PSRAM

M24L48512DA

4-Mbit (512K x 8)

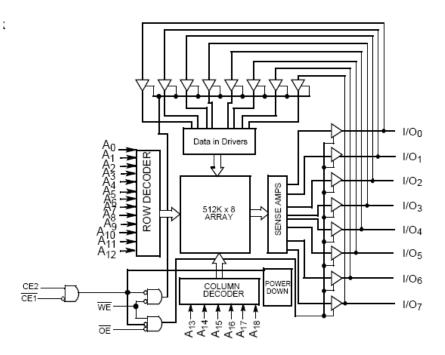
Pseudo Static RAM

Enable ($\overline{\text{WE}}$) inputs LOW and Chip Enable Two (CE2) input HIGH. Data on the eight I/O pins (I/O₀ through I/O₁₅) is then written into the location specified on the address pins (A₀ through A₁₈).

Reading from the device is accomplished by asserting the Chip Enable One ($\overline{CE1}$) and Output Enable (\overline{OE}) inputs LOW

while forcing Write Enable ($\overline{\text{WE}}$) HIGH and Chip Enable Two(CE2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

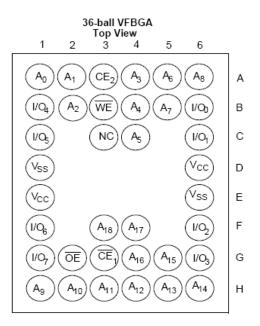
The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected $\overline{CE1}$ HIGH or CE2 LOW), the outputs are disabled (\overline{OE} HIGH), or during write operation ($\overline{CE1}$ LOW, CE2 HIGH, and \overline{WE} LOW).See the Truth Table for a complete description of read and write modes.


Features

- Advanced low power architecture
- High speed: 55 ns, 60 ns and 70 ns
- Wide voltage range: 2.7V to 3.6V
- Typical active current: 1mA @ f = 1 MHz
- Low standby power
- · Automatic power-down when deselected

Functional Description

The M24L48512DA is a high-performance CMOS pseudo static RAM (PSRAM) organized as 512K words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable($\overline{CE1}$), an active HIGH Chip Enable (CE2), and active LOW Output Enable (\overline{OE}).This device has an automatic power-down feature that reduces power consumption dramatically when deselected. Writing to the device is accomplished by taking Chip Enable One ($\overline{CE1}$) and Write


Logic Block Diagram

Elite Semiconductor Memory Technology Inc.

Pin Configuration[1]

ESMT

Product Portfolio

Draduat							Power Dis	sipation			
	Vo	cc Range(V)	Speed		Operating, I _{CC} (mA)					
FIODUCI	Product			(ns)	f = 1 N	/IHz	f = f	MAX	– Standby, I _{SB2} (μA)		
	Min.	Тур.	Max.		Typ.[2]	Max.	Тур.[2]	Max.	Typ.[2]	Max.	
	A 2.7 3.0 S			55			4.4	14 22	17 40		
M24L48512DA		2.7 3.0	3.0	3.6	60	1	5	14 22		40	
			70			8	15]			

Notes:

2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC (typ)}$ and $T_A = 25^{\circ}C$.

^{1.} NC "no connect"—not connected internally to the die.

Maximum Ratings

(Above which the useful life may be impaired guide-lines, not tested.)	. For user
Storage Temperature65°C to	o +150°C
Ambient Temperature with	
Power Applied40°C	to +85°C
Supply Voltage to Ground Potential0.4	/ to 4.6V
DC Voltage Applied to Outputs	
in High-Z State[3, 4, 5]0.	4V to 3.7V
DC Input Voltage[3, 4, 5]0.	4V to 3.7V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage	> 2001V
(per MIL-STD-883, Method 3015)	

Latch-up Current> 200 mA

Operating Range

Range	Ambient Temperature (T _A)	Vcc
Extended	-25°C to +85°C	2.7V to 3.6V
Industrial	-40°C to +85°C	2.7V to 3.6V

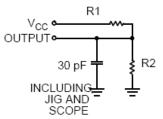
Devementer	Decerintian	Test Co.	a diti a na		l lmit		
Parameter	Description	Test Co	naitions	Min.	Typ.[2]	Max.	Unit
V _{CC}	Supply Voltage			2.7	3.0	3.6	V
V _{OH}	Output HIGH Voltage	I _{OH} = −0.1 mA		$V_{\text{CC}} - 0.4$			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA				0.4	V
VIH	Input HIGH Voltage			0.8 * V _{CC}		V _{CC} + 0.4	V
V _{IL}	Input LOW Voltage			-0.4		0.4	V
I _{IX}	Input Leakage Current	$GND \leq V_{IN} \leq$	Vcc	-1		+1	μA
I _{OZ}	Output Leakage Current	$GND \leq V_{OUT} \leq Disabled$	Vcc, Output	-1		+1	μA
I _{CC}	V _{CC} Operating	$f = f_{MAX} = 1/t_{RC}$	V _{CC} = 3.6V, I _{OUT} = 0 mA,		14 for 55ns speed 14 for 60 ns speed 8 for 70 ns speed	22 for 55 ns speed 22 for 60 ns speed 15 for 70 ns speed	mA
	Supply Current	f = 1 MHz	CMOS level		1 for all speed	5 for all speeds	
I _{SB1}	Automatic CE1 Power-down Current —CMOS Inputs	$\label{eq:central_constraint} \begin{array}{ c c c c } \hline \hline$			150	250	μΑ
I _{SB2}	Automatic CE1 Power-down Current —CMOS Inputs	$\label{eq:cell} \begin{array}{l} \overline{CE1} \geq V_{CC} - 0.\\ 0.2V, V_{IN} \geq V_{CC} \\ \leq 0.2V, f = 0, V_{C} \end{array}$	– 0.2V or V_{IN}		17	40	μA

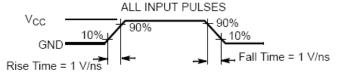
Capacitance[6]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	T _A = 25°C, f = 1 MHz	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

Notes:

 $3.V_{IH(MAX)} = V_{CC} + 0.5V$ for pulse durations less than 20 ns. $4.V_{IL(MIN)} = -0.5V$ for pulse durations less than 20 ns. 5.Overshoot and undershoot specifications are characterized and are not 100% tested.


6. Tested initially and after design or process changes that may affect these parameters.



Thermal Resistance[6]

Parameter	Description	Test Conditions	VFBGA	Unit
heta JA	Thermal Resistance (Junction to Ambient)	Test conditions follow standard test	55	°C/W
heta JC	Thermal Resistance (Junction to Case)	methods and procedures for measuring thermal impedance, per EIA/JESD51.	17	°C/W

AC Test Loads and Waveforms

Equivalent to: THEVENIN EQUIVALENT

	OUTPUT•	R _{TH} V _{TH}
Parameters	3.0V V _{cc}	Unit
R1	22000	Ω
R2	22000	Ω
RTH	11000	Ω
V _{TH}	1.50	V

Switching Characteristics (Over the Operating Range)[7]

Parameter	Description	-55		-60		-70		Unit
Farameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle								
t _{RC}	Read Cycle Time	55 ^[11]		60		70		ns
t _{AA}	Address to Data Valid		55		60		70	ns
t _{она}	Data Hold from Address Change	5		8		10		ns
t _{ACE}	CE1 LOW and CE2 HIGH to Data Valid		55		60		70	ns
t _{DOE}	OE LOW to Data Valid		25		25		35	ns
t _{LZOE}	OE LOW to Low Z[8, 9]	5		5		5		ns
t _{HZOE}	OE HIGH to High Z[8, 9]		25		25		25	ns
t _{LZCE}	CE1 LOW and CE2 HIGH to Low Z[8, 9]	2		2		5		ns
t _{HZCE}	CE1 HIGH and CE2 LOW to High Z[8, 9]		25		25		25	ns
t _{sk} [11]	Address Skew		0		5		10	ns
Write Cycle[1	10]							
t _{WC}	Write Cycle Time	55		60		70		ns
t _{SCE}	CE1 LOW and CE2 HIGH to Write End	45		45		60		ns
t _{AW}	Address Set-up to Write End	45		45		55		ns
t _{HA}	Address Hold from Write End	0		0		0		ns

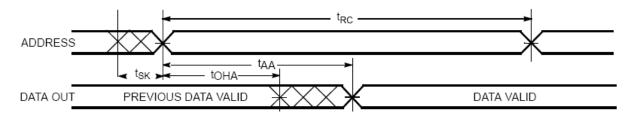
Notes:

7. Test conditions assume signal transition time of 1 V/ns or higher, timing reference levels of $V_{CC(typ)}/2$, input pulse levels of 0V to $V_{CC(typ)}$, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

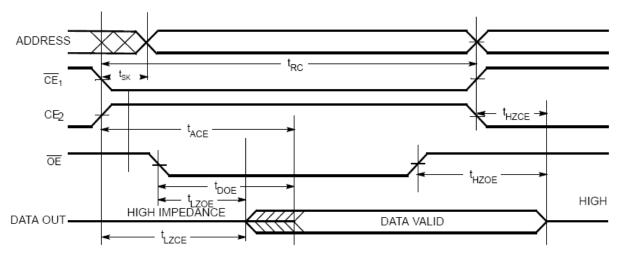
8. t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the outputs enter a high-impedance state.

9. High-Z and Low-Z parameters are characterized and are not 100% tested.

10. The internal write time of the memory is defined by the overlap of \overline{WE} , $\overline{CE1} = V_{IL}$, and $CE2 = V_{IH}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates write.


11.To achieve 55-ns performance, the read access should be \overline{CE} controlled. In this case t_{ACE} is the critical parameter and t_{SK} is satisfied when the addresses are stable prior to chip enable going active. For the 70-ns cycle, the addresses must be stable within 10 ns after the start of the read cycle.

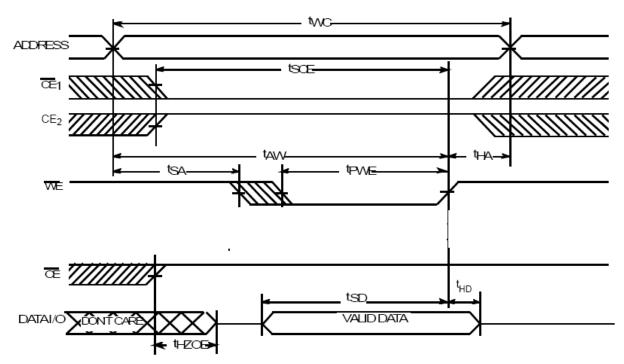
Switching Characteristics (Over the Operating Range)[7] (continued)


Prameter	Description	-55		-60		-70		Unit
	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t _{SA}	Address Set-up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	40		40		45		ns
t _{SD}	Data Set-up to Write End	25		25		25		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{HZWE}	WE LOW to High Z[8, 9]		25		25		25	ns
t _{LZWE}	WE HIGH to Low Z[8, 9]	5		5		5		ns

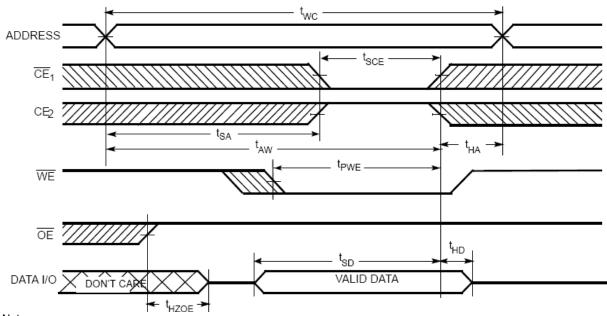
Switching Waveforms

Read Cycle 1 (Address Transition Controlled) [11, 12, 13]

Read Cycle 2 (OE Controlled) [11, 13]



Notes:


12.Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$. 13. \overline{WE} is HIGH for Read Cycle. ESMT

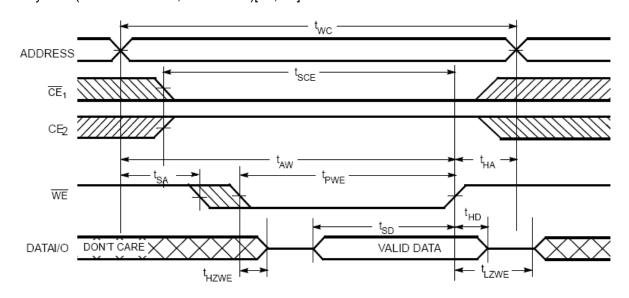
Switching Waveforms (continued)

Write Cycle No. 1(WE Controlled) [9, 10, 14, 15, 16]

Switching Waveforms (continued) Write Cycle 2 (**CE**1 or CE2 Controlled) [9, 10, 14, 15, 16]

Notes:

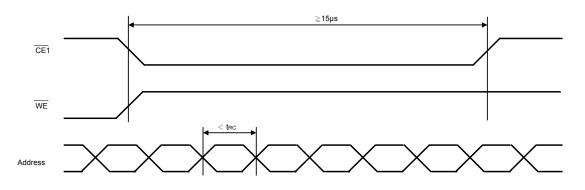
14.Data I/O is high impedance if $\overline{OE} \ge V_{IH}$.

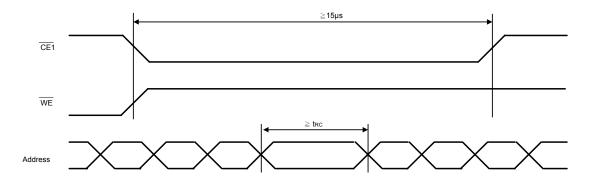

15.If Chip Enable goes INACTIVE simultaneously with WE =HIGH, the output remains in a high-impedance state. 16.During the DON'T CARE period in the DATA I/O waveform, the I/Os are in output state and input signals should not be applied.

Elite Semiconductor Memory Technology Inc.

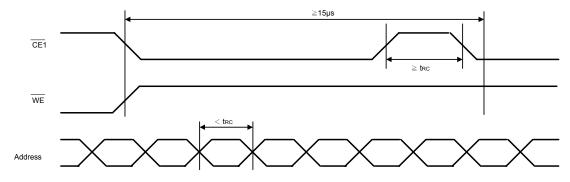
Publication Date: Jul. 2008Revision: 1.16/12

ESMT


Switching Waveforms (continued) Write Cycle 3 (WE Controlled, OE LOW)[15, 16]


Avoid Timing

ESMT Pseudo SRAM has a timing which is not supported at read operation, If your system has multiple invalid address signal shorter than tRC during over 15µs at read operation shown as in Abnormal Timing, it requires a normal read timing at leat during 15µs shown as in Avoidable timing 1 or toggle $\overline{CE1}$ to high ($\ge t_{RC}$) one time at least shown as in Avoidable Timing 2.


Abnormal Timing

Avoidable Timing 1

Avoidable Timing 2

Elite Semiconductor Memory Technology Inc.

Publication Date: Jul. 2008 Revision: 1.1 8/12

Truth Table[17]

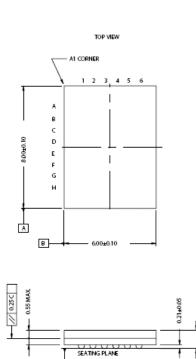
CE1	CE2	OE	WE	I/O ₀ –I/O ₇	Mode	Power
Н	Х	Х	Х	High Z	Power-down	Standby (I _{SB})
Х	L	Х	Х	High Z	Power-down	Standby (I _{SB})
L	Н	L	Н	Data Out	Read	Active (I _{CC})
L	Н	Х	L	Data in	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
55	M24L48512DA-55BEG	36-Lead VFBGA (6 x 8 x 1 mm) (pb-free)	Extended
60	M24L48512DA -60BEG	36-Lead VFBGA (6 x 8 x 1 mm) (pb-free)	Extended
70	M24L48512DA -70BEG	36-Lead VFBGA (6 x 8 x 1 mm) (pb-free)	Extended
55	M24L48512DA-55BIG	36-Lead VFBGA (6 x 8 x 1 mm) (pb-free)	Industrial
60	M24L48512DA-60BIG	36-Lead VFBGA (6 x 8 x 1 mm) (pb-free)	Industrial
70	M24L48512DA-70BIG	36-Lead VFBGA (6 x 8 x 1 mm) (pb-free)	Industrial

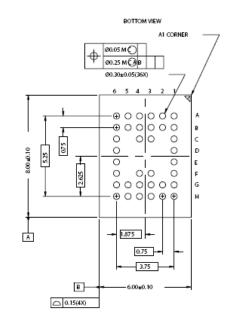
Note:

17.H = Logic HIGH, L = Logic LOW, X = Don't Care.



Package Diagram

36-Lead VFBGA (6 x 8 x 1 mm)


0150

1.00 MAX

C

0.26 MAX.

Revision History

Revision	Date	Description
1.0	2007.07.19	Original
1.1	2008.07.04	 Move Revision History to the last Modify voltage range 2.7V~3.3V to 2.7V~3.6V Add Industrial grade Add Avoid timing

Important Notice

All rights reserved.

No part of this document may be reproduced or duplicated in any form or by any means without the prior permission of ESMT.

The contents contained in this document are believed to be accurate at the time of publication. ESMT assumes no responsibility for any error in this document, and reserves the right to change the products or specification in this document without notice.

The information contained herein is presented only as a guide or examples for the application of our products. No responsibility is assumed by ESMT for any infringement of patents, copyrights, or other intellectual property rights of third parties which may result from its use. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of ESMT or others.

Any semiconductor devices may have inherently a certain rate of failure. To minimize risks associated with customer's application, adequate design and operating safeguards against injury, damage, or loss from such failure, should be provided by the customer when making application designs.

ESMT's products are not authorized for use in critical applications such as, but not limited to, life support devices or system, where failure or abnormal operation may directly affect human lives or cause physical injury or property damage. If products described here are to be used for such kinds of application, purchaser must do its own quality assurance testing appropriate to such applications.