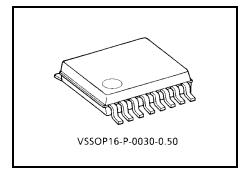
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7MH165FK

8-Bit Shift Register (P-In, S-Out)

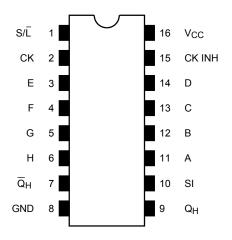

The TC7MH165FK is an advanced high speed CMOS 8-bit parallel/serial-in, serial-out shift register fabricated with silicon gate $\rm C^2MOS$ technology.

It achieves the high speed operation similar to equivalent bipolar schottky TTL while maintaining the CMOS low power dissipation.

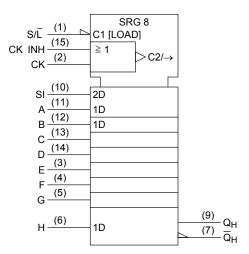
It consists of parallel-in or serial-in, serial-out 8-bit shift register with a gated clock input. When the SHIFT/ $\overline{\text{LOAD}}$ input is held high, the serial data input is enabled and the eight flip-flops perform serial shifting with each clock pulse.

When the SHIFT/ LOAD input is held low, the parallel data is loaded synchronously into the register at positive going transition of the clock pulse.

The CK-INH input should be shifted high only when the CK input is held high.


Weight: 0.02 g (typ.)

An Input protection circuit ensures that 0 to 7 V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5 V to 3 V systems and on two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

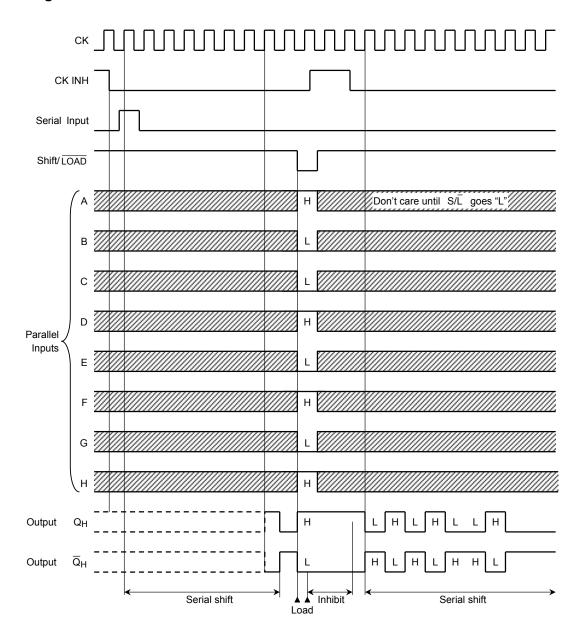

Features

- High speed: $f_{max} = 150 \text{ MHz (typ.)} (V_{CC} = 5 \text{ V})$
- Low power dissipation: $I_{CC} = 4 \mu A \text{ (max) (Ta} = 25 ^{\circ}\text{C)}$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Power down protection is provided on all inputs.
- Balanced propagation delays: t_{pLH} ≈ t_{pHL}
- Wide operating voltage range: $V_{CC (opr)} = 2 \sim 5.5 \text{ V}$
- Pin and function compatible with 74ALS165

Pin Assignment (top view)

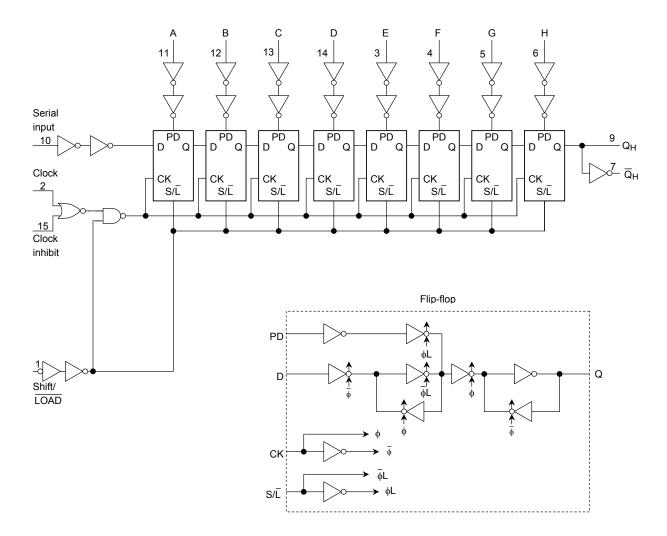
IEC Logic Symbol

Truth Table


		Inputs		Internal	Outputs	Outputs				
Shift/ LOAD	CK INH	CK	Serial In	Parallel AH	Q_A	Q _B	Q _H	\overline{Q}_H		
L	Х	Х	Х	ah	а	b	h	h		
Н	L		Н	Х	Н	Q _{An}	Q _{Gn}	$\overline{\overline{Q}}_{Gn}$		
Н	L		L	Х	L	Q _{An}	Q_{Gn}	\overline{Q}_Gn		
Н		L	Н	Х	Н	Q _{An}	Q_{Gn}	$\overline{\overline{Q}}_{Gn}$		
Н	_	L	L	Х	L	Q _{An}	Q _{Gn}	\overline{Q}_Gn		
Н	Х	Н	Х	Х	No change					
Н	Н	Х	Х	Х	No change					

X: Don't care

a.....h: The level of steady state input voltage at inputs A through H respectively


 Q_{An} - Q_{Gn} : The level of $Q_A \sim Q_G$, respectively, before the most recent positive transition of the CK.

Timing Chart

3 2001-10-23

System Diagram

4 2001-10-23

Maximum Ratings

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	-0.5~7.0	V
DC input voltage	V _{IN}	-0.5~7.0	٧
DC output voltage	V _{OUT}	-0.5~V _{CC} + 0.5	V
Input diode current	I _{IK}	-20	mA
Output diode current	lok	±20	mA
DC output current	lout	±25	mA
DC V _{CC} /ground current	Icc	±50	mA
Power dissipation	P _D	180	mW
Storage temperature	T _{stg}	-65~150	°C

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit	
Supply voltage	V _{CC}	2.0~5.5	V	
Input voltage	V _{IN}	0~5.5	V	
Output voltage	V _{OUT}	0~V _{CC}	V	
Operating temperature	T _{opr}	-40~85	°C	
Input rise and fall time	dt/dv	0~100 (V _{CC} = 3.3 ± 0.3 V)	ns/V	
input rise and fail time	avav	$0\sim20 \ (V_{CC}=5\pm0.5 \ V)$	ris/V	

Electrical Characteristics

DC Characteristics

Characteristics		Symbol	Test Condition			Ta = 25°C			Ta = -4	Ta = −40~85°C	
Characte	V _{CC} (V)		Min	Тур.	Max	Min	Max	Unit			
					2.0	1.50	_		1.50		
Input voltage	High level	V _{IH}		_	3.0~5.5	V _{CC} × 0.7	_		V _{CC} × 0.7		V
input voltage					2.0	_	_	0.50	_	0.50	V
	Low level	V _{IL}		_	3.0~5.5	_	_	V _{CC} × 0.3	_	Max	
	High level	Vон	V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -50 \mu A$	2.0	1.9	2.0	_	1.9	_	V
					3.0	2.9	3.0		2.9		
					4.5	4.4	4.5		4.4		
				$I_{OH} = -4 \text{ mA}$	3.0	2.58	_		2.48		
Output voltage				$I_{OH} = -8 \text{ mA}$	4.5	3.94	_	_	3.80	_	
Output voltage					2.0		0	0.1			v
				V _{IN} = V _{IH} I _{OL} = 50 μA	3.0	_	0	0.1		0.1	
	Low level	V _{OL}	V _{IN} = V _{IH} or V _{IL}		4.5		0	0.1	_	0.1	
				$I_{OL} = 4 \text{ mA}$	3.0	_	_	0.36		0.44	
				$I_{OL} = 8 \text{ mA}$	4.5		_	0.36	_	0.44	
Input leakage cu	Input leakage current		V _{IN} = 5.5 V or GND		0~5.5	_	_	±0.1		±1.0	μΑ
Quiescent supply	y current	Icc	$V_{IN} = V_{CC}$	or GND	5.5	_	_	4.0	_	40.0	μΑ

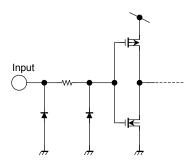
Timing Requirements (Input: $t_r = t_f = 3 \text{ ns}$)

Characteristics	Symbol	Test Condition		Ta = 25°C		Ta = -40~85°C	Unit	
Characteristics	Symbol	rest Condition	V _{CC} (V)	Тур.	Limit	Limit	Offic	
Minimum pulse width	t _{w (L)}	_	3.3 ± 0.3	_	6.0	7.0	ns	
(CK, CK INH)	t _{w (H)}	_	5.0 ± 0.5	_	4.0	4.0	115	
Minimum pulse width			3.3 ± 0.3	_	7.5	9.0	no	
(S/L)	tW (L)	_	5.0 ± 0.5	_	5.0	6.0	ns	
Minimum set-up time			3.3 ± 0.3	_	7.5	8.5	- ns	
(A~H- S/L)	t _s	_	5.0 ± 0.5	_	5.0	5.0		
Minimum set-up time			3.3 ± 0.3	_	5.0	6.0	no	
(SI-CK, CK INH)	t _s	_	5.0 ± 0.5	_	4.0	4.0	ns	
Minimum set-up time			3.3 ± 0.3	_	5.0	6.0	no	
(S/L -CK, CK INH)	t _s	_	5.0 ± 0.5	_	4.0	4.0	ns	
Minimum hold time	+.		3.3 ± 0.3	_	0.5	0.5	ne	
(A~H- S/L)	t _h	_	5.0 ± 0.5	_	1.0	1.0	ns	
Minimum hold time	+.		3.3 ± 0.3	_	0	0	ne	
(SI-CK, CK INH)	t _h	_	5.0 ± 0.5	_	0.5	0.5	ns	
Minimum hold time	4.		3.3 ± 0.3	_	0	0	no	
(S/L -CK, CK INH)	t _h	_	5.0 ± 0.5	_	0.5	0.5	ns	
Minimum removal time			3.3 ± 0.3	_	5.0	5.0		
(CK INH-CK)	t _{rem}	_					ns	
(CK-CK INH)			5.0 ± 0.5	_	3.5	3.5		

6 2001-10-23

TC7MH165FK

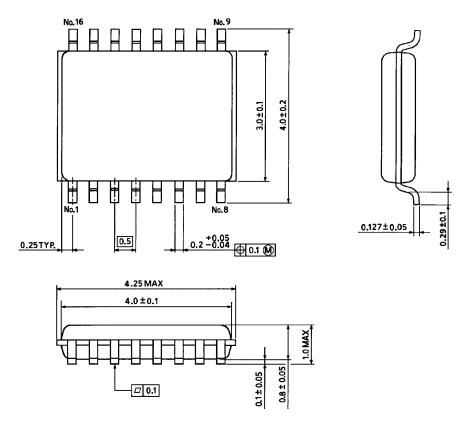
AC Characteristics (Input: $t_r = t_f = 3 \text{ ns}$)


Characteristics	Symbol	Test Condition			Ta = 25°C			Ta = -40~85°C		Unit
Characteristics	Symbol	rest Condition	V _{CC} (V)	C _L (pF)	Min	Тур.	Max	Min	Max	Unit
Propagation delay time	t _{pLH}		3.3 ± 0.3	15	_	9.9	15.4	1.0	18.0	ns
			3.3 ± 0.3	50	_	12.4	18.9	1.0	21.5	
(CK, CK INH-Q _H , \overline{Q}_H)	t _{pHL}	_	5.0 ± 0.5	15	_	6.6	9.9	1.0	11.5	113
			5.0 ± 0.5	50		8.1	11.9	1.0	13.5	
			3.3 ± 0.3	15		9.9	15.8	1.0	18.5	- ns
Propagation delay time	t _{pLH}	_	3.3 ± 0.3	50		12.4	19.3	1.0	22.0	
$(S/L-Q_H, \overline{Q}_H)$	t _{pHL}		5.0 ± 0.5	15		6.7	9.9	1.0	11.5	
				50		8.2	11.9	1.0	13.5	
	t _{pLH} t _{pHL}	_	3.3 ± 0.3	15		9.2	14.1	1.0	16.5	- ns
Propagation delay time				50		11.7	17.6	1.0	20.0	
$(H-Q_H, \overline{Q}_H)$			5.0 ± 0.5	15		5.9	9.0	1.0	10.5	
			3.0 ± 0.3	50		7.4	11.0	1.0	11.5 13.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 19.5	
			3.3 ± 0.3	15	65	85	_	55	_	
Maximum clock frequency	f _{max}		3.3 ± 0.3	50	60	105		50		MHz
Maximum clock frequency	max	_	5.0 ± 0.5	15	110	150	_	90		
			3.0 ± 0.5	50	95	130		85	_	
Input capacitance	CIN	-			_	4	10	_	10	pF
Power dissipation capacitance	C _{PD}			(Note)	_	50	_	_	_	pF

Note: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

$$I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$$


Input Equivalent Circuit

Unit: mm

Package Dimensions

VSSOP16-P-0030-0.50

Weight: 0.02 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.

2001-10-23