Wideband/Video " T " Switches

FEATURES

- Wide Bandwidth: 500 MHz
- Low Crosstalk: -85 dB
- High Off-Isolation: -80 dB @ 5 MHz
- "T" Switch Configuration
- TTL and CMOS Logic Compatible
- Fast Switching-ton: 45 ns
- Low ros(on): 30Ω

BENEFITS

- Flat Frequency Response
- High Color Fidelity
- Low Insertion Loss
- Improved System Performance
- Reduced Board Space
- Reduced Power Consumption
- Improved Data Throughput

APPLICATIONS
- RF and Video Switching
- RGB Switching
- Local and Wide Area Networks
- Video Routing
- Fast Data Acquisition
- ATE
- Radar/FLR Systems
- Video Multiplexing

DESCRIPTION

The DG540/541/542 are high performance monolithic wideband/video switches designed for switching RF, video and digital signals. By utilizing a " T " switch configuration on each channel, these devices achieve exceptionally low crosstalk and high off-isolation. The crosstalk and off-isolation of the DG540 are further improved by the introduction of extra GND pins between signal pins.

To achieve TTL compatibility, low channel capacitances and fast switching times, the DG540 family is built on the Vishay Siliconix proprietary D/CMOS process. Each switch conducts equally well in both directions when on.

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE	
Logic	Switch
0	OFF
1	ON

Logic " 0 " $\leq 0.8 \mathrm{~V}$
Logic "1" $\geq 2 \mathrm{~V}$

TRUTH TABLE - DG541	
Logic	Switch
0	OFF
1	ON
Logic " 0 " Logic $1 "$ " $\geq 2.8 \mathrm{~V}$	

TRUTH TABLE - DG542		
Logic	$\mathbf{S W}_{\mathbf{1}}, \mathbf{S W}_{\mathbf{2}}$	$\mathbf{S W}_{\mathbf{3}}, \mathbf{S W}_{\mathbf{4}}$
0	OFF	ON
1	ON	OFF
Logic " "" Logic " 1 " $\geq 2 \mathrm{~V}$		

ORDERING INFORMATION		
Temp Range	Package	Part Number
DG540		
-40 to $85^{\circ} \mathrm{C}$	20-Pin Plastic DIP	DG540DJ
	20-Pin PLCC	DG540DN
-55 to $125^{\circ} \mathrm{C}$	20-Pin Sidebraze	DG540AP
		DG540AP/883
DG541		
-40 to $85^{\circ} \mathrm{C}$	16-Pin Plastic DIP	DG541DJ
	16-Pin Narrow SOIC	DG541DY
-55 to $125^{\circ} \mathrm{C}$	16-Pin Sidebraze	DG541AP
		DG541AP/883,5962-9076401MEA
DG542		
-40 to $85^{\circ} \mathrm{C}$	16-Pin Plastic DIP	DG542DJ
	16-Pin Narrow SOIC	DG542DY
-55 to $125^{\circ} \mathrm{C}$	16-Pin Sidebraze	DG542AP
		DG542AP/883,5962-91555201MEA

ABSOLUTE MAXIMUM RATINGS

V+ to V-		-0.3 V to 21 V
$\mathrm{V}+$ to GND		-0.3 V to 21 V
V- to GND		-19 V to +0.3 V
Digital Inputs	or 20	V to $(\mathrm{V}+)+0.3 \mathrm{~V}$ ever occurs first
$\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$	or 20 m	V to $(\mathrm{V}-)+14 \mathrm{~V}$ ever occurs first
Continuous Current (A	minal)	20 mA
Current, S or D (Pulse	, 10\% duty cycle max)	40 mA
Storage Temperature	(AP Suffix)	-65 to $150^{\circ} \mathrm{C}$
	(DJ, DN, DY Suffixes)	-65 to $125^{\circ} \mathrm{C}$

Power Dissipation (Package)a	
16-Pin Plastic DIPb	470 mW
20-Pin Plastic DIPc	800 mW
16-Pin Narrow Body SOIC ${ }^{\text {d }}$	640 mW
20-Pin PLCC ${ }^{\text {d }}$	800 mW
16-, 20-Pin Sidebraze DIPe	900 mW
Notes:	
a. All leads welded or soldered to PC Board.	
b. Derate $6.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$	
c. Derate $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$	
d. Derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$	
e. Derate $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$	

SCHEMATIC DIAGRAM (TYPICAL CHANNEL)

FIGURE 1.

SPECIFICATIONS ${ }^{\text {a }}$

Parameter	Symbol	Test Conditions Unless Specified$\begin{gathered} \mathrm{V}_{+}=15 \mathrm{~V}, \mathrm{~V}-=-3 \mathrm{~V} \\ \mathrm{~V}_{\text {INH }}=2 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=0.8 \mathrm{~V}^{\mathrm{f}} \end{gathered}$	Temp ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	A Suffix -55 to $125^{\circ} \mathrm{C}$		D Suffixes -40 to $85^{\circ} \mathrm{C}$		Unit
					Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	Mind	Max ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range	$\mathrm{V}_{\text {ANALOG }}$	$\mathrm{V}-=-5 \mathrm{~V}, \mathrm{~V}+=12 \mathrm{~V}$	Full		-5	5	-5	5	V
Drain-Source On-Resistance	${ }^{\text {c }}$ DS(on)	$\mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}$	Room Full	30		$\begin{gathered} \hline 60 \\ 100 \end{gathered}$		60 75	Ω
r_{DS} (on) Match	$\Delta \mathrm{r}_{\text {DS }}(\mathrm{on})$		Room	2		6		6	
Source Off Leakage Current	$\mathrm{I}_{\text {S(off) }}$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$	Room Full	-0.05	$\begin{gathered} -10 \\ -500 \end{gathered}$	$\begin{gathered} 10 \\ 500 \end{gathered}$	$\begin{gathered} \hline-10 \\ -100 \end{gathered}$	$\begin{gathered} \hline 10 \\ 100 \end{gathered}$	nA
Drain Off Leakage Current	$I_{\text {(off) }}$	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}$	Room Full	-0.05	$\begin{gathered} \hline-10 \\ -500 \end{gathered}$	$\begin{gathered} 10 \\ 500 \end{gathered}$	$\begin{gathered} \hline-10 \\ -100 \end{gathered}$	$\begin{gathered} \hline 10 \\ 100 \end{gathered}$	
Channel On Leakage Current	$\mathrm{I}_{\mathrm{D} \text { (on) }}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$	Room Full	-0.05	$\begin{gathered} \hline-10 \\ -1000 \end{gathered}$	$\begin{gathered} 10 \\ 1000 \end{gathered}$	$\begin{gathered} \hline-10 \\ -100 \end{gathered}$	$\begin{gathered} 10 \\ 100 \end{gathered}$	

Digital Control

Input Voltage High	$\mathrm{V}_{\text {INH }}$		Full		2		2		V
Input Voltage Low	$\mathrm{V}_{\text {INL }}$		Full			0.8		0.8	
Input Current	I_{N}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ or V_{+}	Room	0.05	$\begin{gathered} \hline-1 \\ -20 \end{gathered}$	$\begin{gathered} 1 \\ 20 \end{gathered}$	$\begin{gathered} \hline-1 \\ -20 \end{gathered}$	1 20	$\mu \mathrm{A}$

Dynamic Characteristics

On State Input Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {S(on) }}$	$\mathrm{V}_{S}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$		Room	14	20	20	pF
Off State Input Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$		Room	2	4	4	
Off State Output Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {((off) }}$	$\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$		Room	2	4	4	
Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$, See Figure 5		Room	500			MHz
Turn On Time	${ }^{\text {ton }}$	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ 50 \% \text { to } 90 \% \\ \text { See Figure } 2 \end{gathered}$	$\begin{aligned} & \hline \text { DG540 } \\ & \text { DG541 } \end{aligned}$	Room Full	45	$\begin{gathered} \hline 70 \\ 130 \end{gathered}$	$\begin{gathered} \hline 70 \\ 130 \end{gathered}$	ns
			DG542	Room Full	55	$\begin{aligned} & \hline 100 \\ & 160 \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 160 \end{aligned}$	
Turn Off Time	toff		$\begin{aligned} & \text { DG540 } \\ & \text { DG541 } \end{aligned}$	Room Full	20	$\begin{aligned} & 50 \\ & 85 \end{aligned}$	50 85	
			DG542	Room Full	25	$\begin{aligned} & \hline 60 \\ & 85 \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 85 \end{aligned}$	
Charge Injection	Q	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \\ \text { See Figure } 3 \end{gathered}$		Room	-25			pC
Off Isolation	OIRR	$\begin{aligned} & \mathrm{R}_{\mathrm{IN}}=75 \Omega \\ & \mathrm{R}_{\mathrm{L}}=75 \Omega \\ & \mathrm{f}=5 \mathrm{MHz} \end{aligned}$ See Figure 4	DG540	Room	-80			dB
			DG541	Room	-60			
			DG542	Room	-75			
All Hostile Crosstalk	$\mathrm{X}_{\text {TALK(AH) }}$	$\mathrm{R}_{\mathrm{IN}}=10 \Omega, \mathrm{R}_{\mathrm{L}}=75 \Omega$$\mathrm{f}=5 \mathrm{MHz} \text {, See Figure } 6$		Room	-85			

Power Supplies

Positive Supply Current	$1+$	All Channels On or Off	Room Full	3.5		6 9		6 9	mA
Negative Supply Current	1-		Room Full	-3.2	-6 -9		-6 -9		

Notes:

a. Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
. $\quad \mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

TYPICAL CHARACTERISTICS (25 ${ }^{\circ}$ C UNLESS NOTED)
Off Isolation vs. Frequency and Load Resistance

Switching and Break-Before-Make Time

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)

$$
V_{O}=V_{S} \quad \frac{R_{L}}{R_{L}+r_{\text {DS(on) }}}
$$

FIGURE 2. Switching Time

$\Delta \mathrm{V}_{\mathrm{O}}=$ measured voltage error due to charge injection The charge injection in coulombs is $\Delta Q=C_{L} \times D V_{O}$

FIGURE 3. Charge Injection

FIGURE 4. Off Isolation
FIGURE 5. Bandwidth

TEST CIRCUITS

FIGURE 6. All Hostile Crosstalk

APPLICATIONS

Device Description

The DG540/541/542 family of wideband switches offers true bidirectional switching of high frequency analog or digital signals with minimum signal crosstalk, low insertion loss, and negligible non-linearity distortion and group delay.

Built on the Siliconix D/CMOS process, these "T" switches provide excellent off-isolation with a bandwidth of around 500 MHz (350 MHz for DG541). Silicon-gate D/CMOS processing also yields fast switching speeds.

An on-chip regulator circuit maintains TTL input compatibility over the whole operating supply voltage range, easing control logic interfacing.

Circuit layout is facilitated by the interchangeability of source and drain terminals.

Frequency Response

A single switch on-channel exhibits both resistance [r $\mathrm{r}_{\mathrm{DS}}^{(o n)}$] and capacitance $\left[\mathrm{C}_{S(o n)}\right.$]. This RC combination has an
attenuation effect on the analog signal - which is frequency dependent (like an RC low-pass filter). The $-3-\mathrm{dB}$ bandwidth of the DG540 is typically 500 MHz (into 50Ω). This measured figure of 500 MHz illustrates that the switch channel can not be represented by a two stage RC combination. The on capacitance of the channel is distributed along the on-resistance, and hence becomes a more complex multi stage network of R's and C's making up the total $r_{\text {DS(on) }}$ and $\mathrm{C}_{\mathrm{S}(\mathrm{on})}$. See Application Note AN502 for more details.

Off-Isolation and Crosstalk

Off-isolation and crosstalk are affected by the load resistance and parasitic inter-electrode capacitances. Higher off-isolation is achieved with lower values of R_{L}. However, low values of R_{L} increase insertion loss requiring gain adjustments down the line. Stray capacitances, even a fraction of 1 pF , can cause a large crosstalk increase. Good layout and ground shielding techniques can considerably improve your ac circuit performance.

APPLICATIONS

Power Supplies

A useful feature of the DG54X family is its power supply flexibility. It can be operated from a single positive supply ($\mathrm{V}+$) if required (V - connected to ground).

Note that the analog signal must not exceed V - by more than -0.3 V to prevent forward biasing the substrate $\mathrm{p}-\mathrm{n}$ junction. The use of a V - supply has a number of advantages:

1. It allows flexibility in analog signal handling, i.e., with $\mathrm{V}-=$ -5 V and $\mathrm{V}_{+}=12 \mathrm{~V}$; up to $\pm 5-\mathrm{V}$ ac signals can be controlled.
2. The value of on capacitance $\left[\mathrm{C}_{S(o n)}\right]$ may be reduced. A property known as 'the body-effect' on the DMOS switch devices causes various parametric effects to occur. One of these effects is the reduction in $\mathrm{C}_{\mathrm{S}(\mathrm{on})}$ for an increasing V body-source. Note, however, that to increase V normally requires V + to be reduced (since $\mathrm{V}+$ to $\mathrm{V}-=21 \mathrm{~V}$ max.). Reduction in $V+$ causes an increase in $r_{D S(o n), ~}^{\text {, }}$ hence a compromise has to be achieved. It is also useful to note that optimum video linearity performance (e.g., differential phase and gain) occurs when V - is around -3 V.
3. V - eliminates the need to bias the analog signal using potential dividers and large coupling capacitors.

Decoupling

It is an established RF design practice to incorporate sufficient bypass capacitors in the circuit to decouple the power supplies to all active devices in the circuit. The dynamic performance of the DG54X is adversely affected by poor decoupling of power supply pins. Also, of even more significance, since the substrate of the device is connected to the negative supply, adequate decoupling of this pin is essential.

Rules:

1. Decoupling capacitors should be incorporated on all power supply pins (V+, V-). (See Figure 7.)
2. They should be mounted as close as possible to the device pins.
3. Capacitors should have good high frequency characteristics - tantalum bead and/or monolithic ceramic types are adequate.

Suitable decoupling capacitors are 1- to $10-\mu \mathrm{F}$ tantalum bead, plus $10-$ to $100-\mathrm{nF}$ ceramic.

FIGURE 7. Supply Decoupling

Board Layout

PCB layout rules for good high frequency performance must be observed to achieve the performance boasted by the DG540. Some tips for minimizing stray effects are:

1. Use extensive ground planes on double sided PCB, separating adjacent signal paths. Multilayer PCB is even better.
2. Keep signal paths as short as practically possible, with all channel paths of near equal length.
3. Careful arrangement of ground connections is also very important. Star connected system grounds eliminate signal current flowing through ground path parasitic resistance from coupling between channels.

APPLICATIONS

Figure 8 shows a 4-channel video multiplexer using a DG540.

FIGURE 8. 4 by 1 Video Multiplexing Using the DG540
Figure 9 shows an RGB selector switch using two DG542s.

FIGURE 9. RGB Selector Using Two DG542s

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

