—P_{PLL}

PLL is not used in this application.

$$P_{PII} = 0 W$$

Nonvolatile Memory—P_{NVM}

Nonvolatile memory is not used in this application.

$$P_{NVM} = 0 W$$

Crystal Oscillator—P_{XTL-OSC}

The application utilizes standby mode. The crystal oscillator is assumed to be active.

Operating Mode

 $P_{XTL-OSC} = P_{AC18}$

 $P_{XTL-OSC} = 0.63 \text{ mW}$

Standby Mode

 $P_{XTL-OSC} = P_{AC18}$

 $P_{XTL-OSC} = 0.63 \text{ mW}$

Sleep Mode

 $P_{XTL-OSC} = 0 W$

RC Oscillator—P_{RC-OSC}

Operating Mode

 $P_{RC-OSC} = P_{AC19}$

 $P_{RC-OSC} = 3.30 \text{ mW}$

Standby Mode and Sleep Mode

 $P_{RC-OSC} = 0 W$

Analog System—PAB

Number of Quads used: $N_{OUADS} = 4$

Operating Mode

 $P_{AB} = P_{AC20}$

 $P_{\Delta R} = 3.00 \text{ mW}$

Standby Mode and Sleep Mode

 $P_{AB} = 0 W$

Total Dynamic Power Consumption— P_{DYN}

Operating Mode

PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL + PNVM+ PXTL-OSC + PRC-OSC + PAB

 $P_{DYN} = 41.28 \text{ mW} + 21.1 \text{ mW} + 4.35 \text{ mW} + 19.25 \text{ mW} + 1.30 \text{ mW} + 47.47 \text{ mW} + 1.38 \text{ mW} + 0 + 0 + 0.63 \text{ mW} + 3.30 \text{ mW} + 3.00 \text{ mW}$

 $P_{DYN} = 143.06 \text{ mW}$

3-23

Standby Mode

 $P_{DYN} = P_{XTL-OSC}$

 $P_{DYN} = 0.63 \text{ mW}$

Sleep Mode

 $P_{DYN} = 0 W$

Total Static Power Consumption—PSTAT

Number of Quads used: $N_{OUADS} = 4$

Number of NVM blocks available (AFS600): $N_{NVM-BLOCKS} = 2$

Number of input pins used: $N_{INPUTS} = 30$ Number of output pins used: $N_{OUTPUTS} = 40$

Operating Mode

 $P_{STAT} = P_{DC1} + (N_{NVM-BLOCKS} * P_{DC4}) + P_{DC5} + (N_{QUADS} * P_{DC6}) + (N_{INPUTS} * P_{DC7}) + (N_{OUTPUTS} * P_{DC8})$

 $P_{STAT} = 7.50 \text{ mW} + (2 * 1.19 \text{ mW}) + 8.25 \text{ mW} + (4 * 3.30 \text{ mW}) + (30 * 0.00) + (40 * 0.00)$

 $P_{STAT} = 31.33 \text{ mW}$

Standby Mode

 $P_{STAT} = P_{DC2}$

 $P_{STAT} = 0.03 \text{ mW}$

Sleep Mode

 $P_{STAT} = P_{DC3}$

 $P_{ST\Delta T} = 0.03 \text{ mW}$

Total Power Consumption—P_{TOTAL}

In operating mode, the total power consumption of the device is 174.39 mW:

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

 $P_{TOTAl} = 143.06 \text{ mW} + 31.33 \text{ mW}$

 $P_{TOTAL} = 174.39 \text{ mW}$

In standby mode, the total power consumption of the device is limited to 0.66 mW:

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

 $P_{TOTAL} = 0.03 \text{ mW} + 0.63 \text{ mW}$

 $P_{TOTAL} = 0.66 \text{ mW}$

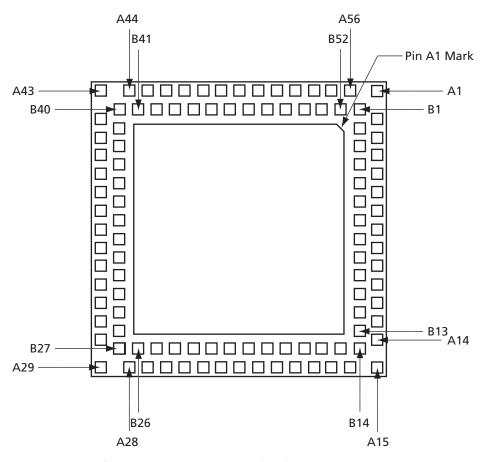
In sleep mode, the total power consumption of the device drops as low as 0.03 mW:

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

 $P_{TOTAL} = 0.03 \text{ mW}$

Power Consumption

Table 3-15 • Power Consumption


Parameter	Description	Condition	Min.	Typical	Max.	Units
Crystal Oscillato	or	<u>'</u>		•	•	•
I _{STBXTAL}	Standby Current of Crystal Oscillator	ſ		10		μΑ
I _{DYNXTAL}	Operating Current	RC		0.6		mA
		0.032-0.2		0.19		mA
		0.2–2.0		0.6		mA
		2.0-20.0		0.6		mA
RC Oscillator	•	<u>, </u>		<u> </u>		
I _{DYNRC}	Operating Current			1		mA
ACM	•	•		•	•	•
	Operating Current (fixed clock)			200		µA/MHz
	Operating Current (user clock)			30		μΑ
NVM System		•		•	•	•
	NVM Array Operating Power	Idle		795		μΑ
		Read operation		See Table 3-12 on page 3-15.		See Table 3-12 on page 3-15.
		Erase		900		μΑ
		Write		900		μΑ
P _{NVMCTRL}	NVM Controller Operating Power			20		μW/MHz

Package Pin Assignments

108-Pin QFN

Note: The die attach paddle center of the package is tied to ground (GND).

Figure 4-1 • 108-Pin QFN (bottom view)

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/default.aspx.

Advanced v1.4 4-1

10	108-Pin QFN			
Pin Number	AFS090 Function			
A1	NC			
A2	GNDQ			
A3	GAA2/IO52PDB3V0			
A4	GND			
A5	GFA1/IO47PDB3V0			
A6	GEB1/IO45PDB3V0			
A7	VCCOSC			
A8	XTAL2			
A9	GEA1/IO44PPB3V0			
A10	GEA0/IO44NPB3V0			
A11	GEB2/IO42PDB3V0			
A12	V _{CCNVM}			
A13	V _{CC15A}			
A14	PCAP			
A15	NC			
A16	GNDA			
A17	AV0			
A18	AG0			
A19	ATRTN0			
A20	AT1			
A21	AC1			
A22	AV2			
A23	AG2			
A24	AT2			
A25	AT3			
A26	AC3			
A27	GNDAQ			
A28	ADCGNDREF			
A29	NC			
A30	GNDA			
A31	PTEM			
A32	GNDNVM			
A33	V _{PUMP}			
A34	TCK			
A35	TMS			
A36	TRST			
A37	GDB1/IO39PSB1V0			
A38	GDC1/IO38PDB1V0			

108	108-Pin QFN			
Pin Number	AFS090 Function			
A39	GND			
A40	GCB1/IO35PDB1V0			
A41	GCB2/IO33PDB1V0			
A42	GBA2/IO31PDB1V0			
A43	NC			
A44	GBA1/IO30RSB0V0			
A45	GBB1/IO28RSB0V0			
A46	GND			
A47	V _{CC}			
A48	GBC1/IO26RSB0V0			
A49	IO21RSB0V0			
A50	IO19RSB0V0			
A51	IO09RSB0V0			
A52	GAC0/IO04RSB0V0			
A53	V _{CCI} B0			
A54	GND			
A55	GAB0/IO02RSB0V0			
A56	GAA0/IO00RSB0V0			
B1	V _{COMPLA}			
B2	V _{CCI} B3			
В3	GAB2/IO52NDB3V0			
B4	V _{CCI} B3			
B5	GFA0/IO47NDB3V0			
В6	GEB0/IO45NDB3V0			
В7	XTAL1			
B8	GNDOSC			
В9	GEC2/IO43PSB3V0			
B10	GEA2/IO42NDB3V0			
B11	V _{CC}			
B12	GNDNVM			
B13	NCAP			
B14	V _{CC33PMP}			
B15	V _{CC33N}			
B16	GNDAQ			
B17	AC0			
B18	AT0			
B19	AG1			
B20	AV1			

B21 AC2 B22 ATRTN1 B23 AG3 B24 AV3 B25 V _{CC33A} B26 VAREF B27 PUB B28 V _{CC33A} B29 PTBASE B30 V _{CCNVM} B31 V _{CC} B32 TDI B33 TDO B34 V _{JTAG} B35 GDC0/IO38NDB1V0 B36 V _{CCI} B1 B37 GCB0/IO35NDB1V0 B38 GCC2/IO33NDB1V0 B39 GBB2/IO31NDB1V0 B40 V _{CCI} B1 B41 GNDQ B42 GBAO/IO29RSB0V0 B43 V _{CCI} B0 B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	108-Pin QFN	
B22 ATRTN1 B23 AG3 B24 AV3 B25 V _{CC33A} B26 VAREF B27 PUB B28 V _{CC33A} B29 PTBASE B30 V _{CCNVM} B31 V _{CC} B32 TDI B33 TDO B34 V _{JTAG} B35 GDC0/IO38NDB1V0 B36 V _{CCI} B1 B37 GCB0/IO35NDB1V0 B38 GCC2/IO33NDB1V0 B40 V _{CCI} B1 B41 GNDQ B42 GBA0/IO29RSB0V0 B43 V _{CCI} B0 B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO03RSB0V0 B49 GAB1/IO03RSB0V0	Pin Number	AFS090 Function
B23 AG3 B24 AV3 B25 V _{CC33A} B26 VAREF B27 PUB B28 V _{CC33A} B29 PTBASE B30 V _{CCNVM} B31 V _{CC} B32 TDI B33 TDO B34 V _{JTAG} B35 GDC0/IO38NDB1V0 B36 V _{CCI} B1 B37 GCB0/IO35NDB1V0 B38 GCC2/IO33NDB1V0 B39 GBB2/IO31NDB1V0 B40 V _{CCI} B1 B41 GNDQ B42 GBA0/IO29RSB0V0 B43 V _{CCI} B0 B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B48 GAC1/IO05RSB0V0 B48 GAC1/IO03RSB0V0 B49 GAB1/IO03RSB0V0	B21	AC2
B24 AV3 B25 V _{CC33A} B26 VAREF B27 PUB B28 V _{CC33A} B29 PTBASE B30 V _{CCNVM} B31 V _{CC} B32 TDI B33 TDO B34 V _{JTAG} B35 GDC0/IO38NDB1V0 B36 V _{CCI} B1 B37 GCB0/IO35NDB1V0 B38 GCC2/IO33NDB1V0 B40 V _{CCI} B1 B41 GNDQ B42 GBA0/IO29RSB0V0 B43 V _{CCI} B0 B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO03RSB0V0 B49 GAB1/IO03RSB0V0	B22	ATRTN1
B25 V _{CC33A} B26 VAREF B27 PUB B28 V _{CC33A} B29 PTBASE B30 V _{CCNVM} B31 V _{CC} B32 TDI B33 TDO B34 V _{JTAG} B35 GDC0/IO38NDB1V0 B36 V _{CCI} B1 B37 GCB0/IO35NDB1V0 B38 GCC2/IO33NDB1V0 B39 GBB2/IO31NDB1V0 B40 V _{CCI} B1 B41 GNDQ B42 GBA0/IO29RSB0V0 B43 V _{CCI} B0 B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO03RSB0V0 B49 GAB1/IO03RSB0V0	B23	AG3
B26 VAREF B27 PUB B28 V _{CC33A} B29 PTBASE B30 V _{CCNVM} B31 V _{CC} B32 TDI B33 TDO B34 V _{JTAG} B35 GDC0/IO38NDB1V0 B36 V _{CCI} B1 B37 GCB0/IO35NDB1V0 B38 GCC2/IO33NDB1V0 B39 GBB2/IO31NDB1V0 B40 V _{CCI} B1 B41 GNDQ B42 GBA0/IO29RSB0V0 B43 V _{CCI} B0 B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B24	AV3
B27 PUB B28 V _{CC33A} B29 PTBASE B30 V _{CCNVM} B31 V _{CC} B32 TDI B33 TDO B34 V _{JTAG} B35 GDC0/IO38NDB1V0 B36 V _{CCI} B1 B37 GCB0/IO35NDB1V0 B38 GCC2/IO33NDB1V0 B39 GBB2/IO31NDB1V0 B40 V _{CCI} B1 B41 GNDQ B42 GBA0/IO29RSB0V0 B43 V _{CCI} B0 B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B25	V _{CC33A}
B28 V _{CC33A} B29 PTBASE B30 V _{CCNVM} B31 V _{CC} B32 TDI B33 TDO B34 V _{JTAG} B35 GDC0/IO38NDB1V0 B36 V _{CCI} B1 B37 GCB0/IO35NDB1V0 B38 GCC2/IO33NDB1V0 B39 GBB2/IO31NDB1V0 B40 V _{CCI} B1 B41 GNDQ B42 GBA0/IO29RSB0V0 B43 V _{CCI} B0 B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B26	VAREF
B29 PTBASE	B27	PUB
B30 V _{CCNVM} B31 V _{CC} B32 TDI B33 TDO B34 V _{JTAG} B35 GDC0/IO38NDB1V0 B36 V _{CCI} B1 B37 GCB0/IO35NDB1V0 B38 GCC2/IO33NDB1V0 B39 GBB2/IO31NDB1V0 B40 V _{CCI} B1 B41 GNDQ B42 GBA0/IO29RSB0V0 B43 V _{CCI} B0 B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B28	V _{CC33A}
B31 V _{CC} B32 TDI B33 TDO B34 V _{JTAG} B35 GDC0/IO38NDB1V0 B36 V _{CCI} B1 B37 GCB0/IO35NDB1V0 B38 GCC2/IO33NDB1V0 B39 GBB2/IO31NDB1V0 B40 V _{CCI} B1 B41 GNDQ B42 GBA0/IO29RSB0V0 B43 V _{CCI} B0 B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B29	PTBASE
B32 TDI B33 TDO B34 VJTAG B35 GDCO/IO38NDB1VO B36 VCCIB1 B37 GCBO/IO35NDB1VO B38 GCC2/IO33NDB1VO B39 GBB2/IO31NDB1VO B40 VCCIB1 B41 GNDQ B42 GBAO/IO29RSB0VO B43 VCCIBO B44 GBBO/IO27RSB0VO B45 GBCO/IO25RSB0VO B46 IO20RSB0VO B47 IO10RSB0VO B48 GAC1/IO05RSB0VO B49 GAB1/IO03RSB0VO	B30	V_{CCNVM}
B33 TDO B34 V _{JTAG} B35 GDC0/IO38NDB1V0 B36 V _{CCI} B1 B37 GCB0/IO35NDB1V0 B38 GCC2/IO33NDB1V0 B39 GBB2/IO31NDB1V0 B40 V _{CCI} B1 B41 GNDQ B42 GBA0/IO29RSB0V0 B43 V _{CCI} B0 B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B31	V _{CC}
B34 V _{JTAG} B35 GDC0/IO38NDB1V0 B36 V _{CCI} B1 B37 GCB0/IO35NDB1V0 B38 GCC2/IO33NDB1V0 B39 GBB2/IO31NDB1V0 B40 V _{CCI} B1 B41 GNDQ B42 GBA0/IO29RSB0V0 B43 V _{CCI} B0 B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B32	TDI
B35 GDC0/IO38NDB1V0 B36 V _{CCI} B1 B37 GCB0/IO35NDB1V0 B38 GCC2/IO33NDB1V0 B39 GBB2/IO31NDB1V0 B40 V _{CCI} B1 B41 GNDQ B42 GBA0/IO29RSB0V0 B43 V _{CCI} B0 B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B33	TDO
B36 V _{CCI} B1 B37 GCB0/IO35NDB1V0 B38 GCC2/IO33NDB1V0 B39 GBB2/IO31NDB1V0 B40 V _{CCI} B1 B41 GNDQ B42 GBA0/IO29RSB0V0 B43 V _{CCI} B0 B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B34	$V_{ m JTAG}$
B37 GCB0/IO35NDB1V0 B38 GCC2/IO33NDB1V0 B39 GBB2/IO31NDB1V0 B40 V _{CCI} B1 B41 GNDQ B42 GBA0/IO29RSB0V0 B43 V _{CCI} B0 B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B35	GDC0/IO38NDB1V0
B38 GCC2/IO33NDB1V0 B39 GBB2/IO31NDB1V0 B40 V _{CCI} B1 B41 GNDQ B42 GBA0/IO29RSB0V0 B43 V _{CCI} B0 B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B36	V _{CCI} B1
B39 GBB2/IO31NDB1V0 B40 V _{CCI} B1 B41 GNDQ B42 GBA0/IO29RSB0V0 B43 V _{CCI} B0 B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B37	GCB0/IO35NDB1V0
B40 V _{CCI} B1 B41 GNDQ B42 GBA0/IO29RSB0V0 B43 V _{CCI} B0 B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B38	GCC2/IO33NDB1V0
B41 GNDQ B42 GBAO/IO29RSB0V0 B43 V _{CCI} B0 B44 GBBO/IO27RSB0V0 B45 GBCO/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B39	GBB2/IO31NDB1V0
B42 GBAO/IO29RSB0V0 B43 V _{CCI} B0 B44 GBBO/IO27RSB0V0 B45 GBCO/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B40	V _{CCI} B1
B43 V _{CCI} B0 B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B41	GNDQ
B44 GBB0/IO27RSB0V0 B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B42	GBA0/IO29RSB0V0
B45 GBC0/IO25RSB0V0 B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B43	V _{CCI} B0
B46 IO20RSB0V0 B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B44	GBB0/IO27RSB0V0
B47 IO10RSB0V0 B48 GAC1/IO05RSB0V0 B49 GAB1/IO03RSB0V0	B45	GBC0/IO25RSB0V0
B48 GAC 1/IO05RSB0V0 B49 GAB 1/IO03RSB0V0	B46	IO20RSB0V0
B49 GAB1/IO03RSB0V0	B47	IO10RSB0V0
	B48	GAC1/IO05RSB0V0
B50 Vcc	B49	GAB1/IO03RSB0V0
	B50	V _{CC}
B51 GAA1/IO01RSB0V0	B51	GAA1/IO01RSB0V0
B52 V _{CCPLA}	B52	V_{CCPLA}

180-Pin QFN

Note: The die attach paddle center of the package is tied to ground (GND).

Figure 4-2 • 180-Pin QFN (bottom view)

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/default.aspx.

Advanced v1.4 4-3

180-Pin QFN		
Pin Number	AFS090 Function	AFS250 Function
A1	GNDQ	GNDQ
A2	V _{CCI} B3	V _{CCI} B3
А3	GAB2/IO52NDB3V0	IO74NDB3V0
A4	GFA2/IO51NDB3V0	IO71NDB3V0
A5	GFC2/IO50NDB3V0	IO69NPB3V0
A6	V _{CCI} B3	V _{CCI} B3
A7	GFA1/IO47PPB3V0	GFB1/IO67PPB3V0
A8	GEB0/IO45NDB3V0	NC
А9	XTAL1	XTAL1
A10	GNDOSC	GNDOSC
A11	GEC2/IO43PPB3V0	GEA1/IO61PPB3V0
A12	IO43NPB3V0	GEA0/IO61NPB3V0
A13	NC	V _{CCI} B3
A14	GNDNVM	GNDNVM
A15	PCAP	PCAP
A16	V _{CC33PMP}	V _{CC33PMP}
A17	NC	NC
A18	AV0	AV0
A19	AG0	AG0
A20	ATRTN0	ATRTN0
A21	AG1	AG1
A22	AC1	AC1
A23	AV2	AV2
A24	AT2	AT2
A25	AT3	AT3
A26	AC3	AC3
A27	AV4	AV4
A28	AC4	AC4
A29	AT4	AT4
A30	NC	AG5
A31	NC	AV5
A32	ADCGNDREF	ADCGNDREF
A33	V _{CC33A}	V _{CC33A}
A34	GNDA	GNDA
A35	PTBASE	PTBASE
A36	V_{CCNVM}	V_{CCNVM}

Pin Number AFS090 Function AFS250 Function A37 V _{PUMP} V _{PUMP} A38 TDI TDI A39 TDO TDO A40 V _{JTAG} V _{JTAG} A41 GDB1/IO39PPB1VO GDA1/IO54PPB1VO A42 GDC1/IO38PDB1VO GDB1/IO53PDB1VO A43 V _{CC} V _{CC} A44 GCB0/IO35NPB1VO GCB0/IO47PDB1VO A45 GCC1/IO34PDB1VO GCC1/IO47PDB1VO A46 V _{CCI} B1 V _{CCI} B1 A47 GBC2/IO32PPB1VO GBB2/IO41PPB1VO A48 V _{CCI} B1 V _{CCI} B1 A49 NC NC A50 GBA0/IO29RSB0VO GBB1/IO37RSB0VO A51 V _{CCI} B0 V _{CCI} B0 A52 GBB0/IO27RSB0VO GBC0/IO34RSB0VO A53 GBC1/IO26RSB0VO IO23RSB0VO A54 IO24RSB0VO IO29RSB0VO A55 IO21RSB0VO IO21RSB0VO A56 V _{CCI} B0 V _{CCI} B0	180-Pin QFN		
A38 TDI TDI A39 TDO TDO A40 V_JTAG V_JTAG A41 GDB1/IO39PPB1V0 GDA1/IO54PPB1V0 A42 GDC1/IO38PDB1V0 GDB1/IO53PDB1V0 A43 V_CC V_CC A44 GCB0/IO35NPB1V0 GCB0/IO48NPB1V0 A45 GCC1/IO34PDB1V0 GCC1/IO47PDB1V0 A46 V_CC B1 V_CC B1 A47 GBC2/IO32PPB1V0 GBB2/IO41PPB1V0 A48 V_CC B1 V_CC B1 A49 NC NC A50 GBA0/IO29RSB0V0 GBB1/IO37RSB0V0 A51 V_CC B0 V_CC B0 A52 GBB0/IO27RSB0V0 GBC0/IO34RSB0V0 A53 GBC1/IO26RSB0V0 IO33RSB0V0 A54 IO24RSB0V0 IO29RSB0V0 A55 IO21RSB0V0 IO29RSB0V0 A56 V_CC B0 V_CC B0 A57 IO15RSB0V0 IO21RSB0V0 A58 IO10RSB0V0 IO13RSB0V0 A59 IO07RSB0V0 IO13RSB0V0 A60 GAC0/IO04RSB0V0 IO13RSB0V0 A61 GAB1/IO3RSB0V0 IO13RSB0V0 A62 V_CC V_CC A63 GAA1/IO01RSB0V0 GAC1/IO05RSB0V0 A64 NC NC B1 V_COMPLA B2 GAA2/IO52PDB3V0 GFA2/IO71PDB3V0 B5 V_CC V_CC B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 GFC0/IO68NDB3V0	Pin Number	AFS090 Function	AFS250 Function
A39 TDO TDO A40 VJTAG VJTAG A41 GDB1/IO39PPB1VO GDA1/IO54PPB1VO A42 GDC1/IO38PDB1VO GDB1/IO53PDB1VO A43 VCC VCC A44 GCB0/IO35NPB1VO GCB0/IO48NPB1VO A45 GCC1/IO34PDB1VO GCC1/IO47PDB1VO A46 VCCIB1 VCCIB1 A47 GBC2/IO32PPB1VO GBB2/IO41PPB1VO A48 VCCIB1 VCCIB1 A49 NC NC A50 GBA0/IO29RSB0VO GBB1/IO37RSB0VO A51 VCCIB0 VCCIB0 A52 GBB0/IO27RSB0VO GBC0/IO34RSB0VO A53 GBC1/IO26RSB0VO IO23RSB0VO A54 IO24RSB0VO IO29RSB0VO A55 IO21RSB0VO IO26RSB0VO A56 VCCIB0 VCCIB0 A57 IO15RSB0VO IO13RSB0VO A58 IO10RSB0VO IO10RSB0VO A60 GAC0/IO49RSB0VO GAC1/IO05RSB0VO A61	A37	V_{PUMP}	V_{PUMP}
A40 V _{JTAG} V _{JTAG} A41 GDB1/IO39PPB1VO GDA1/IO54PPB1VO A42 GDC1/IO38PDB1VO GDB1/IO53PDB1VO A43 V _{CC} V _{CC} A44 GCB0/IO35NPB1VO GCB0/IO48NPB1VO A45 GCC1/IO34PDB1VO GCC1/IO47PDB1VO A46 V _{CCI} B1 V _{CCI} B1 A47 GBC2/IO32PPB1VO GBB2/IO41PPB1VO A48 V _{CCI} B1 V _{CCI} B1 A49 NC NC A50 GBA0/IO29RSB0VO GBB1/IO37RSB0VO A51 V _{CCI} B0 V _{CCI} B0 A52 GBB0/IO27RSB0VO GBC0/IO34RSB0VO A53 GBC1/IO26RSB0VO IO23RSB0VO A54 IO24RSB0VO IO29RSB0VO A55 IO21RSB0VO IO21RSB0VO A56 V _{CCI} B0 V _{CCI} B0 A57 IO15RSB0VO IO13RSB0VO A58 IO10RSB0VO IO10RSB0VO A60 GAC0/IO04RSB0VO GAC1/IO05RSB0VO A61 GAB1/IO03RSB0VO GAB0/IO02RSB	A38	TDI	TDI
A41 GDB1/IO39PPB1VO GDA1/IO54PPB1VO A42 GDC1/IO38PDB1VO GDB1/IO53PDB1VO A43 V _{CC} V _{CC} A44 GCB0/IO35NPB1VO GCB0/IO48NPB1VO A45 GCC1/IO34PDB1VO GCC1/IO47PDB1VO A46 V _{CCI} B1 V _{CCI} B1 A47 GBC2/IO32PPB1VO GBB2/IO41PPB1VO A48 V _{CCI} B1 V _{CCI} B1 A49 NC NC A50 GBA0/IO29RSB0VO GBB1/IO37RSB0VO A51 V _{CCI} B0 V _{CCI} B0 A52 GBB0/IO27RSB0VO GBC0/IO34RSB0VO A53 GBC1/IO26RSB0VO IO33RSB0VO A54 IO24RSB0VO IO29RSB0VO A55 IO21RSB0VO IO26RSB0VO A56 V _{CCI} B0 V _{CCI} B0 A57 IO15RSB0VO IO13RSB0VO A58 IO10RSB0VO IO10RSB0VO A60 GAC0/IO04RSB0VO GAC1/IO05RSB0VO A61 GAB1/IO03RSB0VO GAB0/IO02RSB0VO A62 V _{CC} V _{CC} <	A39	TDO	TDO
A42 GDC1/IO38PDB1VO GDB1/IO53PDB1VO A43 V _{CC} V _{CC} A44 GCB0/IO35NPB1VO GCB0/IO48NPB1VO A45 GCC1/IO34PDB1VO GCC1/IO47PDB1VO A46 V _{CCI} B1 V _{CCI} B1 A47 GBC2/IO32PPB1VO GBB2/IO41PPB1VO A48 V _{CCI} B1 V _{CCI} B1 A49 NC NC A50 GBA0/IO29RSB0VO GBB1/IO37RSB0VO A51 V _{CCI} BO V _{CCI} BO A52 GBB0/IO27RSB0VO GBC0/IO34RSB0VO A53 GBC1/IO26RSB0VO IO23RSB0VO A54 IO24RSB0VO IO29RSB0VO A55 IO21RSB0VO IO26RSB0VO A56 V _{CCI} BO V _{CCI} BO A57 IO15RSB0VO IO13RSB0VO A58 IO10RSB0VO IO10RSB0VO A60 GAC0/IO04RSB0VO IO66RSB0VO A61 GAB1/IO03RSB0VO GAC1/IO05RSB0VO A62 V _{CC} V _{CC} A64 NC NC	A40	V_{JTAG}	V_{JTAG}
A43 V _{CC} V _{CC} A44 GCB0/IO35NPB1V0 GCB0/IO48NPB1V0 A45 GCC1/IO34PDB1V0 GCC1/IO47PDB1V0 A46 V _{CCI} B1 V _{CCI} B1 A47 GBC2/IO32PPB1V0 GBB2/IO41PPB1V0 A48 V _{CCI} B1 V _{CCI} B1 A49 NC NC A50 GBA0/IO29RSB0V0 GBB1/IO37RSB0V0 A51 V _{CCI} B0 V _{CCI} B0 A52 GBB0/IO27RSB0V0 GBC0/IO34RSB0V0 A53 GBC1/IO26RSB0V0 IO33RSB0V0 A54 IO24RSB0V0 IO29RSB0V0 A55 IO21RSB0V0 IO26RSB0V0 A56 V _{CCI} B0 V _{CCI} B0 A57 IO15RSB0V0 IO21RSB0V0 A58 IO10RSB0V0 IO13RSB0V0 A59 IO07RSB0V0 IO10RSB0V0 A60 GAC0/IO04RSB0V0 IO06RSB0V0 A61 GAB1/IO03RSB0V0 GAC1/IO05RSB0V0 A62 V _{CC} V _{CC} A63 GAA1/IO01RSB0V0 GAC2/IO74PDB3V0	A41	GDB1/IO39PPB1V0	GDA1/IO54PPB1V0
A44 GCB0/IO35NPB1V0 GCB0/IO48NPB1V0 A45 GCC1/IO34PDB1V0 GCC1/IO47PDB1V0 A46 V _{CCI} B1 V _{CCI} B1 A47 GBC2/IO32PPB1V0 GBB2/IO41PPB1V0 A48 V _{CCI} B1 V _{CCI} B1 A49 NC NC A50 GBA0/IO29RSB0V0 GBB1/IO37RSB0V0 A51 V _{CCI} B0 V _{CCI} B0 A52 GBB0/IO27RSB0V0 GBC0/IO34RSB0V0 A53 GBC1/IO26RSB0V0 IO33RSB0V0 A54 IO24RSB0V0 IO29RSB0V0 A55 IO21RSB0V0 IO26RSB0V0 A56 V _{CCI} B0 V _{CCI} B0 A57 IO15RSB0V0 IO13RSB0V0 A58 IO10RSB0V0 IO13RSB0V0 A59 IO07RSB0V0 IO10RSB0V0 A60 GAC0/IO04RSB0V0 GAC1/IO05RSB0V0 A61 GAB1/IO03RSB0V0 GAB0/IO02RSB0V0 A62 V _{CC} V _{CC} A63 GAA1/IO01RSB0V0 GAB0/IO02RSB0V0 B1 V _{COMPLA} V _{COMPLA} <td>A42</td> <td>GDC1/IO38PDB1V0</td> <td>GDB1/IO53PDB1V0</td>	A42	GDC1/IO38PDB1V0	GDB1/IO53PDB1V0
A45 GCC1/IO34PDB1V0 GCC1/IO47PDB1V0 A46 V _{CCI} B1 V _{CCI} B1 A47 GBC2/IO32PPB1V0 GBB2/IO41PPB1V0 A48 V _{CCI} B1 V _{CCI} B1 A49 NC NC A50 GBA0/IO29RSB0V0 GBB1/IO37RSB0V0 A51 V _{CCI} B0 V _{CCI} B0 A52 GBB0/IO27RSB0V0 GBC0/IO34RSB0V0 A53 GBC1/IO26RSB0V0 IO33RSB0V0 A54 IO24RSB0V0 IO29RSB0V0 A55 IO21RSB0V0 IO26RSB0V0 A56 V _{CCI} B0 V _{CCI} B0 A57 IO15RSB0V0 IO13RSB0V0 A58 IO10RSB0V0 IO10RSB0V0 A59 IO07RSB0V0 IO10RSB0V0 A60 GAC0/IO04RSB0V0 GAC1/IO05RSB0V0 A61 GAB1/IO03RSB0V0 GAB0/IO02RSB0V0 A62 V _{CC} V _{CC} A63 GAA1/IO01RSB0V0 GAB0/IO02RSB0V0 B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3V0 GFA2/IO71PDB3V0	A43	V _{CC}	V _{CC}
A46 V _{CCI} B1 V _{CCI} B1 A47 GBC2/IO32PPB1VO GBB2/IO41PPB1VO A48 V _{CCI} B1 V _{CCI} B1 A49 NC NC A50 GBA0/IO29RSB0VO GBB1/IO37RSB0VO A51 V _{CCI} BO V _{CCI} BO A52 GBB0/IO27RSB0VO GBC0/IO34RSB0VO A53 GBC1/IO26RSB0VO IO33RSB0VO A54 IO24RSB0VO IO29RSB0VO A55 IO21RSB0VO IO26RSB0VO A56 V _{CCI} BO V _{CCI} BO A57 IO15RSB0VO IO21RSB0VO A58 IO10RSB0VO IO13RSB0VO A59 IO07RSB0VO IO10RSB0VO A60 GAC0/IO04RSB0VO IO06RSB0VO A61 GAB1/IO03RSB0VO GAC1/IO05RSB0VO A62 V _{CC} V _{CC} A63 GAA1/IO01RSB0VO GAB0/IO02RSB0VO A64 NC NC B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3VOGFA2/IO71PDB3VO B4	A44	GCB0/IO35NPB1V0	GCB0/IO48NPB1V0
A47 GBC2/IO32PPB1VO GBB2/IO41PPB1VO A48 V _{CCI} B1 V _{CCI} B1 A49 NC NC A50 GBAO/IO29RSB0VO GBB1/IO37RSB0VO A51 V _{CCI} BO V _{CCI} BO A52 GBB0/IO27RSB0VO GBC0/IO34RSB0VO A53 GBC1/IO26RSB0VO IO33RSB0VO A54 IO24RSB0VO IO29RSB0VO A55 IO21RSB0VO IO26RSB0VO A56 V _{CCI} BO V _{CCI} BO A57 IO15RSB0VO IO21RSB0VO A58 IO10RSB0VO IO13RSB0VO A59 IO07RSB0VO IO10RSB0VO A60 GAC0/IO04RSB0VO GAC1/IO05RSB0VO A61 GAB1/IO03RSB0VO GAC1/IO05RSB0VO A62 V _{CC} V _{CC} A63 GAA1/IO01RSB0VO GAB0/IO02RSB0VO A64 NC NC B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3VO GFA2/IO71PDB3VO B4 GFB2/IO50PDB3VO GFC0/IO68NDB3VO	A45	GCC1/IO34PDB1V0	GCC1/IO47PDB1V0
A48 V _{CCI} B1 V _{CCI} B1 A49 NC NC A50 GBA0/IO29RSB0V0 GBB1/IO37RSB0V0 A51 V _{CCI} B0 V _{CCI} B0 A52 GBB0/IO27RSB0V0 GBC0/IO34RSB0V0 A53 GBC1/IO26RSB0V0 IO33RSB0V0 A54 IO24RSB0V0 IO29RSB0V0 A55 IO21RSB0V0 IO26RSB0V0 A56 V _{CCI} B0 V _{CCI} B0 A57 IO15RSB0V0 IO21RSB0V0 A58 IO10RSB0V0 IO13RSB0V0 A59 IO07RSB0V0 IO10RSB0V0 A60 GAC0/IO04RSB0V0 IO06RSB0V0 A61 GAB1/IO03RSB0V0 GAC1/IO05RSB0V0 A62 V _{CC} V _{CC} A63 GAA1/IO01RSB0V0 GAB0/IO02RSB0V0 A64 NC NC B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3V0 GAC2/IO74PDB3V0 B4 GFB2/IO50PDB3V0 GFB2/IO70PSB3V0 B5 V _{CC} V _{CC} B6	A46	V _{CCI} B1	V _{CCI} B1
A49 NC NC A50 GBA0/IO29RSB0V0 GBB1/IO37RSB0V0 A51 V _{CCI} B0 V _{CCI} B0 A52 GBB0/IO27RSB0V0 GBC0/IO34RSB0V0 A53 GBC1/IO26RSB0V0 IO33RSB0V0 A54 IO24RSB0V0 IO29RSB0V0 A55 IO21RSB0V0 IO26RSB0V0 A56 V _{CCI} B0 V _{CCI} B0 A57 IO15RSB0V0 IO21RSB0V0 A58 IO10RSB0V0 IO13RSB0V0 A59 IO07RSB0V0 IO10RSB0V0 A60 GAC0/IO04RSB0V0 IO06RSB0V0 A61 GAB1/IO03RSB0V0 GAC1/IO05RSB0V0 A62 V _{CC} V _{CC} A63 GAA1/IO01RSB0V0 GAB0/IO02RSB0V0 A64 NC NC B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3V0 GFA2/IO71PDB3V0 B4 GFB2/IO50PDB3V0 GFB2/IO70PSB3V0 B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0	A47	GBC2/IO32PPB1V0	GBB2/IO41PPB1V0
A50 GBAO/IO29RSBOVO GBB1/IO37RSBOVO A51 V _{CCI} BO V _{CCI} BO A52 GBBO/IO27RSBOVO GBCO/IO34RSBOVO A53 GBC1/IO26RSBOVO IO33RSBOVO A54 IO24RSBOVO IO29RSBOVO A55 IO21RSBOVO IO26RSBOVO A56 V _{CCI} BO V _{CCI} BO A57 IO15RSBOVO IO21RSBOVO A58 IO10RSBOVO IO13RSBOVO A59 IO07RSBOVO IO10RSBOVO A60 GACO/IO04RSBOVO GAC1/IO05RSBOVO A61 GAB1/IO03RSBOVO GAC1/IO05RSBOVO A62 V _{CC} V _{CC} A63 GAA1/IO01RSBOVO GAB0/IO02RSBOVO A64 NC NC B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3VO GAC2/IO74PDB3VO B4 GFB2/IO50PDB3VO GFB2/IO70PSB3VO B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3VO GFC0/IO68NDB3VO B7 GEB1/IO45PDB3VO NC <td>A48</td> <td>V_{CCI}B1</td> <td>V_{CCI}B1</td>	A48	V _{CCI} B1	V _{CCI} B1
A51 V _{CCI} BO V _{CCI} BO A52 GBB0/IO27RSB0V0 GBC0/IO34RSB0V0 A53 GBC1/IO26RSB0V0 IO33RSB0V0 A54 IO24RSB0V0 IO29RSB0V0 A55 IO21RSB0V0 IO26RSB0V0 A56 V _{CCI} BO V _{CCI} BO A57 IO15RSB0V0 IO21RSB0V0 A58 IO10RSB0V0 IO13RSB0V0 A59 IO07RSB0V0 IO10RSB0V0 A60 GAC0/IO04RSB0V0 IO06RSB0V0 A61 GAB1/IO03RSB0V0 GAC1/IO05RSB0V0 A62 V _{CC} V _{CC} A63 GAA1/IO01RSB0V0 GAB0/IO02RSB0V0 A64 NC NC B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3V0 GAC2/IO74PDB3V0 B4 GFB2/IO50PDB3V0 GFB2/IO70PSB3V0 B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 NC	A49	NC	NC
A52 GBB0/IO27RSB0V0 GBC0/IO34RSB0V0 A53 GBC1/IO26RSB0V0 IO33RSB0V0 A54 IO24RSB0V0 IO29RSB0V0 A55 IO21RSB0V0 IO26RSB0V0 A56 V _{CCI} B0 V _{CCI} B0 A57 IO15RSB0V0 IO21RSB0V0 A58 IO10RSB0V0 IO13RSB0V0 A59 IO07RSB0V0 IO10RSB0V0 A60 GAC0/IO04RSB0V0 IO06RSB0V0 A61 GAB1/IO03RSB0V0 GAC1/IO05RSB0V0 A62 V _{CC} V _{CC} A63 GAA1/IO01RSB0V0 GAB0/IO02RSB0V0 A64 NC NC B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3V0 GAC2/IO71PDB3V0 B4 GFB2/IO50PDB3V0 GFB2/IO70PSB3V0 B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 NC	A50	GBA0/IO29RSB0V0	GBB1/IO37RSB0V0
A53 GBC1/IO26RSBOVO IO33RSBOVO A54 IO24RSBOVO IO29RSBOVO A55 IO21RSBOVO IO26RSBOVO A56 V _{CCI} BO V _{CCI} BO A57 IO15RSBOVO IO21RSBOVO A58 IO10RSBOVO IO13RSBOVO A59 IO07RSBOVO IO10RSBOVO A60 GAC0/IO04RSBOVO IO06RSBOVO A61 GAB1/IO03RSBOVO GAC1/IO05RSBOVO A62 V _{CC} V _{CC} A63 GAA1/IO01RSBOVO GAB0/IO02RSBOVO A64 NC NC B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3VO GAC2/IO71PDB3VO B3 GAC2/IO51PDB3VO GFA2/IO71PDB3VO B4 GFB2/IO50PDB3VO GFB2/IO70PSB3VO B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3VO GFC0/IO68NDB3VO B7 GEB1/IO45PDB3VO NC	A51	V _{CCI} B0	V _{CCI} B0
A54 IO24RSB0V0 IO29RSB0V0 A55 IO21RSB0V0 IO26RSB0V0 A56 V _{CCI} B0 V _{CCI} B0 A57 IO15RSB0V0 IO21RSB0V0 A58 IO10RSB0V0 IO13RSB0V0 A59 IO07RSB0V0 IO10RSB0V0 A60 GAC0/IO04RSB0V0 IO06RSB0V0 A61 GAB1/IO03RSB0V0 GAC1/IO05RSB0V0 A62 V _{CC} V _{CC} A63 GAA1/IO01RSB0V0 GAB0/IO02RSB0V0 A64 NC NC B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3V0 GAC2/IO74PDB3V0 B3 GAC2/IO51PDB3V0 GFB2/IO70PSB3V0 B4 GFB2/IO50PDB3V0 GFB2/IO70PSB3V0 B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 NC	A52	GBB0/IO27RSB0V0	GBC0/IO34RSB0V0
A55 IO21RSB0V0 IO26RSB0V0 A56 V _{CCI} B0 V _{CCI} B0 A57 IO15RSB0V0 IO21RSB0V0 A58 IO10RSB0V0 IO13RSB0V0 A59 IO07RSB0V0 IO10RSB0V0 A60 GAC0/IO04RSB0V0 IO06RSB0V0 A61 GAB1/IO03RSB0V0 GAC1/IO05RSB0V0 A62 V _{CC} V _{CC} A63 GAA1/IO01RSB0V0 GAB0/IO02RSB0V0 A64 NC NC B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3V0 GAC2/IO71PDB3V0 B3 GAC2/IO51PDB3V0 GFB2/IO70PSB3V0 B4 GFB2/IO50PDB3V0 GFB2/IO70PSB3V0 B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 NC	A53	GBC1/IO26RSB0V0	IO33RSB0V0
A56 V _{CCI} BO V _{CCI} BO A57 IO15RSB0V0 IO21RSB0V0 A58 IO10RSB0V0 IO13RSB0V0 A59 IO07RSB0V0 IO10RSB0V0 A60 GAC0/IO04RSB0V0 IO06RSB0V0 A61 GAB1/IO03RSB0V0 GAC1/IO05RSB0V0 A62 V _{CC} V _{CC} A63 GAA1/IO01RSB0V0 GAB0/IO02RSB0V0 A64 NC NC B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3V0 GAC2/IO74PDB3V0 B3 GAC2/IO51PDB3V0 GFA2/IO71PDB3V0 B4 GFB2/IO50PDB3V0 GFB2/IO70PSB3V0 B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 NC	A54	IO24RSB0V0	IO29RSB0V0
A57 IO15RSB0V0 IO21RSB0V0 A58 IO10RSB0V0 IO13RSB0V0 A59 IO07RSB0V0 IO10RSB0V0 A60 GAC0/IO04RSB0V0 IO06RSB0V0 A61 GAB1/IO03RSB0V0 GAC1/IO05RSB0V0 A62 V _{CC} V _{CC} A63 GAA1/IO01RSB0V0 GAB0/IO02RSB0V0 A64 NC NC B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3V0 GAC2/IO71PDB3V0 B3 GAC2/IO51PDB3V0 GFA2/IO71PDB3V0 B4 GFB2/IO50PDB3V0 GFB2/IO70PSB3V0 B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 NC	A55	IO21RSB0V0	IO26RSB0V0
A58 IO10RSB0V0 IO13RSB0V0 A59 IO07RSB0V0 IO10RSB0V0 A60 GAC0/IO04RSB0V0 IO06RSB0V0 A61 GAB1/IO03RSB0V0 GAC1/IO05RSB0V0 A62 V _{CC} V _{CC} A63 GAA1/IO01RSB0V0 GAB0/IO02RSB0V0 A64 NC NC B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3V0 GAC2/IO74PDB3V0 B3 GAC2/IO51PDB3V0 GFB2/IO70PSB3V0 B4 GFB2/IO50PDB3V0 GFB2/IO70PSB3V0 B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 NC	A56	V _{CCI} B0	V _{CCI} B0
A59 IO07RSB0V0 IO10RSB0V0 A60 GAC0/IO04RSB0V0 IO06RSB0V0 A61 GAB1/IO03RSB0V0 GAC1/IO05RSB0V0 A62 V _{CC} V _{CC} A63 GAA1/IO01RSB0V0 GAB0/IO02RSB0V0 A64 NC NC B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3V0 GAC2/IO74PDB3V0 B3 GAC2/IO51PDB3V0 GFA2/IO71PDB3V0 B4 GFB2/IO50PDB3V0 GFB2/IO70PSB3V0 B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 NC	A57	IO15RSB0V0	IO21RSB0V0
A60 GACO/IOO4RSBOVO IOO6RSBOVO A61 GAB1/IOO3RSBOVO GAC1/IOO5RSBOVO A62 V _{CC} V _{CC} A63 GAA1/IOO1RSBOVO GAB0/IOO2RSBOVO A64 NC NC B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3VO GAC2/IO74PDB3VO B3 GAC2/IO51PDB3VO GFA2/IO71PDB3VO B4 GFB2/IO50PDB3VO GFB2/IO70PSB3VO B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3VO GFC0/IO68NDB3VO B7 GEB1/IO45PDB3VO NC	A58	IO10RSB0V0	IO13RSB0V0
A61 GAB1/IO03RSB0V0 GAC1/IO05RSB0V0 A62 V _{CC} V _{CC} A63 GAA1/IO01RSB0V0 GAB0/IO02RSB0V0 A64 NC NC B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3V0 GAC2/IO74PDB3V0 B3 GAC2/IO51PDB3V0 GFA2/IO71PDB3V0 B4 GFB2/IO50PDB3V0 GFB2/IO70PSB3V0 B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 NC	A59	IO07RSB0V0	IO10RSB0V0
A62 V _{CC} V _{CC} A63 GAA1/IO01RSB0V0 GAB0/IO02RSB0V0 A64 NC NC B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3V0 GAC2/IO74PDB3V0 B3 GAC2/IO51PDB3V0 GFA2/IO71PDB3V0 B4 GFB2/IO50PDB3V0 GFB2/IO70PSB3V0 B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 NC	A60	GAC0/IO04RSB0V0	IO06RSB0V0
A63 GAA1/IO01RSB0V0 GAB0/IO02RSB0V0 A64 NC NC B1 VCOMPLA VCOMPLA B2 GAA2/IO52PDB3V0 GAC2/IO74PDB3V0 B3 GAC2/IO51PDB3V0 GFA2/IO71PDB3V0 B4 GFB2/IO50PDB3V0 GFB2/IO70PSB3V0 B5 VCC VCC B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 NC	A61	GAB1/IO03RSB0V0	GAC1/IO05RSB0V0
A64 NC NC B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3V0 GAC2/IO74PDB3V0 B3 GAC2/IO51PDB3V0 GFA2/IO71PDB3V0 B4 GFB2/IO50PDB3V0 GFB2/IO70PSB3V0 B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 NC	A62	V _{CC}	V _{CC}
B1 V _{COMPLA} V _{COMPLA} B2 GAA2/IO52PDB3V0 GAC2/IO74PDB3V0 B3 GAC2/IO51PDB3V0 GFA2/IO71PDB3V0 B4 GFB2/IO50PDB3V0 GFB2/IO70PSB3V0 B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 NC	A63	GAA1/IO01RSB0V0	GAB0/IO02RSB0V0
B2 GAA2/IO52PDB3V0 GAC2/IO74PDB3V0 B3 GAC2/IO51PDB3V0 GFA2/IO71PDB3V0 B4 GFB2/IO50PDB3V0 GFB2/IO70PSB3V0 B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 NC	A64	NC	NC
B3 GAC2/IO51PDB3V0 GFA2/IO71PDB3V0 B4 GFB2/IO50PDB3V0 GFB2/IO70PSB3V0 B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 NC	B1	V_{COMPLA}	V_{COMPLA}
B4 GFB2/IO50PDB3V0 GFB2/IO70PSB3V0 B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 NC	B2	GAA2/IO52PDB3V0	GAC2/IO74PDB3V0
B5 V _{CC} V _{CC} B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 NC	В3	GAC2/IO51PDB3V0	GFA2/IO71PDB3V0
B6 GFC0/IO49NDB3V0 GFC0/IO68NDB3V0 B7 GEB1/IO45PDB3V0 NC	B4	GFB2/IO50PDB3V0	GFB2/IO70PSB3V0
B7 GEB1/IO45PDB3V0 NC	B5	V _{CC}	V _{CC}
	В6	GFC0/IO49NDB3V0	GFC0/IO68NDB3V0
B8 V _{CCOSC} V _{CCOSC}	В7	GEB1/IO45PDB3V0	NC
	B8	V _{CCOSC}	V _{CCOSC}

180-Pin QFN		
Pin Number	AFS090 Function	AFS250 Function
В9	XTAL2	XTAL2
B10	GEA0/IO44NDB3V0	GFA0/IO66NDB3V0
B11	GEB2/IO42PDB3V0	IO60NDB3V0
B12	V _{CC}	V _{CC}
B12	V _{CC}	V _{CC}
B13	V_{CCNVM}	V_{CCNVM}
B14	V _{CC15A}	V _{CC15A}
B15	NCAP	NCAP
B16	VCC33N	VCC33N
B17	GNDAQ	GNDAQ
B18	AC0	AC0
B19	AT0	AT0
B20	AT1	AT1
B21	AV1	AV1
B22	AC2	AC2
B23	ATRTN1	ATRTN1
B24	AG3	AG3
B25	AV3	AV3
B26	AG4	AG4
B27	ATRTN2	ATRTN2
B28	NC	AC5
B29	V _{CC33A}	V _{CC33A}
B30	VAREF	VAREF
B31	PUB	PUB
B32	PTEM	PTEM
B33	GNDNVM	GNDNVM
B34	V _{CC}	V _{CC}
B34	V _{CC}	V _{CC}
B35	TCK	TCK
B36	TMS	TMS
B37	TRST	TRST
B38	GDB2/IO41PSB1V0	GDA2/IO55PSB1V0
B39	GDC0/IO38NDB1V0	GDB0/IO53NDB1V0
B40	V _{CCI} B1	V _{CCI} B1
B41	GCA1/IO36PDB1V0	GCA1/IO49PDB1V0
B42	GCC0/IO34NDB1V0	GCC0/IO47NDB1V0

180-Pin QFN		
Pin Number	AFS090 Function	AFS250 Function
B43	GCB2/IO33PSB1V0	GBC2/IO42PSB1V0
B44	V _{CC}	V _{CC}
B45	GBA2/IO31PDB1V0	GBA2/IO40PDB1V0
B46	GNDQ	GNDQ
B47	GBA1/IO30RSB0V0	GBA0/IO38RSB0V0
B48	GBB1/IO28RSB0V0	GBC1/IO35RSB0V0
B49	V _{CC}	V _{CC}
B50	GBC0/IO25RSB0V0	IO31RSB0V0
B51	IO23RSB0V0	IO28RSB0V0
B52	IO20RSB0V0	IO25RSB0V0
B53	V _{CC}	V _{CC}
B54	IO11RSB0V0	IO14RSB0V0
B55	IO08RSB0V0	IO11RSB0V0
B56	GAC1/IO05RSB0V0	IO08RSB0V0
B57	V _{CCI} B0	V _{CCI} B0
B58	GAB0/IO02RSB0V0	GAC0/IO04RSB0V0
B59	GAA0/IO00RSB0V0	GAA1/IO01RSB0V0
B60	V_{CCPLA}	V_{CCPLA}
C1	NC	NC
C2	NC	V _{CCI} B3
C3	GND	GND
C4	NC	GFC2/IO69PPB3V0
C5	GFC1/IO49PDB3V0	GFC1/IO68PDB3V0
C6	GFA0/IO47NPB3V0	GFB0/IO67NPB3V0
C7	V _{CCI} B3	NC
C8	GND	GND
С9	GEA1/IO44PDB3V0	GFA1/IO66PDB3V0
C10	GEA2/IO42NDB3V0	GEC2/IO60PDB3V0
C11	NC	GEA2/IO58PSB3V0
C12	NC	NC
C13	GND	GND
C14	NC	NC
C15	NC	NC
C16	GNDA	GNDA
C17	NC	NC
C18	NC	NC

180-Pin QFN		
Pin Number	AFS090 Function	AFS250 Function
C19	NC	NC
C20	NC	NC
C21	AG2	AG2
C22	NC	NC
C23	NC	NC
C24	NC	NC
C25	NC	AT5
C26	GNDAQ	GNDAQ
C27	NC	NC
C28	NC	NC
C29	NC	NC
C30	NC	NC
C31	GND	GND
C32	NC	NC
C33	NC	NC
C34	NC	NC
C35	GND	GND
C36	GDB0/IO39NPB1V0	GDA0/IO54NPB1V0
C37	GDA1/IO37NSB1V0	GDC0/IO52NSB1V0
C38	GCA0/IO36NDB1V0	GCA0/IO49NDB1V0
C39	GCB1/IO35PPB1V0	GCB1/IO48PPB1V0
C40	GND	GND
C41	GCA2/IO32NPB1V0	IO41NPB1V0
C42	GBB2/IO31NDB1V0	IO40NDB1V0
C43	NC	NC
C44	NC	GBA1/IO39RSB0V0
C45	NC	GBB0/IO36RSB0V0
C46	GND	GND
C47	NC	IO30RSB0V0
C48	IO22RSB0V0	IO27RSB0V0
C49	GND	GND
C50	IO13RSB0V0	IO16RSB0V0
C51	IO09RSB0V0	IO12RSB0V0
C52	IO06RSB0V0	IO09RSB0V0
C53	GND	GND
C54	NC	GAB1/IO03RSB0V0

	180-Pin QFN		
Pin Number	AFS090 Function	AFS250 Function	
C55	NC	GAA0/IO00RSB0V0	
C56	NC	NC	
D1	NC	NC	
D2	NC	NC	
D3	NC	NC	
D4	NC	NC	

208-Pin PQFP

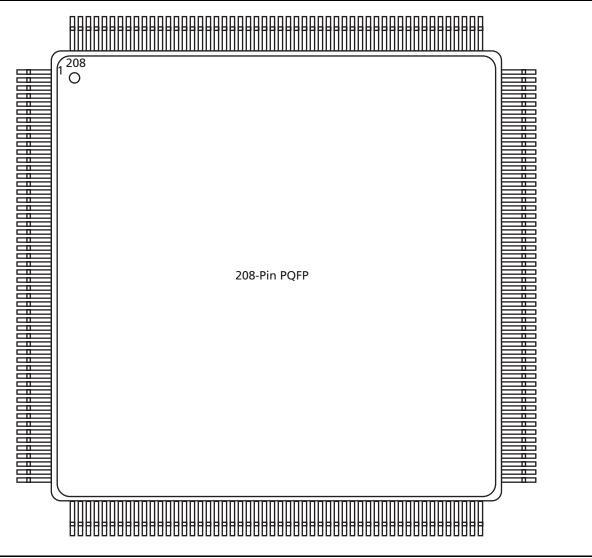


Figure 4-3 • 208-Pin PQFP (top view)

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/default.aspx.

Advanced v1.4 4-7

208-Pin PQFP		
Pin Number	AFS250 Function	AFS600 Function
1	V_{CCPLA}	V_{CCPLA}
2	V_{COMPLA}	V _{COMPLA}
3	GNDQ	GAA2/IO85PDB4V0
4	V _{CCI} B3	IO85NDB4V0
5	GAA2/IO76PDB3V0	GAB2/IO84PDB4V0
6	IO76NDB3V0	IO84NDB4V0
7	GAB2/IO75PDB3V0	GAC2/IO83PDB4V0
8	IO75NDB3V0	IO83NDB4V0
9	NC	IO77PDB4V0
10	NC	IO77NDB4V0
11	V _{CC}	IO76PDB4V0
12	GND	IO76NDB4V0
13	V _{CCI} B3	V _{CC}
14	IO72PDB3V0	GND
15	IO72NDB3V0	V _{CCI} B4
16	GFA2/IO71PDB3V0	GFA2/IO75PDB4V0
17	IO71NDB3V0	IO75NDB4V0
18	GFB2/IO70PDB3V0	GFC2/IO73PDB4V0
19	IO70NDB3V0	IO73NDB4V0
20	GFC2/IO69PDB3V0	V _{CCOSC}
21	IO69NDB3V0	XTAL1
22	V _{CC}	XTAL2
23	GND	GNDOSC
24	V _{CCI} B3	GFC1/IO72PDB4V0
25	GFC1/IO68PDB3V0	GFC0/IO72NDB4V0
26	GFC0/IO68NDB3V0	GFB1/IO71PDB4V0
27	GFB1/IO67PDB3V0	GFB0/IO71NDB4V0
28	GFB0/IO67NDB3V0	GFA1/IO70PDB4V0
29	V _{CCOSC}	GFA0/IO70NDB4V0
30	XTAL1	IO69PDB4V0
31	XTAL2	IO69NDB4V0
32	GNDOSC	V _{CC}
33	GEB1/IO62PDB3V0	GND
34	GEB0/IO62NDB3V0	V _{CCI} B4
35	GEA1/IO61PDB3V0	GEC1/IO63PDB4V0
36	GEA0/IO61NDB3V0	GEC0/IO63NDB4V0

208-Pin PQFP		
Pin Number	AFS250 Function	AFS600 Function
37	GEC2/IO60PDB3V0	GEB1/IO62PDB4V0
38	IO60NDB3V0	GEB0/IO62NDB4V0
39	GND	GEA1/IO61PDB4V0
40	V _{CCI} B3	GEA0/IO61NDB4V0
41	GEB2/IO59PDB3V0	GEC2/IO60PDB4V0
42	IO59NDB3V0	IO60NDB4V0
43	GEA2/IO58PDB3V0	V _{CCI} B4
44	IO58NDB3V0	GNDQ
45	V _{CC}	V _{CC}
45	V _{CC}	V _{CC}
46	V _{CCNVM}	V _{CCNVM}
47	GNDNVM	GNDNVM
48	GND	GND
49	V _{CC15A}	V _{CC15A}
50	PCAP	PCAP
51	NCAP	NCAP
52	V _{CC33PMP}	V _{CC33PMP}
53	VCC33N	VCC33N
54	GNDA	GNDA
55	GNDAQ	GNDAQ
56	NC	AV0
57	NC	AC0
58	NC	AG0
59	NC	AT0
60	NC	ATRTN0
61	NC	AT1
62	NC	AG1
63	NC	AC1
64	NC	AV1
65	AV0	AV2
66	AC0	AC2
67	AG0	AG2
68	AT0	AT2
69	ATRTN0	ATRTN1
70	AT1	AT3
71	AG1	AG3

208-Pin PQFP		
Pin Number AFS250 Function AFS600 Function		
72	AC1	AC3
73	AV1	AV3
74	AV2	AV4
75	AC2	AC4
76	AG2	AG4
77	AT2	AT4
78	ATRTN1	ATRTN2
79	AT3	AT5
80	AG3	AG5
81	AC3	AC5
82	AV3	AV5
83	AV4	AV6
84	AC4	AC6
85	AG4	AG6
86	AT4	AT6
87	ATRTN2	ATRTN3
88	AT5	AT7
89	AG5	AG7
90	AC5	AC7
91	AV5	AV7
92	NC	AV8
93	NC	AC8
94	NC	AG8
95	NC	AT8
96	NC	ATRTN4
97	NC	AT9
98	NC	AG9
99	NC	AC9
100	NC	AV9
101	GNDAQ	GNDAQ
102	V _{CC33A}	V _{CC33A}
103	ADCGNDREF	ADCGNDREF
104	VAREF	VAREF
105	PUB	PUB
106	V _{CC33A}	V _{CC33A}
107	GNDA	GNDA

208-Pin PQFP		
Pin Number	AFS250 Function	AFS600 Function
108	PTEM	PTEM
109	PTBASE	PTBASE
110	GNDNVM	GNDNVM
111	V_{CCNVM}	V_{CCNVM}
112	V _{CC}	V _{CC}
112	V _{CC}	V _{CC}
113	V _{PUMP}	V_{PUMP}
114	GNDQ	NC
115	V _{CCI} B1	TCK
116	TCK	TDI
117	TDI	TMS
118	TMS	TDO
119	TDO	TRST
120	TRST	V_{JTAG}
121	V_{JTAG}	IO57NDB2V0
122	IO57NDB1V0	GDC2/IO57PDB2V0
123	GDC2/IO57PDB1V0	IO56NDB2V0
124	IO56NDB1V0	GDB2/IO56PDB2V0
125	GDB2/IO56PDB1V0	IO55NDB2V0
126	V _{CCI} B1	GDA2/IO55PDB2V0
127	GND	GDA0/IO54NDB2V0
128	IO55NDB1V0	GDA1/IO54PDB2V0
129	GDA2/IO55PDB1V0	V _{CCI} B2
130	GDA0/IO54NDB1V0	GND
131	GDA1/IO54PDB1V0	V _{CC}
132	GDB0/IO53NDB1V0	GCA0/IO45NDB2V0
133	GDB1/IO53PDB1V0	GCA1/IO45PDB2V0
134	GDC0/IO52NDB1V0	GCB0/IO44NDB2V0
135	GDC1/IO52PDB1V0	GCB1/IO44PDB2V0
136	IO51NSB1V0	GCC0/IO43NDB2V0
137	V _{CCI} B1	GCC1/IO43PDB2V0
138	GND	IO42NDB2V0
139	V _{CC}	IO42PDB2V0
140	IO50NDB1V0	IO41NDB2V0
141	IO50PDB1V0	GCC2/IO41PDB2V0
142	GCA0/IO49NDB1V0	V _{CCI} B2

208-Pin PQFP		
Pin Number	AFS250 Function	AFS600 Function
143	GCA1/IO49PDB1V0	GND
144	GCB0/IO48NDB1V0	V _{CC}
145	GCB1/IO48PDB1V0	IO40NDB2V0
146	GCC0/IO47NDB1V0	GCB2/IO40PDB2V0
147	GCC1/IO47PDB1V0	IO39NDB2V0
148	IO42NDB1V0	GCA2/IO39PDB2V0
149	GBC2/IO42PDB1V0	IO31NDB2V0
150	V _{CCI} B1	GBB2/IO31PDB2V0
151	GND	IO30NDB2V0
152	V _{CC}	GBA2/IO30PDB2V0
153	IO41NDB1V0	V _{CCI} B2
154	GBB2/IO41PDB1V0	GNDQ
155	IO40NDB1V0	V_{COMPLB}
156	GBA2/IO40PDB1V0	V_{CCPLB}
157	GBA1/IO39RSB0V0	V _{CCI} B1
158	GBA0/IO38RSB0V0	GNDQ
159	GBB1/IO37RSB0V0	GBB1/IO27PPB1V1
160	GBB0/IO36RSB0V0	GBA1/IO28PPB1V1
161	GBC1/IO35RSB0V0	GBB0/IO27NPB1V1
162	V _{CCI} B0	GBA0/IO28NPB1V1
163	GND	V _{CCI} B1
164	V _{CC}	GND
165	GBC0/IO34RSB0V0	V _{CC}
166	IO33RSB0V0	GBC1/IO26PDB1V1
167	IO32RSB0V0	GBC0/IO26NDB1V1
168	IO31RSB0V0	IO24PPB1V1
169	IO30RSB0V0	IO23PPB1V1
170	IO29RSB0V0	IO24NPB1V1
171	IO28RSB0V0	IO23NPB1V1
172	IO27RSB0V0	IO22PPB1V0
173	IO26RSB0V0	IO21PPB1V0
174	IO25RSB0V0	IO22NPB1V0
175	V _{CCI} B0	IO21NPB1V0
176	GND	IO20PSB1V0
177	V _{CC}	IO19PSB1V0
178	IO24RSB0V0	IO14NSB0V1

208-Pin PQFP		
Pin Number	AFS250 Function	AFS600 Function
179	IO23RSB0V0	IO12PDB0V1
180	IO22RSB0V0	IO12NDB0V1
181	IO21RSB0V0	V _{CCI} B0
182	IO20RSB0V0	GND
183	IO19RSB0V0	V _{CC}
184	IO18RSB0V0	IO10PPB0V1
185	IO17RSB0V0	IO09PPB0V1
186	IO16RSB0V0	IO10NPB0V1
187	IO15RSB0V0	IO09NPB0V1
188	V _{CCI} B0	IO08PPB0V1
189	GND	IO07PPB0V1
190	V _{CC}	IO08NPB0V1
191	IO14RSB0V0	IO07NPB0V1
192	IO13RSB0V0	IO06PPB0V0
193	IO12RSB0V0	IO05PPB0V0
194	IO11RSB0V0	IO06NPB0V0
195	IO10RSB0V0	IO04PPB0V0
196	IO09RSB0V0	IO05NPB0V0
197	IO08RSB0V0	IO04NPB0V0
198	IO07RSB0V0	GAC1/IO03PDB0V0
199	IO06RSB0V0	GAC0/IO03NDB0V0
200	GAC1/IO05RSB0V0	V _{CCI} B0
201	V _{CCI} B0	GND
202	GND	V _{CC}
203	V _{CC}	GAB1/IO02PDB0V0
204	GAC0/IO04RSB0V0	GAB0/IO02NDB0V0
205	GAB1/IO03RSB0V0	GAA1/IO01PDB0V0
206	GAB0/IO02RSB0V0	GAA0/IO01NDB0V0
207	GAA1/IO01RSB0V0	GNDQ
208	GAA0/IO00RSB0V0	V _{CCI} B0

256-Pin FBGA

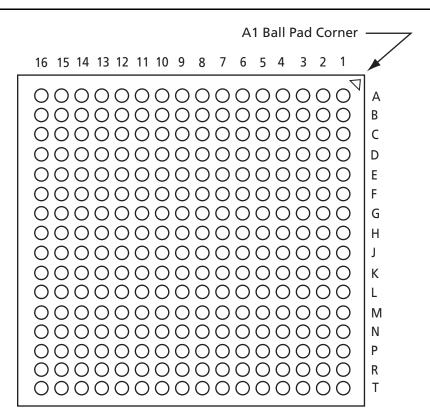


Figure 4-4 • 256-Pin FBGA (Bottom View)

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/default.aspx.

256-Pin FBGA				
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function
A1	GND	GND	GND	GND
A2	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0
А3	GAB0/IO02RSB0V0	GAA0/IO00RSB0V0	GAA0/IO01NDB0V0	GAA0/IO01NDB0V0
A4	GAB1/IO03RSB0V0	GAA1/IO01RSB0V0	GAA1/IO01PDB0V0	GAA1/IO01PDB0V0
A5	GND	GND	GND	GND
A6	IO07RSB0V0	IO11RSB0V0	IO10PDB0V1	IO07PDB0V1
A7	IO10RSB0V0	IO14RSB0V0	IO12PDB0V1	IO13PDB0V2
A8	IO11RSB0V0	IO15RSB0V0	IO12NDB0V1	IO13NDB0V2
A9	IO16RSB0V0	IO24RSB0V0	IO22NDB1V0	IO24NDB1V0
A10	IO17RSB0V0	IO25RSB0V0	IO22PDB1V0	IO24PDB1V0
A11	IO18RSB0V0	IO26RSB0V0	IO24NDB1V1	IO29NDB1V1
A12	GND	GND	GND	GND
A13	GBC0/IO25RSB0V0	GBA0/IO38RSB0V0	GBA0/IO28NDB1V1	GBA0/IO42NDB1V2
A14	GBA0/IO29RSB0V0	IO32RSB0V0	IO29NDB1V1	IO43NDB1V2
A15	V _{CCI} B0	V _{CCI} B0	V _{CCI} B1	V _{CCI} B1
A16	GND	GND	GND	GND
B1	V _{COMPLA}	V_{COMPLA}	V_{COMPLA}	V_{COMPLA}
B2	V_{CCPLA}	V_{CCPLA}	V_{CCPLA}	V_{CCPLA}
В3	GAA0/IO00RSB0V0	IO07RSB0V0	IO00NDB0V0	IO00NDB0V0
B4	GAA1/IO01RSB0V0	IO06RSB0V0	IO00PDB0V0	IO00PDB0V0
B5	NC	GAB1/IO03RSB0V0	GAB1/IO02PPB0V0	GAB1/IO02PPB0V0
В6	IO06RSB0V0	IO10RSB0V0	IO10NDB0V1	IO07NDB0V1
В7	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0
B8	IO12RSB0V0	IO16RSB0V0	IO18NDB1V0	IO22NDB1V0
В9	IO13RSB0V0	IO17RSB0V0	IO18PDB1V0	IO22PDB1V0
B10	V _{CCI} B0	V _{CCI} B0	V _{CCI} B1	V _{CCI} B1
B11	IO19RSB0V0	IO27RSB0V0	IO24PDB1V1	IO29PDB1V1
B12	GBB0/IO27RSB0V0	GBC0/IO34RSB0V0	GBC0/IO26NPB1V1	GBC0/IO40NPB1V2
B13	GBC1/IO26RSB0V0	GBA1/IO39RSB0V0	GBA1/IO28PDB1V1	GBA1/IO42PDB1V2
B14	GBA1/IO30RSB0V0	IO33RSB0V0	IO29PDB1V1	IO43PDB1V2
B15	NC	NC	V_{CCPLB}	V_{CCPLB}
B16	NC	NC	V_{COMPLB}	V_{COMPLB}
C1	V _{CCI} B3	V _{CCI} B3	V _{CCI} B4	V _{CCI} B4
C2	GND	GND	GND	GND
C3	V _{CCI} B3	V _{CCI} B3	V _{CCI} B4	V _{CCI} B4
C4	NC	NC	V _{CCI} B0	V _{CCI} B0
C5	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0	V _{CCI} B0
C6	GAC1/IO05RSB0V0	GAC1/IO05RSB0V0	GAC1/IO03PDB0V0	GAC1/IO03PDB0V0

256-Pin FBGA				
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function
C7	IO09RSB0V0	IO12RSB0V0	IO06NDB0V0	IO09NDB0V1
C8	IO14RSB0V0	IO22RSB0V0	IO16PDB1V0	IO23PDB1V0
C9	IO15RSB0V0	IO23RSB0V0	IO16NDB1V0	IO23NDB1V0
C10	IO22RSB0V0	IO30RSB0V0	IO25NDB1V1	IO31NDB1V1
C11	IO20RSB0V0	IO31RSB0V0	IO25PDB1V1	IO31PDB1V1
C12	V _{CCI} B0	V _{CCI} B0	V _{CCI} B1	V _{CCI} B1
C13	GBB1/IO28RSB0V0	GBC1/IO35RSB0V0	GBC1/IO26PPB1V1	GBC1/IO40PPB1V2
C14	V _{CCI} B1	V _{CCI} B1	V _{CCI} B2	V _{CCI} B2
C15	GND	GND	GND	GND
C16	V _{CCI} B1	V _{CCI} B1	V _{CCI} B2	V _{CCI} B2
D1	GFC2/IO50NPB3V0	IO75NDB3V0	IO84NDB4V0	IO124NDB4V0
D2	GFA2/IO51NDB3V0	GAB2/IO75PDB3V0	GAB2/IO84PDB4V0	GAB2/IO124PDB4V0
D3	GAC2/IO51PDB3V0	IO76NDB3V0	IO85NDB4V0	IO125NDB4V0
D4	GAA2/IO52PDB3V0	GAA2/IO76PDB3V0	GAA2/IO85PDB4V0	GAA2/IO125PDB4V0
D5	GAB2/IO52NDB3V0	GAB0/IO02RSB0V0	GAB0/IO02NPB0V0	GAB0/IO02NPB0V0
D6	GAC0/IO04RSB0V0	GAC0/IO04RSB0V0	GAC0/IO03NDB0V0	GAC0/IO03NDB0V0
D7	IO08RSB0V0	IO13RSB0V0	IO06PDB0V0	IO09PDB0V1
D8	NC	IO20RSB0V0	IO14NDB0V1	IO15NDB0V2
D9	NC	IO21RSB0V0	IO14PDB0V1	IO15PDB0V2
D10	IO21RSB0V0	IO28RSB0V0	IO23PDB1V1	IO37PDB1V2
D11	IO23RSB0V0	GBB0/IO36RSB0V0	GBB0/IO27NDB1V1	GBB0/IO41NDB1V2
D12	NC	NC	V _{CCI} B1	V _{CCI} B1
D13	GBA2/IO31PDB1V0	GBA2/IO40PDB1V0	GBA2/IO30PDB2V0	GBA2/IO44PDB2V0
D14	GBB2/IO31NDB1V0	IO40NDB1V0	IO30NDB2V0	IO44NDB2V0
D15	GBC2/IO32PDB1V0	GBB2/IO41PDB1V0	GBB2/IO31PDB2V0	GBB2/IO45PDB2V0
D16	GCA2/IO32NDB1V0	IO41NDB1V0	IO31NDB2V0	IO45NDB2V0
E1	GND	GND	GND	GND
E2	GFB0/IO48NPB3V0	IO73NDB3V0	IO81NDB4V0	IO118NDB4V0
E3	GFB2/IO50PPB3V0	IO73PDB3V0	IO81PDB4V0	IO118PDB4V0
E4	V _{CCI} B3	V _{CCI} B3	V _{CCI} B4	V _{CCI} B4
E5	NC	IO74NPB3V0	IO83NPB4V0	IO123NPB4V0
E6	NC	IO08RSB0V0	IO04NPB0V0	IO05NPB0V1
E7	GND	GND	GND	GND
E8	NC	IO18RSB0V0	IO08PDB0V1	IO11PDB0V1
E9	NC	NC	IO20NDB1V0	IO27NDB1V1
E10	GND	GND	GND	GND
E11	IO24RSB0V0	GBB1/IO37RSB0V0	GBB1/IO27PDB1V1	GBB1/IO41PDB1V2
E12	NC	IO50PPB1V0	IO33PSB2V0	IO48PSB2V0

256-Pin FBGA				
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function
E13	V _{CCI} B1	V _{CCI} B1	V _{CCI} B2	V _{CCI} B2
E14	GCC2/IO33NDB1V0	IO42NDB1V0	IO32NDB2V0	IO46NDB2V0
E15	GCB2/IO33PDB1V0	GBC2/IO42PDB1V0	GBC2/IO32PDB2V0	GBC2/IO46PDB2V0
E16	GND	GND	GND	GND
F1	NC	NC	IO79NDB4V0	IO111NDB4V0
F2	NC	NC	IO79PDB4V0	IO111PDB4V0
F3	GFB1/IO48PPB3V0	IO72NDB3V0	IO76NDB4V0	IO112NDB4V0
F4	GFC0/IO49NDB3V0	IO72PDB3V0	IO76PDB4V0	IO112PDB4V0
F5	NC	NC	IO82PSB4V0	IO120PSB4V0
F6	GFC1/IO49PDB3V0	GAC2/IO74PPB3V0	GAC2/IO83PPB4V0	GAC2/IO123PPB4V0
F7	NC	IO09RSB0V0	IO04PPB0V0	IO05PPB0V1
F8	NC	IO19RSB0V0	IO08NDB0V1	IO11NDB0V1
F9	NC	NC	IO20PDB1V0	IO27PDB1V1
F10	NC	IO29RSB0V0	IO23NDB1V1	IO37NDB1V2
F11	NC	IO43NDB1V0	IO36NDB2V0	IO50NDB2V0
F12	NC	IO43PDB1V0	IO36PDB2V0	IO50PDB2V0
F13	NC	IO44NDB1V0	IO39NDB2V0	IO59NDB2V0
F14	NC	GCA2/IO44PDB1V0	GCA2/IO39PDB2V0	GCA2/IO59PDB2V0
F15	GCC1/IO34PDB1V0	GCB2/IO45PDB1V0	GCB2/IO40PDB2V0	GCB2/IO60PDB2V0
F16	GCC0/IO34NDB1V0	IO45NDB1V0	IO40NDB2V0	IO60NDB2V0
G1	GEC0/IO46NPB3V0	IO70NPB3V0	IO74NPB4V0	IO109NPB4V0
G2	V _{CCI} B3	V _{CCI} B3	V _{CCI} B4	V _{CCI} B4
G3	GEC1/IO46PPB3V0	GFB2/IO70PPB3V0	GFB2/IO74PPB4V0	GFB2/IO109PPB4V0
G4	GFA1/IO47PDB3V0	GFA2/IO71PDB3V0	GFA2/IO75PDB4V0	GFA2/IO110PDB4V0
G5	GND	GND	GND	GND
G6	GFA0/IO47NDB3V0	IO71NDB3V0	IO75NDB4V0	IO110NDB4V0
G7	GND	GND	GND	GND
G8	V _{CC}	V _{CC}	V _{CC}	V _{CC}
G9	GND	GND	GND	GND
G10	V _{CC}	V _{CC}	V _{CC}	V _{CC}
G11	GDA1/IO37NDB1V0	GCC0/IO47NDB1V0	GCC0/IO43NDB2V0	GCC0/IO62NDB2V0
G12	GND	GND	GND	GND
G13	IO37PDB1V0	GCC1/IO47PDB1V0	GCC1/IO43PDB2V0	GCC1/IO62PDB2V0
G14	GCB0/IO35NPB1V0	IO46NPB1V0	IO41NPB2V0	IO61NPB2V0
G15	V _{CCI} B1	V _{CCI} B1	V _{CCI} B2	V _{CCI} B2
G16	GCB1/IO35PPB1V0	GCC2/IO46PPB1V0	GCC2/IO41PPB2V0	GCC2/IO61PPB2V0
H1	GEB1/IO45PDB3V0	GFC2/IO69PDB3V0	GFC2/IO73PDB4V0	GFC2/IO108PDB4V0
H2	GEB0/IO45NDB3V0	IO69NDB3V0	IO73NDB4V0	IO108NDB4V0

256-Pin FBGA				
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function
Н3	XTAL2	XTAL2	XTAL2	XTAL2
H4	XTAL1	XTAL1	XTAL1	XTAL1
H5	GNDOSC	GNDOSC	GNDOSC	GNDOSC
H6	V _{ccosc}	V _{CCOSC}	V _{CCOSC}	V _{CCOSC}
H7	V _{CC}	V _{CC}	V _{CC}	V _{CC}
Н8	GND	GND	GND	GND
Н9	V _{CC}	V _{CC}	V _{CC}	V _{CC}
H10	GND	GND	GND	GND
H11	GDC0/IO38NDB1V0	IO51NDB1V0	IO47NDB2V0	IO69NDB2V0
H12	GDC1/IO38PDB1V0	IO51PDB1V0	IO47PDB2V0	IO69PDB2V0
H13	GDB1/IO39PDB1V0	GCA1/IO49PDB1V0	GCA1/IO45PDB2V0	GCA1/IO64PDB2V0
H14	GDB0/IO39NDB1V0	GCA0/IO49NDB1V0	GCA0/IO45NDB2V0	GCA0/IO64NDB2V0
H15	GCA0/IO36NDB1V0	GCB0/IO48NDB1V0	GCB0/IO44NDB2V0	GCB0/IO63NDB2V0
H16	GCA1/IO36PDB1V0	GCB1/IO48PDB1V0	GCB1/IO44PDB2V0	GCB1/IO63PDB2V0
J1	GEA0/IO44NDB3V0	GFA0/IO66NDB3V0	GFA0/IO70NDB4V0	GFA0/IO105NDB4V0
J2	GEA1/IO44PDB3V0	GFA1/IO66PDB3V0	GFA1/IO70PDB4V0	GFA1/IO105PDB4V0
J3	IO43NDB3V0	GFB0/IO67NDB3V0	GFB0/IO71NDB4V0	GFB0/IO106NDB4V0
J4	GEC2/IO43PDB3V0	GFB1/IO67PDB3V0	GFB1/IO71PDB4V0	GFB1/IO106PDB4V0
J5	NC	GFC0/IO68NDB3V0	GFC0/IO72NDB4V0	GFC0/IO107NDB4V0
J6	NC	GFC1/IO68PDB3V0	GFC1/IO72PDB4V0	GFC1/IO107PDB4V0
J7	GND	GND	GND	GND
J8	V _{CC}	V _{CC}	V _{CC}	V _{CC}
J9	GND	GND	GND	GND
J10	V _{CC}	V _{CC}	V _{CC}	V _{CC}
J11	GDC2/IO41NPB1V0	IO56NPB1V0	IO56NPB2V0	IO83NPB2V0
J12	NC	GDB0/IO53NPB1V0	GDB0/IO53NPB2V0	GDB0/IO80NPB2V0
J13	NC	GDA1/IO54PDB1V0	GDA1/IO54PDB2V0	GDA1/IO81PDB2V0
J14	GDA0/IO40PDB1V0	GDC1/IO52PPB1V0	GDC1/IO52PPB2V0	GDC1/IO79PPB2V0
J15	NC	IO50NPB1V0	IO51NSB2V0	IO77NSB2V0
J16	GDA2/IO40NDB1V0	GDC0/IO52NPB1V0	GDC0/IO52NPB2V0	GDC0/IO79NPB2V0
K1	NC	IO65NPB3V0	IO67NPB4V0	IO92NPB4V0
K2	V _{CCI} B3	V _{CCI} B3	V _{CCI} B4	V _{CCI} B4
K3	NC	IO65PPB3V0	IO67PPB4V0	IO92PPB4V0
K4	NC	IO64PDB3V0	IO65PDB4V0	IO96PDB4V0
K5	GND	GND	GND	GND
K6	NC	IO64NDB3V0	IO65NDB4V0	IO96NDB4V0
K7	V _{CC}	V _{CC}	V _{CC}	V _{CC}
K8	GND	GND	GND	GND

256-Pin FBGA				
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function
K9	V _{CC}	V _{CC}	V _{CC}	V _{CC}
K10	GND	GND	GND	GND
K11	NC	GDC2/IO57PPB1V0	GDC2/IO57PPB2V0	GDC2/IO84PPB2V0
K12	GND	GND	GND	GND
K13	NC	GDA0/IO54NDB1V0	GDA0/IO54NDB2V0	GDA0/IO81NDB2V0
K14	NC	GDA2/IO55PPB1V0	GDA2/IO55PPB2V0	GDA2/IO82PPB2V0
K15	V _{CCI} B1	V _{CCI} B1	V _{CCI} B2	V _{CCI} B2
K16	NC	GDB1/IO53PPB1V0	GDB1/IO53PPB2V0	GDB1/IO80PPB2V0
L1	NC	GEC 1/IO63PDB3V0	GEC 1/IO63PDB4V0	GEC1/IO90PDB4V0
L2	NC	GEC0/IO63NDB3V0	GEC0/IO63NDB4V0	GEC0/IO90NDB4V0
L3	NC	GEB1/IO62PDB3V0	GEB1/IO62PDB4V0	GEB1/IO89PDB4V0
L4	NC	GEB0/IO62NDB3V0	GEB0/IO62NDB4V0	GEB0/IO89NDB4V0
L5	NC	IO60NDB3V0	IO60NDB4V0	IO87NDB4V0
L6	NC	GEC2/IO60PDB3V0	GEC2/IO60PDB4V0	GEC2/IO87PDB4V0
L7	GNDA	GNDA	GNDA	GNDA
L8	AC0	AC0	AC2	AC2
L9	AV2	AV2	AV4	AV4
L10	AC3	AC3	AC5	AC5
L11	PTEM	PTEM	PTEM	PTEM
L12	TDO	TDO	TDO	TDO
L13	V_{JTAG}	V_{JTAG}	V_{JTAG}	V_{JTAG}
L14	NC	IO57NPB1V0	IO57NPB2V0	IO84NPB2V0
L15	GDB2/IO41PPB1V0	GDB2/IO56PPB1V0	GDB2/IO56PPB2V0	GDB2/IO83PPB2V0
L16	NC	IO55NPB1V0	IO55NPB2V0	IO82NPB2V0
M1	GND	GND	GND	GND
M2	NC	GEA1/IO61PDB3V0	GEA1/IO61PDB4V0	GEA1/IO88PDB4V0
M3	NC	GEA0/IO61NDB3V0	GEA0/IO61NDB4V0	GEA0/IO88NDB4V0
M4	V _{CCI} B3	V _{CCI} B3	V _{CCI} B4	V _{CCI} B4
M5	NC	IO58NPB3V0	IO58NPB4V0	IO85NPB4V0
M6	NC	NC	AV0	AV0
M7	NC	NC	AC1	AC1
M8	AG1	AG1	AG3	AG3
M9	AC2	AC2	AC4	AC4
M10	AC4	AC4	AC6	AC6
M11	NC	AG5	AG7	AG7
M12	V _{PUMP}	V _{PUMP}	V _{PUMP}	V_{PUMP}
M13	V _{CCI} B1	V _{CCI} B1	V _{CCI} B2	V _{CCI} B2
M14	TMS	TMS	TMS	TMS

256-Pin FBGA				
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function
M15	TRST	TRST	TRST	TRST
M16	GND	GND	GND	GND
N1	GEB2/IO42PDB3V0	GEB2/IO59PDB3V0	GEB2/IO59PDB4V0	GEB2/IO86PDB4V0
N2	GEA2/IO42NDB3V0	IO59NDB3V0	IO59NDB4V0	IO86NDB4V0
N3	NC	GEA2/IO58PPB3V0	GEA2/IO58PPB4V0	GEA2/IO85PPB4V0
N4	V _{CC33PMP}	V _{CC33PMP}	V _{CC33PMP}	V _{CC33PMP}
N5	V _{CC15A}	V _{CC15A}	V _{CC15A}	V _{CC15A}
N6	NC	NC	AG0	AG0
N7	AC1	AC1	AC3	AC3
N8	AG3	AG3	AG5	AG5
N9	AV3	AV3	AV5	AV5
N10	AG4	AG4	AG6	AG6
N11	NC	NC	AC8	AC8
N12	GNDA	GNDA	GNDA	GNDA
N13	V _{CC33A}	V _{CC33A}	V _{CC33A}	V _{CC33A}
N14	V_{CCNVM}	V_{CCNVM}	V _{CCNVM}	V_{CCNVM}
N15	TCK	TCK	TCK	TCK
N16	TDI	TDI	TDI	TDI
P1	V_{CCNVM}	V_{CCNVM}	V _{CCNVM}	V_{CCNVM}
P2	GNDNVM	GNDNVM	GNDNVM	GNDNVM
P3	GNDA	GNDA	GNDA	GNDA
P4	NC	NC	AC0	AC0
P5	NC	NC	AG1	AG1
P6	NC	NC	AV1	AV1
P7	AG0	AG0	AG2	AG2
P8	AG2	AG2	AG4	AG4
P9	GNDA	GNDA	GNDA	GNDA
P10	NC	AC5	AC7	AC7
P11	NC	NC	AV8	AV8
P12	NC	NC	AG8	AG8
P13	NC	NC	AV9	AV9
P14	ADCGNDREF	ADCGNDREF	ADCGNDREF	ADCGNDREF
P15	PTBASE	PTBASE	PTBASE	PTBASE
P16	GNDNVM	GNDNVM	GNDNVM	GNDNVM
R1	V _{CCI} B3	V _{CCI} B3	V _{CCI} B4	V _{CCI} B4
R2	PCAP	PCAP	PCAP	PCAP
R3	NC	NC	AT1	AT1
R4	NC	NC	AT0	AT0

	256-Pin FBGA			
Pin Number	AFS090 Function	AFS250 Function	AFS600 Function	AFS1500 Function
R5	AV0	AV0	AV2	AV2
R6	AT0	AT0	AT2	AT2
R7	AV1	AV1	AV3	AV3
R8	AT3	AT3	AT5	AT5
R9	AV4	AV4	AV6	AV6
R10	NC	AT5	AT7	AT7
R11	NC	AV5	AV7	AV7
R12	NC	NC	AT9	AT9
R13	NC	NC	AG9	AG9
R14	NC	NC	AC9	AC9
R15	PUB	PUB	PUB	PUB
R16	V _{CCI} B1	V _{CCI} B1	V _{CCI} B2	V _{CCI} B2
T1	GND	GND	GND	GND
T2	NCAP	NCAP	NCAP	NCAP
T3	VCC33N	VCC33N	VCC33N	VCC33N
T4	NC	NC	ATRTN0	ATRTN0
T5	AT1	AT1	AT3	AT3
T6	ATRTN0	ATRTN0	ATRTN1	ATRTN1
T7	AT2	AT2	AT4	AT4
T8	ATRTN1	ATRTN1	ATRTN2	ATRTN2
T9	AT4	AT4	AT6	AT6
T10	ATRTN2	ATRTN2	ATRTN3	ATRTN3
T11	NC	NC	AT8	AT8
T12	NC	NC	ATRTN4	ATRTN4
T13	GNDA	GNDA	GNDA	GNDA
T14	V _{CC33A}	V _{CC33A}	V _{CC33A}	V _{CC33A}
T15	VAREF	VAREF	VAREF	VAREF
T16	GND	GND	GND	GND

484-Pin FBGA

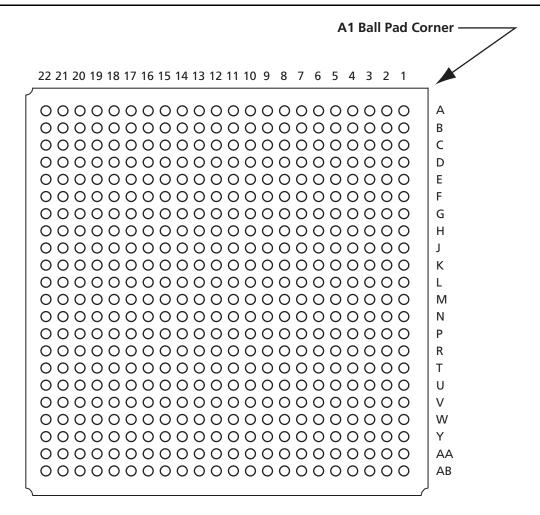


Figure 4-5 • 484-Pin FBGA (Bottom View)

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/default.aspx.

Advanced v1.4 4-19

484-Pin FBGA			
Pin Number	AFS600 Function	AFS1500 Function	
A1	GND	GND	
A2	V _{CC}	NC	
А3	GAA1/IO01PDB0V0	GAA1/IO01PDB0V0	
A4	GAB0/IO02NDB0V0	GAB0/IO02NDB0V0	
A5	GAB1/IO02PDB0V0	GAB1/IO02PDB0V0	
A6	IO07NDB0V1	IO07NDB0V1	
A7	IO07PDB0V1	IO07PDB0V1	
A8	IO10PDB0V1	IO09PDB0V1	
A9	IO14NDB0V1	IO13NDB0V2	
A10	IO14PDB0V1	IO13PDB0V2	
A11	IO17PDB1V0	IO24PDB1V0	
A12	IO18PDB1V0	IO26PDB1V0	
A13	IO19NDB1V0	IO27NDB1V1	
A14	IO19PDB1V0	IO27PDB1V1	
A15	IO24NDB1V1	IO35NDB1V2	
A16	IO24PDB1V1	IO35PDB1V2	
A17	GBC0/IO26NDB1V1	GBC0/IO40NDB1V2	
A18	GBA0/IO28NDB1V1	GBA0/IO42NDB1V2	
A19	IO29NDB1V1	IO43NDB1V2	
A20	IO29PDB1V1	IO43PDB1V2	
A21	V _{CC}	NC	
A22	GND	GND	
AA1	V _{CC}	NC	
AA2	GND	GND	
AA3	V _{CCI} B4	V _{CCI} B4	
AA4	V _{CCI} B4	V _{CCI} B4	
AA5	PCAP	PCAP	
AA6	AG0	AG0	
AA7	GNDA	GNDA	
AA8	AG1	AG1	
AA9	AG2	AG2	
AA10	GNDA	GNDA	
AA11	AG3	AG3	
AA12	AG6	AG6	
AA13	GNDA	GNDA	

Pin Number AFS600 Function AFS1500 Function AA14 AG7 AG7 AA15 AG8 AG8 AA16 GNDA GNDA AA17 AG9 AG9 AA18 VAREF VAREF AA19 VCCIB2 VCCIB2 AA20 PTEM PTEM AA21 GND GND AB2 VCC NC AB1 GND GND AB2 VCC NC AB3 NC IO94NSB4VO AB4 GND GND AB5 VCC33N VCC33N AB6 AT0 ATRTNO AB7 ATRTNO ATRTNO AB8 AT1 AT1 AB9 AT2 AT2 AB10 ATRTN1 ATRTN1 AB11 AT3 AT3 AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 </th <th colspan="4">484-Pin FBGA</th>	484-Pin FBGA			
AA15 AG8 AG8 AA16 GNDA GNDA AA17 AG9 AG9 AA18 VAREF VAREF AA19 V _{CCI} B2 V _{CCI} B2 AA20 PTEM PTEM AA21 GND GND AA22 V _{CC} NC AB1 GND GND AB2 V _{CC} NC AB3 NC IO94NSB4VO AB4 GND GND AB4 GND GND AB5 VCC33N VCC33N AB6 ATO ATO AB7 ATRTNO ATRTNO AB8 AT1 AT1 AB9 AT2 AT2 AB10 ATRTN1 ATRTN1 AB11 AT3 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 <t< th=""><th></th><th>AFS600 Function</th><th>AFS1500 Function</th></t<>		AFS600 Function	AFS1500 Function	
AA16 GNDA GNDA AA17 AG9 AG9 AA18 VAREF VAREF AA19 V _{CCI} B2 V _{CCI} B2 AA20 PTEM PTEM AA21 GND GND AA22 V _{CC} NC AB1 GND GND AB2 V _{CC} NC AB3 NC IO94NSB4V0 AB4 GND GND AB4 GND GND AB5 VCC33N VCC33N AB6 AT0 AT0 AB7 ATRTNO ATRTNO AB8 AT1 AT1 AB9 AT2 AT2 AB10 ATRTN1 ATRTN1 AB11 AT3 AT3 AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 <t< td=""><td>AA14</td><td>AG7</td><td>AG7</td></t<>	AA14	AG7	AG7	
AA17 AG9 AG9 AA18 VAREF VAREF AA19 V _{CCI} B2 V _{CCI} B2 AA20 PTEM PTEM AA21 GND GND AA22 V _{CC} NC AB1 GND GND AB2 V _{CC} NC AB3 NC IO94NSB4VO AB4 GND GND AB5 VCC33N VCC33N AB6 ATO ATO AB7 ATRTNO ATRTNO AB8 AT1 AT1 AB9 AT2 AT2 AB10 ATRTN1 ATRTN1 AB11 AT3 AT3 AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} <td>AA15</td> <td>AG8</td> <td>AG8</td>	AA15	AG8	AG8	
AA18 VAREF VAREF AA19 V _{CCI} B2 V _{CCI} B2 AA20 PTEM PTEM AA21 GND GND AA22 V _{CC} NC AB1 GND GND AB2 V _{CC} NC AB3 NC IO94NSB4V0 AB4 GND GND AB4 GND GND AB5 VCC33N VCC33N AB6 AT0 AT0 AB7 ATRTN0 ATRTN0 AB8 AT1 AT1 AB9 AT2 AT2 AB10 ATRTN1 ATRTN1 AB11 AT3 AT3 AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} <td>AA16</td> <td>GNDA</td> <td>GNDA</td>	AA16	GNDA	GNDA	
AA19 V _{CCI} B2 V _{CCI} B2 AA20 PTEM PTEM AA21 GND GND AA22 V _{CC} NC AB1 GND GND AB2 V _{CC} NC AB3 NC IO94NSB4V0 AB4 GND GND AB4 GND GND AB5 VCC33N VCC33N AB6 AT0 AT0 AB7 ATRTNO ATRTNO AB8 AT1 AT1 AB9 AT2 AT2 AB10 ATRTN1 ATRTN1 AB11 AT3 AT3 AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND	AA17	AG9	AG9	
AA20 PTEM PTEM AA21 GND GND AA22 V _{CC} NC AB1 GND GND AB2 V _{CC} NC AB3 NC IO94NSB4V0 AB4 GND GND AB4 GND GND AB5 VCC33N VCC33N AB6 AT0 AT0 AB7 ATRTN0 ATRTN0 AB8 AT1 AT1 AB9 AT2 AT2 AB10 ATRTN1 ATRTN1 AB11 AT3 AT3 AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2VO <t< td=""><td>AA18</td><td>VAREF</td><td>VAREF</td></t<>	AA18	VAREF	VAREF	
AA21 GND GND AA22 V _{CC} NC AB1 GND GND AB2 V _{CC} NC AB3 NC IO94NSB4V0 AB4 GND GND AB4 GND GND AB5 VCC33N VCC33N AB6 AT0 AT0 AB7 ATRTN0 ATRTN0 AB8 AT1 AT1 AB9 AT2 AT2 AB10 ATRTN1 ATRTN1 AB11 AT3 AT3 AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2V0 AB21 V _{CC} NC <tr< td=""><td>AA19</td><td>V_{CCI}B2</td><td>V_{CCI}B2</td></tr<>	AA19	V _{CCI} B2	V _{CCI} B2	
AA22 V _{CC} NC AB1 GND GND AB2 V _{CC} NC AB3 NC IO94NSB4V0 AB4 GND GND AB4 GND GND AB5 VCC33N VCC33N AB6 AT0 AT0 AB7 ATRTN0 ATRTN0 AB8 AT1 AT1 AB9 AT2 AT2 AB10 ATRTN1 ATRTN1 AB11 AT3 AT3 AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2V0 AB21 V _{CC} NC AB22 GND GND <tr< td=""><td>AA20</td><td>PTEM</td><td>PTEM</td></tr<>	AA20	PTEM	PTEM	
AB1 GND GND AB2 V _{CC} NC AB3 NC IO94NSB4VO AB4 GND GND AB5 VCC33N VCC33N AB6 AT0 AT0 AB7 ATRTNO ATRTNO AB8 AT1 AT1 AB9 AT2 AT2 AB10 ATRTN1 ATRTN1 AB11 AT3 AT3 AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2VO AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GAAO/IO01NDBOVO <td>AA21</td> <td>GND</td> <td>GND</td>	AA21	GND	GND	
AB2 V _{CC} NC AB3 NC IO94NSB4V0 AB4 GND GND AB5 VCC33N VCC33N AB6 AT0 AT0 AB7 ATRTN0 ATRTN0 AB8 AT1 AT1 AB9 AT2 AT2 AB10 ATRTN1 ATRTN1 AB11 AT3 AT3 AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2V0 AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GAA0/IO01NDB0V0 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0 <	AA22	V _{CC}	NC	
AB3 NC IO94NSB4V0 AB4 GND GND AB5 VCC33N VCC33N AB6 AT0 AT0 AB7 ATRTN0 ATRTN0 AB8 AT1 AT1 AB9 AT2 AT2 AB10 ATRTN1 ATRTN1 AB11 AT3 AT3 AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2V0 AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	AB1	GND	GND	
AB4 GND GND AB5 VCC33N VCC33N AB6 AT0 AT0 AB7 ATRTN0 ATRTN0 AB8 AT1 AT1 AB9 AT2 AT2 AB10 ATRTN1 ATRTN1 AB11 AT3 AT3 AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2V0 AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GND B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	AB2	V _{CC}	NC	
AB5 VCC33N VCC33N AB6 AT0 AT0 AB7 ATRTNO ATRTNO AB8 AT1 AT1 AB9 AT2 AT2 AB10 ATRTN1 ATRTN1 AB11 AT3 AT3 AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 VCC33A VCC33A AB19 GND GND AB20 NC IO76NPB2VO AB21 VCC NC AB22 GND GND B1 VCC NC B2 GND GND B3 GAAO/IO01NDB0V0 GAAO/IO01NDB0V0	AB3	NC	IO94NSB4V0	
AB6 AT0 AT0 AB7 ATRTNO ATRTNO AB8 AT1 AT1 AB9 AT2 AT2 AB10 ATRTN1 ATRTN1 AB11 AT3 AT3 AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2VO AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GND B3 GAAO/IOO1NDBOVO GAAO/IOO1NDBOVO	AB4	GND	GND	
AB7 ATRTNO ATRTNO AB8 AT1 AT1 AB9 AT2 AT2 AB10 ATRTN1 ATRTN1 AB11 AT3 AT3 AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2VO AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GND B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	AB5	VCC33N	VCC33N	
AB8 AT1 AT1 AB9 AT2 AT2 AB10 ATRTN1 ATRTN1 AB11 AT3 AT3 AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2V0 AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GND B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	AB6	AT0	AT0	
AB9 AT2 AT2 AB10 ATRTN1 ATRTN1 AB11 AT3 AT3 AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2VO AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GND B3 GAAO/IOO1NDBOVO GAAO/IOO1NDBOVO	AB7	ATRTN0	ATRTN0	
AB10 ATRTN1 ATRTN1 AB11 AT3 AT3 AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2V0 AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GND B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	AB8	AT1	AT1	
AB11 AT3 AT3 AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2V0 AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GND B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	AB9	AT2	AT2	
AB12 AT6 AT6 AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2V0 AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GND B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	AB10	ATRTN1	ATRTN1	
AB13 ATRTN3 ATRTN3 AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2V0 AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GND B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	AB11	AT3	AT3	
AB14 AT7 AT7 AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2V0 AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GND B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	AB12	AT6	AT6	
AB15 AT8 AT8 AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2V0 AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GND B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	AB13	ATRTN3	ATRTN3	
AB16 ATRTN4 ATRTN4 AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2V0 AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GND B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	AB14	AT7	AT7	
AB17 AT9 AT9 AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2V0 AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GND B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	AB15	AT8	AT8	
AB18 V _{CC33A} V _{CC33A} AB19 GND GND AB20 NC IO76NPB2V0 AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GND B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	AB16	ATRTN4	ATRTN4	
AB19 GND GND AB20 NC IO76NPB2V0 AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GND B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	AB17	AT9	AT9	
AB20 NC IO76NPB2V0 AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GND B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	AB18	V _{CC33A}	V _{CC33A}	
AB21 V _{CC} NC AB22 GND GND B1 V _{CC} NC B2 GND GND B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	AB19	•		
AB22 GND GND B1 V _{CC} NC B2 GND GND B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	AB20	NC	IO76NPB2V0	
AB22 GND GND B1 V _{CC} NC B2 GND GND B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	AB21	V _{CC}	NC	
B2 GND GND B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	AB22	•	GND	
B2 GND GND B3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0	B1	V _{CC}	NC	
	B2		GND	
B4 GND GND	В3	GAA0/IO01NDB0V0	GAA0/IO01NDB0V0	
	B4	GND	GND	

484-Pin FBGA				
Pin Number AFS600 Function AFS1500 Function				
B5	IO05NDB0V0	IO04NDB0V0		
В6	IO05PDB0V0	IO04PDB0V0		
В7	GND	GND		
В8	IO10NDB0V1	IO09NDB0V1		
В9	IO13PDB0V1	IO11PDB0V1		
B10	GND	GND		
B11	IO17NDB1V0	IO24NDB1V0		
B12	IO18NDB1V0	IO26NDB1V0		
B13	GND	GND		
B14	IO21NDB1V0	IO31NDB1V1		
B15	IO21PDB1V0	IO31PDB1V1		
B16	GND	GND		
B17	GBC1/IO26PDB1V1	GBC1/IO40PDB1V2		
B18	GBA1/IO28PDB1V1	GBA1/IO42PDB1V2		
B19	GND	GND		
B20	V_{CCPLB}	V_{CCPLB}		
B21	GND	GND		
B22	V _{CC}	NC		
C1	IO82PDB4V0	IO121PDB4V0		
C2	NC	IO122PSB4V0		
C3	IO00NDB0V0	IO00NDB0V0		
C4	IO00PDB0V0	IO00PDB0V0		
C5	V _{CCI} B0	V _{CCI} B0		
C6	IO06NDB0V0	IO05NDB0V1		
C7	IO06PDB0V0	IO05PDB0V1		
C8	V _{CCI} B0	V _{CCI} B0		
С9	IO13NDB0V1	IO11NDB0V1		
C10	IO11PDB0V1	IO14PDB0V2		
C11	V _{CCI} B0	V _{CCI} B0		
C12	V _{CCI} B1	V _{CCI} B1		
C13	IO20NDB1V0	IO29NDB1V1		
C14	IO20PDB1V0	IO29PDB1V1		
C15	V _{CCI} B1	V _{CCI} B1		
C16	IO25NDB1V1	IO37NDB1V2		
C17	GBB0/IO27NDB1V1	GBB0/IO41NDB1V2		

484-Pin FBGA			
Pin Number	AFS600 Function	AFS1500 Function	
C18	V _{CCI} B1	V _{CCI} B1	
C19	V_{COMPLB}	V_{COMPLB}	
C20	GBA2/IO30PDB2V0	GBA2/IO44PDB2V0	
C21	NC	IO48PSB2V0	
C22	GBB2/IO31PDB2V0	GBB2/IO45PDB2V0	
D1	IO82NDB4V0	IO121NDB4V0	
D2	GND	GND	
D3	IO83NDB4V0	IO123NDB4V0	
D4	GAC2/IO83PDB4V0	GAC2/IO123PDB4V0	
D5	GAA2/IO85PDB4V0	GAA2/IO125PDB4V0	
D6	GAC0/IO03NDB0V0	GAC0/IO03NDB0V0	
D7	GAC1/IO03PDB0V0	GAC1/IO03PDB0V0	
D8	IO09NDB0V1	IO10NDB0V1	
D9	IO09PDB0V1	IO10PDB0V1	
D10	IO11NDB0V1	IO14NDB0V2	
D11	IO16NDB1V0	IO23NDB1V0	
D12	IO16PDB1V0	IO23PDB1V0	
D13	NC	IO32NPB1V1	
D14	IO23NDB1V1	IO34NDB1V1	
D15	IO23PDB1V1	IO34PDB1V1	
D16	IO25PDB1V1	IO37PDB1V2	
D17	GBB1/IO27PDB1V1	GBB1/IO41PDB1V2	
D18	V _{CCI} B2	V _{CCI} B2	
D19	NC	IO47PPB2V0	
D20	IO30NDB2V0	IO44NDB2V0	
D21	GND	GND	
D22	IO31NDB2V0	IO45NDB2V0	
E1	IO81NDB4V0	IO120NDB4V0	
E2	IO81PDB4V0	IO120PDB4V0	
E3	V _{CCI} B4	V _{CCI} B4	
E4	GAB2/IO84PDB4V0	GAB2/IO124PDB4V0	
E5	IO85NDB4V0	IO125NDB4V0	
E6	GND	GND	
E7	V _{CCI} B0	V _{CCI} B0	
E8	NC	IO08NDB0V1	
L	<u> </u>	<u> </u>	

484-Pin FBGA			
Pin Number	AFS600 Function	AFS1500 Function	
E9	NC	IO08PDB0V1	
E10	GND	GND	
E11	IO15NDB1V0	IO22NDB1V0	
E12	IO15PDB1V0	IO22PDB1V0	
E13	GND	GND	
E14	NC	IO32PPB1V1	
E15	NC	IO36NPB1V2	
E16	V _{CCI} B1	V _{CCI} B1	
E17	GND	GND	
E18	NC	IO47NPB2V0	
E19	IO33PDB2V0	IO49PDB2V0	
E20	V _{CCI} B2	V _{CCI} B2	
E21	IO32NDB2V0	IO46NDB2V0	
E22	GBC2/IO32PDB2V0	GBC2/IO46PDB2V0	
F1	IO80NDB4V0	IO118NDB4V0	
F2	IO80PDB4V0	IO118PDB4V0	
F3	NC	IO119NSB4V0	
F4	IO84NDB4V0	IO124NDB4V0	
F5	GND	GND	
F6	V_{COMPLA}	V_{COMPLA}	
F7	V_{CCPLA}	V_{CCPLA}	
F8	V _{CCI} B0	V _{CCI} B0	
F9	IO08NDB0V1	IO12NDB0V1	
F10	IO08PDB0V1	IO12PDB0V1	
F11	V _{CCI} B0	V _{CCI} B0	
F12	V _{CCI} B1	V _{CCI} B1	
F13	IO22NDB1V0	IO30NDB1V1	
F14	IO22PDB1V0	IO30PDB1V1	
F15	V _{CCI} B1	V _{CCI} B1	
F16	NC	IO36PPB1V2	
F17	NC	IO38NPB1V2	
F18	GND	GND	
F19	IO33NDB2V0	IO49NDB2V0	
F20	IO34PDB2V0	IO50PDB2V0	
F21	IO34NDB2V0	IO50NDB2V0	

484-Pin FBGA		
Pin Number	AFS600 Function	AFS1500 Function
F22	IO35PDB2V0	IO51PDB2V0
G1	IO77PDB4V0	IO115PDB4V0
G2	GND	GND
G3	IO78NDB4V0	IO116NDB4V0
G4	IO78PDB4V0	IO116PDB4V0
G5	V _{CCI} B4	V _{CCI} B4
G6	NC	IO117PDB4V0
G7	V _{CCI} B4	V _{CCI} B4
G8	GND	GND
G9	IO04NDB0V0	IO06NDB0V1
G10	IO04PDB0V0	IO06PDB0V1
G11	IO12NDB0V1	IO16NDB0V2
G12	IO12PDB0V1	IO16PDB0V2
G13	NC	IO28NDB1V1
G14	NC	IO28PDB1V1
G15	GND	GND
G16	NC	IO38PPB1V2
G17	NC	IO53PDB2V0
G18	V _{CCI} B2	V _{CCI} B2
G19	IO36PDB2V0	IO52PDB2V0
G20	IO36NDB2V0	IO52NDB2V0
G21	GND	GND
G22	IO35NDB2V0	IO51NDB2V0
H1	IO77NDB4V0	IO115NDB4V0
H2	IO76PDB4V0	IO113PDB4V0
Н3	V _{CCI} B4	V _{CCI} B4
H4	IO79NDB4V0	IO114NDB4V0
H5	IO79PDB4V0	IO114PDB4V0
H6	NC	IO117NDB4V0
H7	GND GND	
H8	V _{CC} V _{CC}	
H9	V _{CCI} B0 V _{CCI} B0	
H10	GND	GND
H11	V _{CCI} B0	V _{CCI} B0
H12	V _{CCI} B1	V _{CCI} B1

484-Pin FBGA		
Pin Number	AFS600 Function	AFS1500 Function
H13	H13 GND GN	
H14	V _{CCI} B1	V _{CCI} B1
H15	GND	GND
H16	GND	GND
H17	NC	IO53NDB2V0
H18	IO38PDB2V0	IO57PDB2V0
H19	GCA2/IO39PDB2V0	GCA2/IO59PDB2V0
H20	V _{CCI} B2	V _{CCI} B2
H21	IO37NDB2V0	IO54NDB2V0
H22	IO37PDB2V0	IO54PDB2V0
J1	NC	IO112PPB4V0
J2	IO76NDB4V0	IO113NDB4V0
J3	GFB2/IO74PDB4V0	GFB2/IO109PDB4V0
J4	GFA2/IO75PDB4V0	GFA2/IO110PDB4V0
J5	NC	IO112NPB4V0
J6	NC	IO104PDB4V0
J7	NC	IO111PDB4V0
J8	V _{CCI} B4	V _{CCI} B4
J9	GND	GND
J10	V _{CC}	V _{CC}
J11	GND	GND
J12	V _{CC}	V _{CC}
J13	GND	GND
J14	V _{CC}	V _{CC}
J15	V _{CCI} B2	V _{CCI} B2
J16	GCB2/IO40PDB2V0	GCB2/IO60PDB2V0
J17	NC	IO58NDB2V0
J18	IO38NDB2V0	IO57NDB2V0
J19	IO39NDB2V0	IO59NDB2V0
J20	GCC2/IO41PDB2V0	GCC2/IO61PDB2V0
J21	NC	IO55PSB2V0
J22	IO42PDB2V0 IO56PDB2V0	
K1	GFC2/IO73PDB4V0	GFC2/IO108PDB4V0
K2	GND	GND
K3	IO74NDB4V0	IO109NDB4V0

484-Pin FBGA		
Pin Number	AFS600 Function	AFS1500 Function
K4	IO75NDB4V0	IO110NDB4V0
K5	GND	GND
K6	NC	IO104NDB4V0
K7	NC	IO111NDB4V0
K8	GND	GND
K9	V _{CC}	V _{CC}
K10	GND	GND
K11	V _{CC}	V _{CC}
K12	GND	GND
K13	V _{CC}	V _{CC}
K14	GND	GND
K15	GND	GND
K16	IO40NDB2V0	IO60NDB2V0
K17	NC	IO58PDB2V0
K18	GND	GND
K19	NC	IO68NPB2V0
K20	IO41NDB2V0	IO61NDB2V0
K21	GND	GND
K22	IO42NDB2V0	IO56NDB2V0
L1	IO73NDB4V0	IO108NDB4V0
L2	V _{CCOSC}	V _{CCOSC}
L3	V _{CCI} B4	V _{CCI} B4
L4	XTAL2	XTAL2
L5	GFC1/IO72PDB4V0	GFC1/IO107PDB4V0
L6	V _{CCI} B4	V _{CCI} B4
L7	GFB1/IO71PDB4V0	GFB1/IO106PDB4V0
L8	V _{CCI} B4	V _{CCI} B4
L9	GND	GND
L10	V _{CC}	V _{CC}
L11	GND	GND
L12	V _{CC}	V _{CC}
L13	GND	GND
L14	V _{CC}	V _{CC}
L15	V _{CCI} B2	V _{CCI} B2
L16	IO48PDB2V0	IO70PDB2V0

484-Pin FBGA		
Pin Number	AFS600 Function	AFS1500 Function
L17	V _{CCI} B2	V _{CCI} B2
L18	IO46PDB2V0	IO69PDB2V0
L19	GCA1/IO45PDB2V0	GCA1/IO64PDB2V0
L20	V _{CCI} B2	V _{CCI} B2
L21	GCC0/IO43NDB2V0	GCC0/IO62NDB2V0
L22	GCC1/IO43PDB2V0	GCC1/IO62PDB2V0
M1	NC	IO103PDB4V0
M2	XTAL1	XTAL1
M3	V _{CCI} B4	V _{CCI} B4
M4	GNDOSC	GNDOSC
M5	GFC0/IO72NDB4V0	GFC0/IO107NDB4V0
M6	V _{CCI} B4	V _{CCI} B4
M7	GFB0/IO71NDB4V0	GFB0/IO106NDB4V0
M8	V _{CCI} B4	V _{CCI} B4
M9	V _{CC}	V _{CC}
M10	GND	GND
M11	V _{CC}	V _{CC}
M12	GND	GND
M13	V _{CC}	V _{CC}
M14	GND	GND
M15	V _{CCI} B2	V _{CCI} B2
M16	IO48NDB2V0	IO70NDB2V0
M17	V _{CCI} B2	V _{CCI} B2
M18	IO46NDB2V0	IO69NDB2V0
M19	GCA0/IO45NDB2V0	GCA0/IO64NDB2V0
M20	V _{CCI} B2	V _{CCI} B2
M21	GCB0/IO44NDB2V0	GCB0/IO63NDB2V0
M22	GCB1/IO44PDB2V0	GCB1/IO63PDB2V0
N1	NC	IO103NDB4V0
N2	GND	GND
N3	IO68PDB4V0	IO101PDB4V0
N4	NC	IO100NPB4V0
N5	GND	GND
N6	NC	IO99PDB4V0
N7	NC	IO97PDB4V0

484-Pin FBGA		
Pin Number	AFS600 Function	AFS1500 Function
N8	GND	GND
N9	GND	GND
N10	V _{CC}	V _{CC}
N11	GND	GND
N12	V _{CC}	V _{CC}
N13	GND	GND
N14	V _{CC}	V _{CC}
N15	GND	GND
N16	GDB2/IO56PDB2V0	GDB2/IO83PDB2V0
N17	NC	IO78PDB2V0
N18	GND	GND
N19	IO47NDB2V0	IO72NDB2V0
N20	IO47PDB2V0	IO72PDB2V0
N21	GND	GND
N22	IO49PDB2V0	IO71PDB2V0
P1	GFA1/IO70PDB4V0	GFA1/IO105PDB4V0
P2	GFA0/IO70NDB4V0	GFA0/IO105NDB4V0
Р3	IO68NDB4V0	IO101NDB4V0
P4	IO65PDB4V0	IO96PDB4V0
P5	IO65NDB4V0	IO96NDB4V0
P6	NC	IO99NDB4V0
P7	NC	IO97NDB4V0
P8	V _{CCI} B4	V _{CCI} B4
P9	V _{CC}	V _{CC}
P10	GND	GND
P11	V _{CC}	V _{CC}
P12	GND	GND
P13	V _{CC}	V _{CC}
P14	GND	GND
P15	V _{CCI} B2	V _{CCI} B2
P16	IO56NDB2V0	IO83NDB2V0
P17	NC	IO78NDB2V0
P18	GDA1/IO54PDB2V0	GDA1/IO81PDB2V0
P19	GDB1/IO53PDB2V0	GDB1/IO80PDB2V0
P20	IO51NDB2V0	IO73NDB2V0

484-Pin FBGA		
Pin Number	AFS600 Function	AFS1500 Function
P21	IO51PDB2V0	IO73PDB2V0
P22	IO49NDB2V0	IO71NDB2V0
R1	IO69PDB4V0	IO102PDB4V0
R2	IO69NDB4V0	IO102NDB4V0
R3	V _{CCI} B4	V _{CCI} B4
R4	IO64PDB4V0	IO91PDB4V0
R5	IO64NDB4V0	IO91NDB4V0
R6	NC	IO92PDB4V0
R7	GND	GND
R8	GND	GND
R9	V _{CC33A}	V _{CC33A}
R10	GNDA	GNDA
R11	V _{CC33A}	V _{CC33A}
R12	GNDA	GNDA
R13	V _{CC33A}	V _{CC33A}
R14	GNDA	GNDA
R15	V _{CC}	V _{CC}
R16	GND	GND
R17	NC	IO74NDB2V0
R18	GDA0/IO54NDB2V0	GDA0/IO81NDB2V0
R19	GDB0/IO53NDB2V0	GDB0/IO80NDB2V0
R20	V _{CCI} B2	V _{CCI} B2
R21	IO50NDB2V0	IO75NDB2V0
R22	IO50PDB2V0	IO75PDB2V0
T1	NC	IO100PPB4V0
T2	GND	GND
T3	IO66PDB4V0	IO95PDB4V0
T4	IO66NDB4V0	IO95NDB4V0
T5	V _{CCI} B4	V _{CCI} B4
T6	NC	IO92NDB4V0
T7	GNDNVM GNDNVM	
T8	GNDA GNDA	
Т9	NC	NC
T10	AV4 AV4	
T11	NC NC	

484-Pin FBGA		
Pin Number	AFS600 Function	AFS1500 Function
T12	AV5	AV5
T13	AC5	AC5
T14	NC	NC
T15	GNDA	GNDA
T16	NC	IO77PPB2V0
T17	NC	IO74PDB2V0
T18	V _{CCI} B2	V _{CCI} B2
T19	IO55NDB2V0	IO82NDB2V0
T20	GDA2/IO55PDB2V0	GDA2/IO82PDB2V0
T21	GND	GND
T22	GDC1/IO52PDB2V0	GDC1/IO79PDB2V0
U1	IO67PDB4V0	IO98PDB4V0
U2	IO67NDB4V0	IO98NDB4V0
U3	GEC1/IO63PDB4V0	GEC1/IO90PDB4V0
U4	GEC0/IO63NDB4V0	GEC0/IO90NDB4V0
U5	GND	GND
U6	V_{CCNVM}	V _{CCNVM}
U7	V _{CCI} B4	V _{CCI} B4
U8	V _{CC15A}	V _{CC15A}
U9	GNDA	GNDA
U10	AC4	AC4
U11	V _{CC33A}	V _{CC33A}
U12	GNDA	GNDA
U13	AG5	AG5
U14	GNDA	GNDA
U15	PUB	PUB
U16	V _{CCI} B2	V _{CCI} B2
U17	TDI	TDI
U18	GND	GND
U19	IO57NDB2V0	IO84NDB2V0
U20	GDC2/IO57PDB2V0 GDC2/IO84PDE	
U21	NC	IO77NPB2V0
U22	GDC0/IO52NDB2V0	GDC0/IO79NDB2V0
V1	GEB1/IO62PDB4V0	GEB1/IO89PDB4V0
V2	GEB0/IO62NDB4V0	GEB0/IO89NDB4V0
l .	1	<u> </u>

484-Pin FBGA		
Pin Number	AFS600 Function	AFS1500 Function
V3	V _{CCI} B4	V _{CCI} B4
V4	GEA1/IO61PDB4V0	GEA1/IO88PDB4V0
V5	GEA0/IO61NDB4V0	GEA0/IO88NDB4V0
V6	GND	GND
V7 V _{CC33PMP}		V _{CC33PMP}
V8	NC	NC
V9	V _{CC33A}	V _{CC33A}
V10	AG4	AG4
V11	AT4	AT4
V12	ATRTN2	ATRTN2
V13	AT5	AT5
V14	V _{CC33A}	V _{CC33A}
V15	NC	NC
V16	V _{CC33A}	V _{CC33A}
V17	GND	GND
V18	TMS	TMS
V19	V_{JTAG}	V_{JTAG}
V20	V _{CCI} B2	V _{CCI} B2
V21	TRST	TRST
V22	TDO	TDO
W1	NC	IO93PDB4V0
W2	GND	GND
W3	NC	IO93NDB4V0
W4	GEB2/IO59PDB4V0	GEB2/IO86PDB4V0
W5	IO59NDB4V0	IO86NDB4V0
W6	AV0	AV0
W7	GNDA	GNDA
W8	AV1	AV1
W9	AV2	AV2
W10	GNDA	GNDA
W11	AV3	AV3
W12	AV6 AV6	
W13	GNDA	GNDA
W14	AV7 AV7	
W15	AV8	AV8

	484-Pin FBGA		
Pin Number	AFS600 Function	AFS1500 Function	
W16	GNDA	GNDA	
W17	AV9	AV9	
W18	V _{CCI} B2	V _{CCI} B2	
W19	W19 NC IO6		
W20	TCK	TCK	
W21	GND	GND	
W22	NC	IO76PPB2V0	
Y1	GEC2/IO60PDB4V0	GEC2/IO87PDB4V0	
Y2	IO60NDB4V0	IO87NDB4V0	
Y3	GEA2/IO58PDB4V0	GEA2/IO85PDB4V0	
Y4	IO58NDB4V0	IO85NDB4V0	
Y5	NCAP	NCAP	
Y6	AC0	AC0	
Y7	V _{CC33A}	V _{CC33A}	
Y8	AC1	AC1	
Y9	AC2	AC2	
Y10	V _{CC33A}	V _{CC33A}	
Y11	AC3	AC3	
Y12	AC6	AC6	
Y13	V _{CC33A}	V _{CC33A}	
Y14	AC7	AC7	
Y15	AC8	AC8	
Y16	V _{CC33A}	V _{CC33A}	
Y17	AC9	AC9	
Y18	ADCGNDREF	ADCGNDREF	
Y19	PTBASE	PTBASE	
Y20	GNDNVM GNDNVM		
Y21	V _{CCNVM}	V_{CCNVM}	
Y22	V_{PUMP}	V_{PUMP}	

676-Pin FBGA

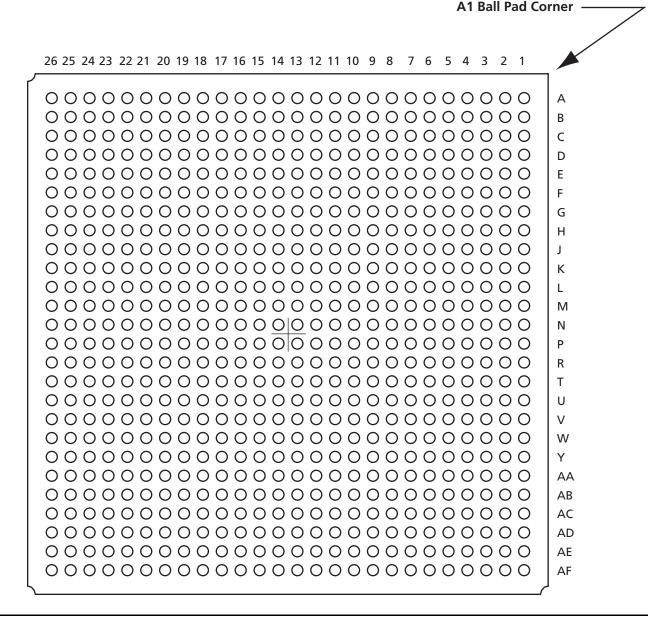


Figure 4-6 • 676-Pin FBGA (Bottom View)

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.actel.com/products/solutions/package/default.aspx.

Advanced v1.4 4-27

67	6-Pin FBGA
Pin Number AFS1500 Function	
A1	NC
A2	GND
А3	NC
A4	NC
A5	GND
A6	NC
A7	NC
A8	GND
A9	IO17NDB0V2
A10	IO17PDB0V2
A11	GND
A12	IO18NDB0V2
A13	IO18PDB0V2
A14	IO20NDB0V2
A15	IO20PDB0V2
A16	GND
A17	IO21PDB0V2
A18	IO21NDB0V2
A19	GND
A20	IO39NDB1V2
A21	IO39PDB1V2
A22	GND
A23	NC
A24	NC
A25	GND
A26	NC
AA1	NC
AA2	V _{CCI} B4
AA3	IO93PDB4V0
AA4	GND
AA5	IO93NDB4V0
AA6	GEB2/IO86PDB4V0
AA7	IO86NDB4V0
AA8	AV0
AA9	GNDA
AA10	AV1

676-Pin FBGA		
Pin Number	AFS1500 Function	
AA11	AV2	
AA12	GNDA	
AA13	AV3	
AA14	AV6	
AA15	GNDA	
AA16	AV7	
AA17	AV8	
AA18	GNDA	
AA19	AV9	
AA20	V _{CCI} B2	
AA21	IO68PPB2V0	
AA22	TCK	
AA23	GND	
AA24	IO76PPB2V0	
AA25	V _{CCI} B2	
AA26	NC	
AB1	GND	
AB2	NC	
AB3	GEC2/IO87PDB4V0	
AB4	IO87NDB4V0	
AB5	GEA2/IO85PDB4V0	
AB6	IO85NDB4V0	
AB7	NCAP	
AB8	AC0	
AB9	V _{CC33A}	
AB10	AC1	
AB11	AC2	
AB12	V _{CC33A}	
AB13	AC3	
AB14	AC6	
AB15	V _{CC33A}	
AB16	AC7	
AB17	AC8	
AB18	V _{CC33A}	
AB19	AC9	
AB20	ADCGNDREF	

676-Pin FBGA	
Pin Number	AFS1500 Function
AB21	PTBASE
AB22	GNDNVM
AB23	V_{CCNVM}
AB24	V _{PUMP}
AB25	NC
AB26	GND
AC1	NC
AC2	NC
AC3	NC
AC4	GND
AC5	V _{CCI} B4
AC6	V _{CCI} B4
AC7	PCAP
AC8	AG0
AC9	GNDA
AC10	AG1
AC11	AG2
AC12	GNDA
AC13	AG3
AC14	AG6
AC15	GNDA
AC16	AG7
AC17	AG8
AC18	GNDA
AC19	AG9
AC20	VAREF
AC21	V _{CCI} B2
AC22	PTEM
AC23	GND
AC24	NC
AC25	NC
AC26	NC
AD1	NC
AD2	NC
AD3	GND
AD4	NC

676-Pin FBGA	
Pin Number	AFS1500 Function
AD5	IO94NPB4V0
AD6	GND
AD7	VCC33N
AD8	AT0
AD9	ATRTN0
AD10	AT1
AD11	AT2
AD12	ATRTN1
AD13	AT3
AD14	AT6
AD15	ATRTN3
AD16	AT7
AD17	AT8
AD18	ATRTN4
AD19	AT9
AD20	V _{CC33A}
AD21	GND
AD22	IO76NPB2V0
AD23	NC
AD24	GND
AD25	NC
AD26	NC
AE1	GND
AE2	GND
AE3	NC
AE4	NC
AE5	NC
AE6	NC
AE7	NC
AE8	NC
AE9	GNDA
AE10	NC
AE11	NC
AE12	GNDA
AE13	NC
AE14	NC

676-Pin FBGA	
Pin Number	AFS1500 Function
AE15	GNDA
AE16	NC
AE17	NC
AE18	GNDA
AE19	NC
AE20	NC
AE21	NC
AE22	NC
AE23	NC
AE24	NC
AE25	GND
AE26	GND
AF1	NC
AF2	GND
AF3	NC
AF4	NC
AF5	NC
AF6	NC
AF7	NC
AF8	NC
AF9	V _{CC33A}
AF10	NC
AF11	NC
AF12	V _{CC33A}
AF13	NC
AF14	NC
AF15	V _{CC33A}
AF16	NC
AF17	NC
AF18	V _{CC33A}
AF19	NC
AF20	NC
AF21	NC
AF22	NC
AF23	NC
AF24	NC

676-Pin FBGA	
Pin Number	AFS1500 Function
AF25	GND
AF26	NC
B1	GND
B2	GND
В3	NC
B4	NC
B5	NC
В6	V _{CCI} B0
В7	NC
B8	NC
В9	V _{CCI} B0
B10	IO15NDB0V2
B11	IO15PDB0V2
B12	V _{CCI} B0
B13	IO19NDB0V2
B14	IO19PDB0V2
B15	V _{CCI} B1
B16	IO25NDB1V0
B17	IO25PDB1V0
B18	V _{CCI} B1
B19	IO33NDB1V1
B20	IO33PDB1V1
B21	V _{CCI} B1
B22	NC
B23	NC
B24	NC
B25	GND
B26	GND
C1	NC
C2	NC
C3	GND
C4	NC
C5	GAA1/IO01PDB0V0
C6	GAB0/IO02NDB0V0
C7	GAB1/IO02PDB0V0
C8	IO07NDB0V1

676-Pin FBGA	
Pin Number	AFS1500 Function
С9	IO07PDB0V1
C10	IO09PDB0V1
C11	IO13NDB0V2
C12	IO13PDB0V2
C13	IO24PDB1V0
C14	IO26PDB1V0
C15	IO27NDB1V1
C16	IO27PDB1V1
C17	IO35NDB1V2
C18	IO35PDB1V2
C19	GBC0/IO40NDB1V2
C20	GBA0/IO42NDB1V2
C21	IO43NDB1V2
C22	IO43PDB1V2
C23	NC
C24	GND
C25	NC
C26	NC
D1	NC
D2	NC
D3	NC
D4	GND
D5	GAA0/IO01NDB0V0
D6	GND
D7	IO04NDB0V0
D8	IO04PDB0V0
D9	GND
D10	IO09NDB0V1
D11	IO11PDB0V1
D12	GND
D13	IO24NDB1V0
D14	IO26NDB1V0
D15	GND
D16	IO31NDB1V1
D17	IO31PDB1V1
D18	GND

676-Pin FBGA	
Pin Number	AFS1500 Function
D19	GBC1/IO40PDB1V2
D20	GBA1/IO42PDB1V2
D21	GND
D22	V_{CCPLB}
D23	GND
D24	NC
D25	NC
D26	NC
E1	GND
E2	IO122NPB4V0
E3	IO121PDB4V0
E4	IO122PPB4V0
E5	IO00NDB0V0
E6	IO00PDB0V0
E7	V _{CCI} B0
E8	IO05NDB0V1
E9	IO05PDB0V1
E10	V _{CCI} B0
E11	IO11NDB0V1
E12	IO14PDB0V2
E13	V _{CCI} B0
E14	V _{CCI} B1
E15	IO29NDB1V1
E16	IO29PDB1V1
E17	V _{CCI} B1
E18	IO37NDB1V2
E19	GBB0/IO41NDB1V2
E20	V _{CCI} B1
E21	V_{COMPLB}
E22	GBA2/IO44PDB2V0
E23	IO48PPB2V0
E24	GBB2/IO45PDB2V0
E25	NC
E26	GND
F1	NC
F2	V _{CCI} B4

676-Pin FBGA	
Pin Number	AFS1500 Function
F3	IO121NDB4V0
F4	GND
F5	IO123NDB4V0
F6	GAC2/IO123PDB4V0
F7	GAA2/IO125PDB4V0
F8	GAC0/IO03NDB0V0
F9	GAC1/IO03PDB0V0
F10	IO10NDB0V1
F11	IO10PDB0V1
F12	IO14NDB0V2
F13	IO23NDB1V0
F14	IO23PDB1V0
F15	IO32NPB1V1
F16	IO34NDB1V1
F17	IO34PDB1V1
F18	IO37PDB1V2
F19	GBB1/IO41PDB1V2
F20	V _{CCI} B2
F21	IO47PPB2V0
F22	IO44NDB2V0
F23	GND
F24	IO45NDB2V0
F25	V _{CCI} B2
F26	NC
G1	NC
G2	IO119PPB4V0
G3	IO120NDB4V0
G4	IO120PDB4V0
G5	V _{CCI} B4
G6	GAB2/IO124PDB4V0
G7	IO125NDB4V0
G8	GND
G9	V _{CCI} B0
G10	IO08NDB0V1
G11	IO08PDB0V1
G12	GND

676-Pin FBGA	
Pin Number	AFS1500 Function
G13	IO22NDB1V0
G14	IO22PDB1V0
G15	GND
G16	IO32PPB1V1
G17	IO36NPB1V2
G18	V _{CCI} B1
G19	GND
G20	IO47NPB2V0
G21	IO49PDB2V0
G22	V _{CCI} B2
G23	IO46NDB2V0
G24	GBC2/IO46PDB2V0
G25	IO48NPB2V0
G26	NC
H1	GND
H2	NC
Н3	IO118NDB4V0
H4	IO118PDB4V0
H5	IO119NPB4V0
H6	IO124NDB4V0
H7	GND
Н8	V_{COMPLA}
H9	V_{CCPLA}
H10	V _{CCI} B0
H11	IO12NDB0V1
H12	IO12PDB0V1
H13	V _{CCI} B0
H14	V _{CCI} B1
H15	IO30NDB1V1
H16	IO30PDB1V1
H17	V _{CCI} B1
H18	IO36PPB1V2
H19	IO38NPB1V2
H20	GND
H21	IO49NDB2V0
H22	IO50PDB2V0

676-Pin FBGA	
Pin Number	AFS1500 Function
H23	IO50NDB2V0
H24	IO51PDB2V0
H25	NC
H26	GND
J1	NC
J2	V _{CCI} B4
J3	IO115PDB4V0
J4	GND
J5	IO116NDB4V0
J6	IO116PDB4V0
J7	V _{CCI} B4
J8	IO117PDB4V0
J9	V _{CCI} B4
J10	GND
J11	IO06NDB0V1
J12	IO06PDB0V1
J13	IO16NDB0V2
J14	IO16PDB0V2
J15	IO28NDB1V1
J16	IO28PDB1V1
J17	GND
J18	IO38PPB1V2
J19	IO53PDB2V0
J20	V _{CCI} B2
J21	IO52PDB2V0
J22	IO52NDB2V0
J23	GND
J24	IO51NDB2V0
J25	V _{CCI} B2
J26	NC
K1	NC
K2	NC
K3	IO115NDB4V0
K4	IO113PDB4V0
K5	V _{CCI} B4
K6	IO114NDB4V0

67	6-Pin FBGA
Pin Number	AFS1500 Function
K7	IO114PDB4V0
K8	IO117NDB4V0
K9	GND
K10	V _{CC}
K11	V _{CCI} B0
K12	GND
K13	V _{CCI} B0
K14	V _{CCI} B1
K15	GND
K16	V _{CCI} B1
K17	GND
K18	GND
K19	IO53NDB2V0
K20	IO57PDB2V0
K21	GCA2/IO59PDB2V0
K22	V _{CCI} B2
K23	IO54NDB2V0
K24	IO54PDB2V0
K25	NC
K26	NC
L1	GND
L2	NC
L3	IO112PPB4V0
L4	IO113NDB4V0
L5	GFB2/IO109PDB4V0
L6	GFA2/IO110PDB4V0
L7	IO112NPB4V0
L8	IO104PDB4V0
L9	IO111PDB4V0
L10	V _{CCI} B4
L11	GND
L12	V _{CC}
L13	GND
L14	V _{CC}
L15	GND
L16	V _{CC}

67	76-Pin FBGA
Pin Number	AFS1500 Function
L17	V _{CCI} B2
L18	GCB2/IO60PDB2V0
L19	IO58NDB2V0
L20	IO57NDB2V0
L21	IO59NDB2V0
L22	GCC2/IO61PDB2V0
L23	IO55PPB2V0
L24	IO56PDB2V0
L25	IO55NPB2V0
L26	GND
M1	NC
M2	V _{CCI} B4
M3	GFC2/IO108PDB4V0
M4	GND
M5	IO109NDB4V0
M6	IO110NDB4V0
M7	GND
M8	IO104NDB4V0
M9	IO111NDB4V0
M10	GND
M11	V _{CC}
M12	GND
M13	V _{CC}
M14	GND
M15	V _{CC}
M16	GND
M17	GND
M18	IO60NDB2V0
M19	IO58PDB2V0
M20	GND
M21	IO68NPB2V0
M22	IO61NDB2V0
M23	GND
M24	IO56NDB2V0
M25	V _{CCI} B2
M26	IO65PDB2V0

676-Pin FBGA	
Pin Number	AFS1500 Function
N1	NC
N2	NC
N3	IO108NDB4V0
N4	V _{ccosc}
N5	V _{CCI} B4
N6	XTAL2
N7	GFC1/IO107PDB4V0
N8	V _{CCI} B4
N9	GFB1/IO106PDB4V0
N10	V _{CCI} B4
N11	GND
N12	V _{CC}
N13	GND
N14	V _{CC}
N15	GND
N16	V _{CC}
N17	V _{CCI} B2
N18	IO70PDB2V0
N19	V _{CCI} B2
N20	IO69PDB2V0
N21	GCA1/IO64PDB2V0
N22	V _{CCI} B2
N23	GCC0/IO62NDB2V0
N24	GCC1/IO62PDB2V0
N25	IO66PDB2V0
N26	IO65NDB2V0
P1	NC
P2	NC
P3	IO103PDB4V0
P4	XTAL1
P5	V _{CCI} B4
P6	GNDOSC
P7	GFC0/IO107NDB4V0
P8	V _{CCI} B4
P9	GFB0/IO106NDB4V0
P10	V _{CCI} B4

676-Pin FBGA	
Pin Number	AFS1500 Function
P11	V _{CC}
P12	GND
P13	V _{CC}
P14	GND
P15	V _{CC}
P16	GND
P17	V _{CCI} B2
P18	IO70NDB2V0
P19	V _{CCI} B2
P20	IO69NDB2V0
P21	GCA0/IO64NDB2V0
P22	V _{CCI} B2
P23	GCB0/IO63NDB2V0
P24	GCB1/IO63PDB2V0
P25	IO66NDB2V0
P26	IO67PDB2V0
R1	NC
R2	V _{CCI} B4
R3	IO103NDB4V0
R4	GND
R5	IO101PDB4V0
R6	IO100NPB4V0
R7	GND
R8	IO99PDB4V0
R9	IO97PDB4V0
R10	GND
R11	GND
R12	V _{CC}
R13	GND
R14	V _{CC}
R15	GND
R16	V _{CC}
R17	GND
R18	GDB2/IO83PDB2V0
R19	IO78PDB2V0
R20	GND

67	76-Pin FBGA
Pin Number	AFS1500 Function
R21	IO72NDB2V0
R22	IO72PDB2V0
R23	GND
R24	IO71PDB2V0
R25	V _{CCI} B2
R26	IO67NDB2V0
T1	GND
T2	NC
T3	GFA1/IO105PDB4V0
T4	GFA0/IO105NDB4V0
T5	IO101NDB4V0
T6	IO96PDB4V0
T7	IO96NDB4V0
Т8	IO99NDB4V0
T9	IO97NDB4V0
T10	V _{CCI} B4
T11	V _{CC}
T12	GND
T13	V _{CC}
T14	GND
T15	V _{CC}
T16	GND
T17	V _{CCI} B2
T18	IO83NDB2V0
T19	IO78NDB2V0
T20	GDA1/IO81PDB2V0
T21	GDB1/IO80PDB2V0
T22	IO73NDB2V0
T23	IO73PDB2V0
T24	IO71NDB2V0
T25	NC
T26	GND
U1	NC
U2	NC
U3	IO102PDB4V0
U4	IO102NDB4V0

Pin Number AF\$1500 Function U5 VCCIB4 U6 IO91PDB4V0 U7 IO91NDB4V0 U8 IO92PDB4V0 U9 GND U10 GND U11 VCC33A U12 GNDA U13 VCC33A U14 GNDA U15 VCC33A U16 GNDA U17 VCC U18 GND U19 IO74NDB2V0 U20 GDA0/IO81NDB2V0 U21 GDB0/IO80NDB2V0 U22 VCCIB2 U23 IO75NDB2V0 U24 IO75PDB2V0 U25 NC U26 NC V1 NC V2 VCCIB4 V3 IO100PPB4V0 V4 GND V5 IO95NDB4V0 V6 IO95NDB4V0 V7 VCCIB4 V8 IO92NDB4V0 V9	67	6-Pin FBGA
U6 IO91PDB4V0 U7 IO91NDB4V0 U8 IO92PDB4V0 U9 GND U10 GND U11 VCC33A U12 GNDA U13 VCC33A U14 GNDA U15 VCC33A U16 GNDA U17 VCC U18 GND U19 IO74NDB2V0 U20 GDA0/IO81NDB2V0 U21 GDB0/IO80NDB2V0 U22 VCCIB2 U23 IO75NDB2V0 U24 IO75PDB2V0 U25 NC U26 NC V1 NC V2 VCCIB4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 VCCIB4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC	Pin Number	AFS1500 Function
U7 IO91NDB4V0 U8 IO92PDB4V0 U9 GND U10 GND U11 V _{CC33A} U12 GNDA U13 V _{CC33A} U14 GNDA U15 V _{CC33A} U16 GNDA U17 V _{CC} U18 GND U19 IO74NDB2V0 U20 GDA0/IO81NDB2V0 U21 GDB0/IO80NDB2V0 U22 V _{CCI} B2 U23 IO75NDB2V0 U24 IO75PDB2V0 U25 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95NDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDN V10 GNDA V11 NC V12 AV4 V13	U5	V _{CCI} B4
U8 IO92PDB4V0 U9 GND U10 GND U11 V _{CC33A} U12 GNDA U13 V _{CC33A} U14 GNDA U15 V _{CC33A} U16 GNDA U17 V _{CC} U18 GND U19 IO74NDB2V0 U20 GDA0/IO81NDB2V0 U21 GDB0/IO80NDB2V0 U22 V _{CCI} B2 U23 IO75NDB2V0 U24 IO75PDB2V0 U25 NC U26 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95NDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC <td>U6</td> <td>IO91PDB4V0</td>	U6	IO91PDB4V0
U9 GND U10 GND U11 V _{CC33A} U12 GNDA U13 V _{CC33A} U14 GNDA U15 V _{CC33A} U16 GNDA U17 V _{CC} U18 GND U19 IO74NDB2V0 U20 GDA0/IO81NDB2V0 U21 GDB0/IO80NDB2V0 U22 V _{CCI} B2 U23 IO75NDB2V0 U24 IO75PDB2V0 U25 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95NDB4V0 V6 IO95NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U7	IO91NDB4V0
U10 GND U11 V _{CC33A} U12 GNDA U13 V _{CC33A} U14 GNDA U15 V _{CC33A} U16 GNDA U17 V _{CC} U18 GND U19 IO74NDB2V0 U20 GDA0/IO81NDB2V0 U21 GDB0/IO80NDB2V0 U22 V _{CCI} B2 U23 IO75NDB2V0 U24 IO75PDB2V0 U25 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U8	IO92PDB4V0
U11 V _{CC33A} U12 GNDA U13 V _{CC33A} U14 GNDA U15 V _{CC33A} U16 GNDA U17 V _{CC} U18 GND U19 IO74NDB2V0 U20 GDA0/IO81NDB2V0 U21 GDB0/IO80NDB2V0 U22 V _{CCI} B2 U23 IO75NDB2V0 U24 IO75PDB2V0 U25 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U9	GND
U12 GNDA U13 V _{CC33A} U14 GNDA U15 V _{CC33A} U16 GNDA U17 V _{CC} U18 GND U19 IO74NDB2V0 U20 GDA0/IO81NDB2V0 U21 GDB0/IO80NDB2V0 U22 V _{CCI} B2 U23 IO75NDB2V0 U24 IO75PDB2V0 U25 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U10	GND
U13 V _{CC33A} U14 GNDA U15 V _{CC33A} U16 GNDA U17 V _{CC} U18 GND U19 IO74NDB2V0 U20 GDA0/IO81NDB2V0 U21 GDB0/IO80NDB2V0 U22 V _{CCI} B2 U23 IO75NDB2V0 U24 IO75PDB2V0 U25 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U11	V _{CC33A}
U14 GNDA U15 V _{CC33A} U16 GNDA U17 V _{CC} U18 GND U19 IO74NDB2V0 U20 GDA0/IO81NDB2V0 U21 GDB0/IO80NDB2V0 U22 V _{CCI} B2 U23 IO75NDB2V0 U24 IO75PDB2V0 U25 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U12	GNDA
U15 V _{CC33A} U16 GNDA U17 V _{CC} U18 GND U19 IO74NDB2V0 U20 GDA0/IO81NDB2V0 U21 GDB0/IO80NDB2V0 U22 V _{CCI} B2 U23 IO75NDB2V0 U24 IO75PDB2V0 U25 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U13	V _{CC33A}
U16 GNDA U17 V _{CC} U18 GND U19 IO74NDB2V0 U20 GDA0/IO81NDB2V0 U21 GDB0/IO80NDB2V0 U22 V _{CCI} B2 U23 IO75NDB2V0 U24 IO75PDB2V0 U25 NC U26 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U14	GNDA
U17 V _{CC} U18 GND U19 IO74NDB2V0 U20 GDA0/IO81NDB2V0 U21 GDB0/IO80NDB2V0 U22 V _{CCI} B2 U23 IO75NDB2V0 U24 IO75PDB2V0 U25 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U15	V _{CC33A}
U18 GND U19 IO74NDB2V0 U20 GDA0/IO81NDB2V0 U21 GDB0/IO80NDB2V0 U22 V _{CCI} B2 U23 IO75NDB2V0 U24 IO75PDB2V0 U25 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U16	GNDA
U19 IO74NDB2V0 U20 GDA0/IO81NDB2V0 U21 GDB0/IO80NDB2V0 U22 V _{CCI} B2 U23 IO75NDB2V0 U24 IO75PDB2V0 U25 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U17	V _{CC}
U20 GDA0/IO81NDB2V0 U21 GDB0/IO80NDB2V0 U22 V _{CCI} B2 U23 IO75NDB2V0 U24 IO75PDB2V0 U25 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U18	GND
U21 GDB0/IO80NDB2V0 U22 V _{CCI} B2 U23 IO75NDB2V0 U24 IO75PDB2V0 U25 NC U26 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U19	IO74NDB2V0
U22 V _{CCI} B2 U23 IO75NDB2V0 U24 IO75PDB2V0 U25 NC U26 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U20	GDA0/IO81NDB2V0
U23 IO75NDB2V0 U24 IO75PDB2V0 U25 NC U26 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U21	GDB0/I080NDB2V0
U24 IO75PDB2V0 U25 NC U26 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U22	V _{CCI} B2
U25 NC U26 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U23	IO75NDB2V0
U26 NC V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U24	IO75PDB2V0
V1 NC V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U25	NC
V2 V _{CCI} B4 V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	U26	NC
V3 IO100PPB4V0 V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	V1	NC
V4 GND V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	V2	V _{CCI} B4
V5 IO95PDB4V0 V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	V3	IO100PPB4V0
V6 IO95NDB4V0 V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	V4	GND
V7 V _{CCI} B4 V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	V5	IO95PDB4V0
V8 IO92NDB4V0 V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	V6	IO95NDB4V0
V9 GNDNVM V10 GNDA V11 NC V12 AV4 V13 NC	V7	V _{CCI} B4
V10 GNDA V11 NC V12 AV4 V13 NC	V8	IO92NDB4V0
V11 NC V12 AV4 V13 NC	V9	GNDNVM
V12 AV4 V13 NC	V10	GNDA
V13 NC	V11	NC
	V12	AV4
V14 AV5	V13	NC
i e e e e e e e e e e e e e e e e e e e	V14	AV5

67	76-Pin FBGA
Pin Number	AFS1500 Function
V15	AC5
V16	NC
V17	GNDA
V18	IO77PPB2V0
V19	IO74PDB2V0
V20	V _{CCI} B2
V21	IO82NDB2V0
V22	GDA2/IO82PDB2V0
V23	GND
V24	GDC1/IO79PDB2V0
V25	V _{CCI} B2
V26	NC
W1	GND
W2	IO94PPB4V0
W3	IO98PDB4V0
W4	IO98NDB4V0
W5	GEC1/IO90PDB4V0
W6	GEC0/IO90NDB4V0
W7	GND
W8	V_{CCNVM}
W9	VCCIB4
W10	V _{CC15A}
W11	GNDA
W12	AC4
W13	V _{CC33A}
W14	GNDA
W15	AG5
W16	GNDA
W17	PUB
W18	V _{CCI} B2
W19	TDI
W20	GND
W21	IO84NDB2V0
W22	GDC2/IO84PDB2V0
W23	IO77NPB2V0
W24	GDC0/IO79NDB2V0

67	76-Pin FBGA
Pin Number	AFS1500 Function
W25	NC
W26	GND
Y1	NC
Y2	NC
Y3	GEB1/IO89PDB4V0
Y4	GEB0/IO89NDB4V0
Y5	V _{CCI} B4
Y6	GEA1/IO88PDB4V0
Y7	GEA0/IO88NDB4V0
Y8	GND
Y9	V _{CC33PMP}
Y10	NC
Y11	V _{CC33A}
Y12	AG4
Y13	AT4
Y14	ATRTN2
Y15	AT5
Y16	V _{CC33A}
Y17	NC
Y18	V _{CC33A}
Y19	GND
Y20	TMS
Y21	V_{JTAG}
Y22	VCCIB2
Y23	TRST
Y24	TDO
Y25	NC
Y26	NC

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (Advanced v1.4)	Page
Advanced v1.3 (July2008)	In Table 3-8 · Quiescent Supply Current Characteristics (IDDQ)1, footnote references were updated for I _{DC2} and I _{DC3} .	3-9
	Footnote 3 and 4 were updated and footnote 5 is new.	
Advanced v1.2 (June 2008)	The "ADC Description" section was significantly updated. Please review carefully.	2-92 to 2-98
Advanced v1.1	Table 2-25 · Flash Memory Block Timing was significantly updated.	2-49
(May 2008)	Table 2-45 · ADC Interface Timing was significantly updated.	2-98
	Table 2-56 · Direct Analog Input Switch Control Truth Table—AV $(x = 0)$, AC $(x = 1)$, and AT $(x = 3)$ was significantly updated.	2-115
	Table 3-6 · Package Thermal Resistance was significantly updated.	3-7
	Table 3-11 · Different Components Contributing to the Dynamic Power Consumption in Fusion Devices was significantly updated.	3-14
	Table 3-13 · Toggle Rate Guidelines Recommended for Power Calculation was significantly updated.	3-20
	The following sentence was deleted from the "Voltage Monitor" section:	2-77
	The Analog Quad inputs are tolerant up to 12 V + 10%.	
	The "108-Pin QFN" figure was updated. D1 to D4 are new and the figure was changed to bottom view. The note below the figure is new.	4-1
	The "180-Pin QFN" figure was updated. D1 to D4 are new and the figure was changed to bottom view. The note below the figure is new.	4-3
Advanced v1.0	The following text was incorrect and therefore deleted:	2-204
(January 2008)	VCC33A Analog Power Filter	
	Analog power pin for the analog power supply low-pass filter. An external 100 pF capacitor should be connected between this pin and ground.	
	There is still a decription of V _{CC33A} on page 2-203.	
Advanced v0.9 October 2007	All Timing Characteristics tables were updated. For the Differntial I/O Standards, the Standard I/O support tables are new.	N/A
	The following bullet was updated from High-Voltage Input Tolerance: ±12 V to High-Voltage Input Tolerance: 10.5 V to 12 V.	i
	The following bullet was updated from Programmable 1, 3, 10, 30 μ A and 25 mA Drive Strengths to Programmable 1, 3, 10, 30 μ A and 20 mA Drive Strengths.	i
	This bullet was added to the "Integrated A/D Converter (ADC) and Analog I/O" section: ADC Accuracy is Better than 1%	i

Previous Version	Changes in Current Version (Advanced v1.4)	Page
Advanced v0.9 (continued)	In the "Integrated Analog Blocks and Analog I/Os" section, ±4 LSB was changed to 0.72. The following sentence was deleted:	1-3
	The input range for voltage signals is from –12 V to +12 V with full-scale output values from 0.125 V to 16 V.	
	In addition, 2°C was changed to 3°C:	
	"One analog input in each quad can be connected to an external temperature monitor diode and achieves detection accuracy of $\pm 3^{\circ}$ C."	
	The following sentence was deleted:	
	The input range for voltage signals is from -12 V to $+12$ V with full-scale output values from 0.125 V to 16 V.	
	Table 2-3 • Array Coordinates was updated to change the max x and y values	2-7
	Table 2-13 • Fusion CCC/PLL Specification was updated.	2-28
	A note was added to Table 2-16 • RTC ACM Memory Map.	2-33
	A reference to the Peripheral's User's Guide was added to the "Voltage Regulator Power Supply Monitor (VRPSM)" section.	2-36
	In Table 2-25 • Flash Memory Block Timing, the commercial conditions were updated.	2-49
	In Table 2-26 • FlashROM Access Time, the commercial conditions were missing and have been added below the title of the table.	2-52
	In Table 2-36 • Analog Block Pin Description, the function descrition was updated for the ADCRESET.	2-73
	In the "Voltage Monitor" section, the following sentence originally had \pm 10% and it was changed to +10%.	2-77
	The Analog Quad inputs are tolerant up to 12 V + 10%.	
	In addition, this statement was deleted from the datasheet:	
	Each I/O will draw power when connected to power (3 mA at 3 V).	
	The "Terminology" section is new.	2-78
	The "Current Monitor" section was significantly updated. Figure 2-71 • Timing Diagram for Current Monitor Strobe to Figure 2-73 • Negative Current Monitor and Table 2-37 • Recommended Resistor for Different Current Range Measurement are new.	2-81
	The "ADC Description" section was updated to add the "Terminology" section.	2-83
	In the "Gate Driver" section, 25 mA was changed to 20 mA and 1.5 MHz was changed to 1.3 MHz. In addition, the following sentence was deleted:	2-84
	The maximum AG pad switching frequency is 1.25 MHz.	
	The "Temperature Monitor" section was updated to rewrite most of the text and add Figure 2-77, Figure 2-78, and Table 2-38 • Temperature Data Format.	2-86
	In Table 2-38 • Temperature Data Format, the temperature K column was changed for 85°C from 538 to 358.	2-88
	In Table 2-45 • ADC Interface Timing, "Typical-Case" was changed to "Worst-Case".	2-98
	The "ADC Interface Timing" section is new.	2-98
	Table 2-46 • Analog Channel Specifications was updated.	2-102
	The "V _{CC15A} Analog Power Supply (1.5 V)" section was updated.	2-203
	The "V _{CCPLA/B} PLL Supply Voltage" section is new.	2-203
	In "V _{CCNVM} Flash Memory Block Power Supply (1.5 V)" section, supply was changed to supply input.	2-203

revious Version	Changes in Current Version (Advanced v1.4)	Page
Advanced v0.9	The "V _{CCPLA/B} PLL Supply Voltage" pin description was updated to include the following statement:	2-203
(continued)	Actel recommends tying V_{CCPLX} to V_{CC} and using proper filtering circuits to decouple V_{CC} noise from PLL.	
Advanced v0.9	The "V _{COMPLA/B} Ground for West and East PLL" section was updated.	2-204
	In Table 2-47 • ADC Characteristics in Direct Input Mode, the commercial conditions were updated and note 2 is new.	2-105
	The V _{CC33ACAP} signal name was chagned to "XTAL1 Crystal Oscillator Circuit Input".	2-206
	Table 2-48 • Uncalibrated Analog Channel Accuracy*is new.	2-107
	Table 2-49 • Calibrated Analog Channel Accuracy ^{1,2,3} , is new.	2-108
	Table 2-50 • Analog Channel Accuracy: Monitoring Standard Positive Voltages is new.	2-108
	In Table 2-57 • Voltage Polarity Control Truth Table—AV $(x = 0)$, AC $(x = 1)$, and AT $(x = 3)^*$, the following I/O Bank names were changed:	2-115
	Hot-Swap changed to Standard	
	LVDS changed to Advanced	
	In Table 2-58 • Prescaler Op Amp Power-Down Truth Table—AV $(x = 0)$, AC $(x = 1)$, and AT $(x = 3)$, the following I/O Bank names were changed:	2-115
	Hot-Swap changed to Standard	
	LVDS changed to Advanced	
	In the title of Table 2-64 • I/O Standards Supported by Bank Type, LVDS I/O was changed to Advanced I/O.	2-116
	The title was changed from "Fusion Standard, LVDS, and Standard plus Hot-Swap I/O" to Table 2-68 • Fusion Standard and Advanced I/O Features. In addition, the table headings were all updated. The heading used to be Standard and LVDS I/O and was changed to Advanced I/O. Standard Hot-Swap was changed to just Standard.	2-120
	This sentence was deleted from the "Slew Rate Control and Drive Strength" section:	2-127
	The Standard hot-swap I/Os do not support slew rate control. In addition, these references were changed:	
	• From: Fusion hot-swap I/O (Table 2-69 on page 2-122) To: Fusion Standard I/O • From: Fusion LVDS I/O (Table 2-70 on page 2-122) To: Fusion Advanced I/O	
	The "Cold-Sparing Support" section was significantly updated.	2-127
	In the title of Table 2-75 • Fusion Standard I/O Standards—OUT_DRIVE Settings, Hot-Swap was changed to Standard.	2-137
	In the title of Table 2-76 • Fusion Advanced I/O Standards—SLEW and OUT_DRIVE Settings, LVDS was changed to Advanced.	2-137
	In the title of Table 2-80 • Fusion Standard and Advanced I/O Attributes vs. I/O Standard Applications, LVDS was changed to Advanced.	2-140
	In Figure 2-105 • Naming Conventions of Fusion Devices with Three Digital I/O Banks and Figure 2-106 • Naming Conventions of Fusion Devices with Four I/O Banks the following names were changed:	2-143
	Hot-Swap changed to Standard	
	LVDS changed to Advanced	
	The Figure 2-107 • Timing Model was updated.	2-144
	In the notes for Table 2-86 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions, T _J was changed to T _A .	2-150

Advanced v1.4 5-3

Previous Version	Changes in Current Version (Advanced v1.4)	Page
Advanced v0.9 (continued)	In Table 3-1 • Absolute Maximum Ratings, the AT for the Unpowered, ADC reset asserted or unconfigured parameter, –11 was changed to –0.4.	3-1
	The units column of Table 3-2 • Recommended Operating Conditions was incomplete in the previous version. V was added to all the rows. In addition, AT for the Unpowered, ADC reset asserted or unconfigured parameter, -10.5 was changed to -0.3 . Note 6 was updated to include V_{CC15A} .	3-3
	In the title of Table 3-3 • Input Resistance of Analog Pads, Impedence was changed to Resistance.	3-4
	In Table 3-5 • FPGA Programming, Storage, and Operating Limits, note 2 is new. "Program" was removed from the table heading in the Retention column.	3-4
	The "PLL Behavior at Brownout Condition" section is new.	3-5
	Table 3-7 • Temperature and Voltage Derating Factors for Timing Delays was updated.	3-9
	In the Table 3-9 • Summary of I/O Input Buffer Power (per pin)—Default I/O Software Settings, the HSTL (I) for the Static Power PDC7 (mW) was changed from 0.1 to 0.17.	3-10
	The Table 3-11 • Different Components Contributing to the Dynamic Power Consumption in Fusion Devices was updated.	3-14
	The Table 3-12 • Different Components Contributing to the Static Power Consumption in Fusion Devices was updated.	3-15
	In the "PLL/CCC Dynamic Contribution—P _{PLL} " section, P _{AC14} was deleted.	3-18
	This change table states that in the "208-Pin PQFP" table listed under the Advanced v0.8 changes, the AFS090 device had a pin change. That is incorrect. Pin 102 was updated for AFS250 and AFS600. The function name changed from $V_{CC33ACAP}$ to V_{CC33A} .	4-8
Advanced v0.8 (June 2007)	In Table 3-6 • Package Thermal Resistance, the data for the following device/packages were updated: AFS090-FG256 AFS250-FG256 AFS600-FG256 AFS600-FG256 AFS600-FG484 AFS1500-FG484 AFS1500-FG676	3-7
	In the "108-Pin QFN" table, the function changed from $V_{CC33ACAP}$ to V_{CC33A} for the following pin: B25	4-2
	In the "180-Pin QFN" table, the function changed from $V_{CC33ACAP}$ to V_{CC33A} for the following pins: AFS090: B29 AFS250: B29	4-4
	In the "208-Pin PQFP" table, the function changed from $V_{CC33ACAP}$ to V_{CC33A} for the following pins: AFS090: 102 AFS250: 102	4-8

Previous Version	Changes in Current Version (Advanced v1.4)	Page
Advanced v0.8 (continued)	In the "256-Pin FBGA" table, the function changed from $V_{CC33ACAP}$ to V_{CC33A} for the following pins: AFS090: T14 AFS250: T14	4-12
	AFS600: T14 AFS1500: T14	
	In the "484-Pin FBGA" table, the function changed from $V_{CC33ACAP}$ to V_{CC33A} for the following	4-20
	pins: AFS600: AB18	7 20
	AFS1500: AB18	
	In the "676-Pin FBGA" table, the function changed from $V_{CC33ACAP}$ to V_{CC33A} for the following pins: AFS1500: AD20	4-28
Advanced v0.7 (January 2007)	The VMV pins have now been tied internally with the V _{CCI} pins.	N/A
	In the "Package I/Os: Single-/Double-Ended (Analog)" table, the AFS1500/M7AFS1500 I/O counts were updated for the following devices: FG484: 223/109 FG676: 252/126	iii
	Figure 2-16 and the "RC Oscillator" were updated to change GND_OSC and VCC_OSC to	2-18 2-19
	GNDOSC and VCCOSC.	2 10,2 13
	Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro was updated to change the positions of OADIVRST and OADIVHALF, and a note was added.	2-22
	The "Crystal Oscillator" was updated to include information about controlling and enabling/disabling the crystal oscillator.	2-20
	Table 2-11 • Electrical Characteristics of the Crystal Oscillator was updated to change the typical value of I _{DYNXTAL} for 0.032–0.2 MHz to 0.19.	
	The "1.5 V Voltage Regulator" was updated to add "or floating" in the paragraph stating that an external pull-down is required on TRST to power down the VR.	2-35
	The "1.5 V Voltage Regulator" was updated to include information on powering down with the VR.	2-35
	This sentence was updated in the "No-Glitch MUX (NGMUX)" to delete GLA:	2-29
	The GLMUXCFG[1:0] configuration bits determine the source of the CLK inputs (i.e., internal signal or GLC).	
	In Table 2-14 • NGMUX Configuration and Selection Table, 10 and 11 were deleted.	2-29
	The method to enable sleep mode was updated for bit 0 in Table 2-17 • RTC Control/Status Register.	2-29
	S2 was changed to D2 in Figure 2-38 • Read Waveform (Pipe Mode, 32-bit access) for RD[31:0] was updated.	2-45
	The definitions for bits 2 and 3 were updated in Table 2-24 • Page Status Bit Definition.	2-46
	Figure 2-45 • FlashROM Timing Diagram was updated.	2-52
	Table 2-26 • FlashROM Access Time is new.	2-52
	Figure 2-54 • Write Access After Write onto Same Address, Figure 2-55 • Read Access After Write onto Same Address, and Figure 2-56 • Write Access After Read onto Same Address are new.	2-61–2-63
	Table 2-31 • RAM4K9 and Table 2-32 • RAM512X18 were updated.	2-64, 2-65

Advanced v1.4 5-5

Previous Version	Changes in Current Version (Advanced v1.4)	Page
Advanced v0.7 (continued)	The VAREF and SAMPLE functions were updated in Table 2-36 • Analog Block Pin Description.	2-73
	The title of Figure 2-71 • Timing Diagram for Current Monitor Strobe was updated to add the word "positive."	2-82
	The "Gate Driver" was updated to give information about the switching rate in High Current Drive mode.	2-84
	In EQ 1-3, 250 was changed to 2.5.	1-86
	The "ADC Description" was updated to include information about the SAMPLE and BUSY signals and the maximum frequencies for SYSCLK and ADCCLK. EQ 2-12 was updated to add parentheses around the entire expression in the denominator.	2-92
	Table 2-46 • Analog Channel Specifications and Table 2-47 • ADC Characteristics in Direct Input Mode were updated.	2-102, 2-105
	The note was removed from Table 2-55 • Analog Multiplexer Truth Table—AV $(x = 0)$, AC $(x = 1)$, and AT $(x = 3)$.	2-115
	Table 2-63 • Internal Temperature Monitor Control Truth Table is new.	2-116
	The "Cold-Sparing Support" was updated to add information about cases where current draw can occur.	2-127
	Figure 2-98 • Solution 4 was updated.	2-132
	Table 2-74 • Fusion Standard I/O Standards—OUT_DRIVE Settings was updated.	2-135
	The "GNDA Ground (analog)" and "GNDAQ Ground (analog quiet)" were updated to add information about maximum differential voltage.	2-203
	The "V _{AREF} Analog Reference Voltage" and "VPUMP Programming Supply Voltage" were updated.	2-204
	The " $V_{\text{CCPLA/B}}$ PLL Supply Voltage" was updated to include information about the east and west PLLs.	2-203
	The V _{COMPLF} pin description was deleted.	N/A
	The "Axy Analog Input/Output" was updated with information about grounding and floating the pin.	2-204
	The voltage range in the "VPUMP Programming Supply Voltage" was updated. The parenthetical reference to "pulled up" was removed from the statement, "V _{PUMP} can be left floating or can be tied (pulled up) to any voltage between 0 V and 3.6 V."	2-204
	The "ATRTNx Temperature Monitor Return" was updated with information about grounding and floating the pin.	2-205
	The following text was deleted from the "V _{REF} I/O Voltage Reference": (all digital I/O).	2-204
	The "NCAP Negative Capacitor" and "PCAP Positive Capacitor" were updated to include information about the type of capacitor that is required to connect the two.	2-206
	1 μF was changed to 100 pF in the "XTAL1 Crystal Oscillator Circuit Input".	2-206
	The "Programming" was updated to include information about V _{CCOSC} .	2-207
	Table 3-1 • Absolute Maximum Ratings, Table 3-2 • Recommended Operating Conditions, and Table 3-3 • Input Resistance of Analog Pads were updated.	3-1 to 3-4
	Table 3-5 • FPGA Programming, Storage, and Operating Limits was updated.	3-4
	P _{AC13} and P _{AC14} were updated in Table 3-11 • Different Components Contributing to the Dynamic Power Consumption in Fusion Devices.	3-13
	The Operating Mode for the "PLL/CCC Dynamic Contribution—P _{PLL} " was updated.	3-18
	Table 3-15 \bullet Power Consumption was updated to change the typical value of I _{DYNXTAL} for 0.032–0.2 MHz to 0.19.	3-25

Previous Version	Changes in Current Version (Advanced v1.4)	Page
Advanced v0.7 (continued)	The AFS090 "108-Pin QFN" table was updated.	4-2
	The AFS090 and AFS250 devices were updated in the "108-Pin QFN" table.	4-2
	The AFS250 device was updated in the "208-Pin PQFP" table.	4-8
	The AFS600 device was updated in the "208-Pin PQFP" table.	4-8
	The AFS090, AFS250, AFS600, and AFS1500 devices were updated in the "256-Pin FBGA" table.	4-12
	The AFS600 and AFS1500 devices were updated in the "484-Pin FBGA" table.	4-20
	The AFS600 device was updated in the "676-Pin FBGA" table.	4-28
Advanced v0.6 (October 2006)	The AFS1500-FG484 and AFS1500-FG676 user I/O counts were updated in the "Package I/Os: Single-/Double-Ended (Analog)" table.	iii
Advanced v0.5 (June 2006)	The second paragraph of the "PLL Macro" was updated to include information about POWERDOWN.	2-27
	The description for bit 0 was updated in Table 2-17 • RTC Control/Status Register.	2-34
	3.9 was changed to 7.8 in the "Crystal Oscillator (Xtal Osc)".	2-35.
	All function descriptions in Table 2-18 • Signals for VRPSM Macro.	2-36
	In Table 2-19 • Flash Memory Block Pin Names, the RD[31:0] description was updated.	2-38
	The "RESET" was updated.	2-55
	The "RESET" was updated.	2-57
	Table 2-35 • FIFO was updated.	2-71
	The VAREF function description was updated in Table 2-36 • Analog Block Pin Description.	2-73
	The "Voltage Monitor" was updated to include information about low power mode and sleep mode.	2-77
	The text in the "Current Monitor" was changed from 2 mV to 1 mV.	2-81
	The "Gate Driver" was updated to include information about forcing 1 V on the drain.	2-84
	The "Analog-to-Digital Converter Block" was updated with the following statement: "All results are MSB justified in the ADC."	2-89
	The information about the ADCSTART signal was updated in the "ADC Description".	2-92
	Table 2-46 • Analog Channel Specifications was updated.	2-102
	Table 2-47 • ADC Characteristics in Direct Input Mode was updated.	2-105
	Table 2-51 • ACM Address Decode Table for Analog Quad was updated.	2-111
	In Table 2-53 • Analog Quad ACM Byte Assignment, the Function and Default Setting for Bit 6 in Byte 3 was updated.	2-114
	The "Introduction" was updated to include information about digital inputs, outputs, and bibufs.	2-117
	In Table 2-69 • Fusion Pro I/O Features, the programmable delay descriptions were updated for the following features: • Single-ended receiver	2-121
	Voltage-referenced differential receiver	
	LVDS/LVPECL differential receiver features	
	The "User I/O Naming Convention" was updated to include "V" and "z" descriptions	2-142
	The " V_{CC33PMP} Analog Power Supply (3.3 V)" was updated to include information about avoiding high current draw.	2-203

Advanced v1.4 5-7

Previous Version	Changes in Current Version (Advanced v1.4)	Page
Advanced v0.5 (continued	The " V_{CCNVM} Flash Memory Block Power Supply (1.5 V)" was updated to include information about avoiding high current draw.	2-203
	The "VMVx I/O Supply Voltage (quiet)" section was updated to include this statement: VMV and V_{CCI} must be connected to the same power supply and V_{CCI} pins within a given I/O bank.	2-185
	The "PUB Push Button" was updated to include information about leaving the pin floating if it is not used.	2-206
	The "PTBASE Pass Transistor Base" was updated to include information about leaving the pin floating if it is not used.	2-206
	The "PTEM Pass Transistor Emitter" was updated to include information about leaving the pin floating if it is not used.	2-206
	Table 3-3 • Input Resistance of Analog Pads is new.	3-4
	The heading was incorrect in the "208-Pin PQFP" table. It should be AFS250 and not AFS090.	4-8
Advanced v0.4	The low power modes of operation were updated and clarified.	N/A
(April 2006)	The AFS1500 digital I/O count was updated in Table 1 • Fusion Family.	i
	The AFS1500 digital I/O count was updated in the "Package I/Os: Single-/Double-Ended (Analog)" table.	iii
	The "Voltage Regulator Power Supply Monitor (VRPSM)" was updated.	2-36
	Figure 2-45 • FlashROM Timing Diagram was updated.	2-52
	The "256-Pin FBGA" table for the AFS1500 is new.	4-12
Advanced v0.3 (April 2006)	The G was moved in the "Product Ordering Codes".	iii
Advanced v0.2	The "Features and Benefits" was updated.	i
(April 2006)	Table 1 • Fusion Family table was updated.	i
	"Package I/Os: Single-/Double-Ended (Analog)" was updated.	iii
	"Product Ordering Codes" was updated.	iii
	"Temperature Grade Offerings" was updated.	iv
	The "General Description" was updated to include ARM information.	1-1
	The "FlashROM" was updated.	2-51
	"RESET" was updated.	2-55
	"RESET" was updated.	2-57
	Figure 2-27 • Real-Time Counter System was updated.	2-31
	Table 2-19 • Flash Memory Block Pin Names was updated.	2-38
	Figure 2-32 • Flash Memory Block Diagram was updated to include AUX block information.	2-39
	Figure 2-33 • Flash Memory Block Organization was updated to include AUX block information.	2-40
	The note in the "Program Operation" was updated.	2-42
	Figure 2-75 • Gate Driver Example was updated.	2-85
	The "Analog Quad ACM Description" was updated.	2-114
	Information about the maximum pad input frequency was added to the "Gate Driver".	2-84
	Figure 2-64 • Analog Block Macro was updated.	2-84
	Figure 2-64 • Analog Block Macro was updated.	2-72
	The "Analog Quad" was updated.	2-75

Previous Version	Changes in Current Version (Advanced v1.4)	Page
Advanced v0.2 (continued)	The "Voltage Monitor" was updated.	2-77
	The "Direct Digital Input" was updated.	2-80
	The "Current Monitor" was updated.	2-81
	Information about the maximum pad input frequency was added to the "Gate Driver".	2-84
	The "Temperature Monitor" was updated.	2-86
	EQ 2-12 is new.	2-92
	The "ADC Description" was updated.	2-92
	Figure 2-16 • Fusion Clocking Options was updated.	2-18
	Table 2-46 • Analog Channel Specifications was updated.	2-102
	The notes in Table 2-72 • Fusion Standard and Advanced I/O – Hot-Swap and 5 V Input Tolerance Capabilities were updated.	2-128
	The "Simultaneously Switching Outputs and PCB Layout" is new.	2-133
	LVPECL and LVDS were updated in Table 2-80 • Fusion Standard and Advanced I/O Attributes vs. I/O Standard Applications.	2-140
	LVPECL and LVDS were updated in Table 2-81 • Fusion Pro I/O Attributes vs. I/O Standard Applications.	2-140
	The "Timing Model" was updated.	2-144
	All voltage-referenced Minimum and Maximum DC Input and Output Level tables were updated.	N/A
	All Timing Characteristic tables were updated	N/A
	Table 2-83 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions was updated.	2-148
	Table 2-79 • Summary of I/O Timing Characteristics – Software Default Settings was updated.	2-134
	Table 2-93 • I/O Output Buffer Maximum Resistances ¹ was updated.	2-155
	The "BLVDS/M-LVDS" is new. BLVDS and M-LVDS are two new I/O standards included in the datasheet.	2-190
	The "CoreMP7 and Cortex-M1 Software Tools" is new.	2-207
	Table 3-8 • Quiescent Supply Current Characteristics (IDDQ)1 was updated.	3-9
	Table 3-11 • Different Components Contributing to the Dynamic Power Consumption in Fusion Devices was updated.	3-13
	Table 3-12 • Different Components Contributing to the Static Power Consumption in Fusion Devices was updated.	3-15
	The "Example of Power Calculation" was updated.	3-21
	The Analog System information was deleted from Table 3-15 • Power Consumption.	3-25
	The "108-Pin QFN" table for the AFS090 device is new.	4-2
	The "180-Pin QFN" table for the AFS090 device is new.	4-4
	The "208-Pin PQFP" table for the AFS090 device is new.	4-8
	The "256-Pin FBGA" table for the AFS090 device is new.	4-12
	The "256-Pin FBGA" table for the AFS250 device is new.	4-12

5-9

Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet Supplement." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

Unmarked (production)

This datasheet version contains information that is considered to be final.

Datasheet Supplement

The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families.

Export Administration Regulations (EAR)

The products described in this datasheet are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Actel Safety Critical, Life Support, and High-Reliability Applications Policy

The Actel products described in this advanced status datasheet may not have completed Actel's qualification process. Actel may amend or enhance products during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any Actel product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult Actel's Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of Actel's products is available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local Actel sales office for additional reliability information.

Actel and the Actel logo are registered trademarks of Actel Corporation. All other trademarks are the property of their owners.

www.actel.com

Actel Corporation

2061 Stierlin Court Mountain View, CA 94043-4655 USA

Phone 650.318.4200 **Fax** 650.318.4600

Actel Europe Ltd.

River Court, Meadows Business Park Station Approach, Blackwater Camberley Surrey GU17 9AB United Kingdom

Phone +44 (0) 1276 609 300 Fax +44 (0) 1276 607 540

Actel Japan

EXOS Ebisu Building 4F 1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan

Phone +81.03.3445.7671 Fax +81.03.3445.7668 http://jp.actel.com

Actel Hong Kong

Room 2107, China Resources Building 26 Harbour Road Wanchai, Hong Kong **Phone** +852 2185 6460

Fax +852 2185 6488 www.actel.com.cn

