TOSHIBA Digital Integrated Circuit Silicon Monolithic

TC7MPH3245FTG

Low Voltage/Low Power 4-Bit × 2 Dual Supply Bus Transceiver with Bushold

The TC7MP3245FTG is a dual supply, advanced high-speed CMOS 8-bit dual supply voltage interface bus transceiver fabricated with silicon gate CMOS technology.

Designed for use as an interface between a 1.2-V, 1.5-V, 1.8-V, or 2.5-V bus and a 1.8-V, 2.5-V or 3.6-V bus in mixed 1.2-V, 1.5-V, 1.8-V or 2.5-V/1.8-V, 2.5-V or 3.6-V supply systems.

The A-port interfaces with the 1.2-V, 1.5-V, 1.8-V or 2.5-V bus, the B-port with the 1.8-V, 2.5-V, 3.3-V bus.

The direction of data transmission is determined by the level of the DIR input. The enable input (\overline{OE}) can be used to disable the device so that the buses are effectively isolated. The bus of a B bus side at floating state is maintained in an appropriate logic

Weight: 0.03 g (typ.)

level due to a bushold circuit to a B bus. Moreover, the bushold circuit which is added to a B bus is off when \overline{OE} is low.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

Features

- Bidirectional interface between 1.2-V and 1.8-V, 1.2-V and 2.5-V, 1.2-V and 3.3-V, 1.5-V and 2.5-V, 1.5-V and 3.3-V, 1.8-V and 2.5-V, 1.8-V and 3.3-V or 2.5-V and 3.3-V buses.
- High-speed operation: $t_{pd} = 6.8 \text{ ns (max)} (V_{CCA} = 2.5 \pm 0.2 \text{ V}, V_{CCB} = 3.3 \pm 0.3 \text{ V})$

 $t_{pd} = 8.9 \text{ ns (max) (VCCA} = 1.8 \pm 0.15 \text{ V, VCCB} = 3.3 \pm 0.3 \text{ V)}$

 t_{pd} = 10.3 ns (max) (VCCA = 1.5 \pm 0.1 V, VCCB = 3.3 \pm 0.3 V)

 $t_{pd} = 61 \text{ ns (max)} (V_{CCA} = 1.2 \pm 0.1 \text{ V}, V_{CCB} = 3.3 \pm 0.3 \text{ V})$

 $t_{pd} = 9.5 \text{ ns (max)} (V_{CCA} = 1.8 \pm 0.15 \text{ V}, V_{CCB} = 2.5 \pm 0.2 \text{ V})$

 $t_{pd} = 10.8 \text{ ns (max)} (V_{CCA} = 1.5 \pm 0.1 \text{ V}, V_{CCB} = 2.5 \pm 0.2 \text{ V})$

 t_{pd} = 60 ns (max) (V_{CCA} = 1.2 ± 0.1 V, V_{CCB} = 2.5 ± 0.2 V)

 t_{pd} = 58 ns (max) (V_{CCA} = 1.2 \pm 0.1 V, V_{CCB} = 1.5 \pm 0.1 V)

• Output current: $IOH/IOL = \pm 12 \text{ mA (min) (VCC} = 3.0 \text{ V)}$

 $IOH/IOL = \pm 9 \text{ mA (min) (VCC} = 2.3 \text{ V)}$

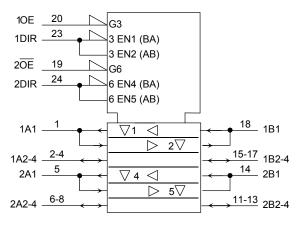
 $IOH/IOL = \pm 3 \text{ mA (min) (VCC} = 1.65 \text{ V)}$

 $IOH/IOL = \pm 1 \text{ mA (min) (VCC} = 1.4 \text{ V)}$

- Latch-up performance: ±300 mA
- ESD performance: Machine model $\geq \pm 200 \text{ V}$

Human body model $\geq \pm 2000 \text{ V}$

- Ultra-small package: VQON24
- Bushold circuit is build in only the B bus side. (Only in OE = "H", a former state is maintained.)
- Low current consumption: Using the new circuit significantly reduces current consumption when OE = "H". Suitable for battery-driven applications such as PDAs and cellular phones.
- Floating A-bus and B-bus are permitted. (when $\overline{OE} = \text{"H"}$)
- 3.6-V tolerant function provided on A-bus terminal, DIR and \overline{OE} terminal.

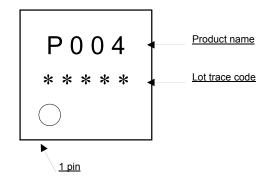

Note 1: Do not apply a signal to any bus pins when it is in the output mode. Damage may result.

Note: When mounting VQON package, the type of recommended flux is RA or RMA.

Pin Assignment (top view)

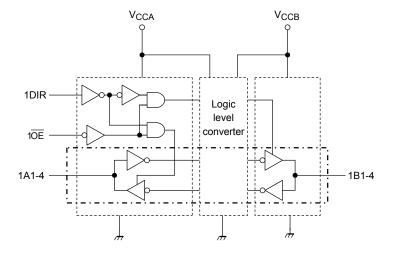
2DIR 1DIR V_{CCA} GND 1OE 2OE 24 23 22 21 20 19 18 1B1 1A1 1 1A2 2 17 1B2 1A3 3 16 1B3 1A4 4 15 1B4 2A1 5 2B1 14 2A2 6 13 2B2 10 11 9 2A3 2A4 GND V_{CCB} 2B4 2B3

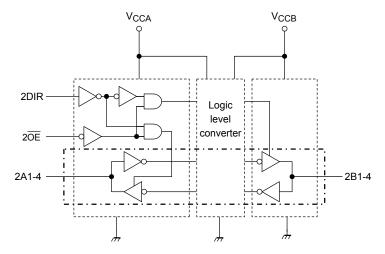
IEC Logic Symbol


Truth Table

Inp	Inputs		ction	_	Bushold Circuit	
1 OE	1DIR	Bus 1A1-1A4	Bus 1B1-1B4	Outputs	(B bus)	
L	L	Output	Input	A = B	OFF	
L	Н	Input	Output	B=A	OFF	
Н	Х	Z		Z	ON*	

Inp	uts	Fund	ction	_	Bushold Circuit (B bus)	
2 OE	2DIR	Bus 2A1-2A4	Bus 2B1-2B4	Outputs		
L	L	Output	Input	A = B	OFF	
L	Н	Input	Output	B=A	OFF	
Н	Х	Z		Z	ON*	


- X: Don't care
- Z: High impedance
- *: Logic state just before becoming disable is maintained.


Marking

2 2007-10-19

Block Diagram

3 2007-10-19

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage (Note 2)	V_{CCA}	−0.5 to 4.6	V	
(Note 2)	V _{CCB}	−0.5 to 4.6	V	
DC input voltage (DIR, $\overline{\text{OE}}$)	V _{IN}	-0.5 to 4.6	٧	
	V	-0.5 to 4.6 (Note 3)		
DC bus I/O voltage	V _{I/OA}	-0.5 to V _{CCA} + 0.5 (Note 4)	V	
	V _{I/OB}	-0.5 to V _{CCB} + 0.5 (Note 4)		
Input diode current	I _{IK}	-50	mA	
Output diode current	I _{I/OK}	±50 (Note 5)	mA	
DC output current	I _{OUTA}	±25	mA	
Do output current	I _{OUTB}	±25	ША	
DC V _{CC} /ground current per supply pin	ICCA	±50	mA	
De vergiound current per supply pin	I _{CCB}	±50	mA	
Power dissipation	P_{D}	180	mW	
Storage temperature	T _{stg}	-65 to 150	°C	

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: Don't supply a voltage to V_{CCB} pin when V_{CCA} is in the OFF state.

Note 3: Output in OFF state

Note 4: High or Low stats. IOUT absolute maximum rating must be observed.

Note 5: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Operating Ranges (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CCA}	1.1 to 2.7	V	
(Note 2)	V _{CCB}	1.65 to 3.6	V	
Input voltage (DIR, \overline{OE})	V _{IN}	0 to 3.6	V	
	Vivo	0 to 3.6 (Note 3)		
Bus I/O voltage	VI/OA	0 to V _{CCA} (Note 4)	V	
	V _{I/OB}	0 to V _{CCB} (Note 4)		
		±9 (Note 5)		
	Iouta	±3 (Note 6)		
Output current	VIN 0 to 3.6 VI/OA 0 to 3.6 (Note 3) O voltage 0 to V _{CCA} (Note 4) VI/OB 0 to V _{CCB} (Note 4) ±9 (Note 5) 10UTA ±1 (Note 7) ±12 (Note 8) IOUTB ±9 (Note 9)	mA		
Output current		±12 (Note 8)	ША	
	I _{OUTB}	±9 (Note 9)		
		±3 (Note 10)	ļ	
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 11)	ns/V	

- Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs and bus inputs must be tied to either VCC or GND. Please connect both bus inputs and the bus outputs with VCC or GND when the I/O of the bus terminal changes by the function. In this case, please note that the output is not short-circuited.
- Note 2: Don't use in V_{CCA} > V_{CCB}
- Note 3: Output in OFF state
- Note 4: High or low state
- Note 5: $V_{CCB}= 2.3 \text{ to } 2.7 \text{ V}$
- Note 6: $V_{CCB} = 1.65 \text{ to } 1.95 \text{ V}$
- Note 7: V_{CCB} = 1.4 to 1.6 V
- Note 8: V_{CCA} = 3.0 to 3.6 V
- Note 9: $V_{CCA} = 2.3 \text{ to } 2.7 \text{ V}$
- Note 10: $V_{CCA} = 1.65$ to 1.95 V
- Note 11: $V_{IN} = 0.8$ to 2.0 V, $V_{CCA} = 2.5$ V, $V_{CCB} = 3.0$ V

Electrical Characteristics

DC Characteristics (2.3 V \leq V_{CCA} \leq 2.7 V, 2.7 V < V_{CCB} \leq 3.6 V)

Characteristics	Symbol	Test Co	ondition	V _{CCA} (V)	V _{CCB} (V)	Ta = -40) to 85°C	Unit
Officialitics	Cymbol	103100	onation	VCCA (V)	VCCB (V)	Min	Max	Offic
H-level input voltage	V_{IHA}	DIR, \overline{OE} , An		2.3 to 2.7	2.7 to 3.6	1.6	—	V
Ti-icver input voltage	V_{IHB}	Bn		2.3 to 2.7	2.7 to 3.6	2.0	_	٧
L-level input voltage	V_{ILA}	DIR, \overline{OE} , An		2.3 to 2.7	2.7 to 3.6	_	0.7	V
L-level input voltage	V_{ILB}	Bn		2.3 to 2.7	2.7 to 3.6		0.8	V
	V _{OHA}		$I_{OHA} = -100 \mu A$	2.3 to 2.7	2.7 to 3.6	V _{CCA} - 0.2	_	
H-level output voltage		VIN = VIH or VIL	$I_{OHA} = -9 \text{ mA}$	2.3	2.7 to 3.6	1.7	_	V
Thevel output voltage	V _{OHB}	VIN - VIH OI VIL	$I_{OHB} = -100 \ \mu A$	2.3 to 2.7	2.7 to 3.6	V _{CCB} - 0.2		V
			$I_{OHB} = -12 \text{ mA}$	2.3 to 2.7	3.0	2.2	_	
	V _{OLA}		$I_{OLA} = 100 \ \mu A$	2.3 to 2.7	2.7 to 3.6	_	0.2	
L-level output voltage	VOLA	V _{IN} = V _{IH} or V _{IL}	I _{OLA} = 9 mA	2.3	2.7 to 3.6	_	0.6	V
L-icver output voltage	\/	VIN - VIH OI VIL	$I_{OLB} = 100 \ \mu A$	2.3 to 2.7	2.7 to 3.6		0.2	V
	V _{OLB}		I _{OLB} = 12 mA	2.3 to 2.7	3.0		0.55	
	I _{OZA}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ s}$	V	2.3 to 2.7	2.7 to 3.6	_	±5.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 3.6 V		2.3 to 2.7	2.7 to 3.6	_	±5.0	μΑ
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$) =	= 0 to 3.6 V	2.3 to 2.7	2.7 to 3.6	_	±5.0	μА
Bushold input minimum drive hold		V _{IN} = 0.8 V		2.3 to 2.7	3.0	75	_	
current	IHOLD	V _{IN} = 2.0 V		2.3 to 2.7	3.0	-75	_	μΑ
Bushold input over-drive current	lias	V _{IN} = "L"→"H"		2.3 to 2.7	3.6	_	550	
to change state (Note)	liod	V _{IN} = "H"→"L"		2.3 to 2.7	3.6	_	-550	μА
	I _{OFF1}			0	0	_	5.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	2.3 to 2.7	0	_	5.0	μА
	I _{OFF3}			2.3 to 2.7	Open	_	5.0	
	I _{CCA}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or $V_{INB} = V_{CCB}$		2.3 to 2.7	2.7 to 3.6	_	5.0	
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or $V_{INB} = V_{CCB}$	GND	2.3 to 2.7	2.7 to 3.6	_	5.0	μА
	ICCA	V _{CCA} ≤ (V _{IN} , V _O	u⊤) ≤ 3.6 V	2.3 to 2.7	2.7 to 3.6	_	±5.0	
	I _{CCB}	$V_{CCB} \le (V_{IN}, V_{O})$	_{UT}) ≤ 3.6 V	2.3 to 2.7	2.7 to 3.6	_	±5.0	μА
	Ісств	V _{INA} = V _{CCB} - 0	.6 V per input	2.3 to 2.7	2.7 to 3.6	_	750.0	μА

DC Characteristics (1.65 V \leq V_{CCA} < 2.3 V, 2.7 V < V_{CCB} \leq 3.6 V)

Characteristics	Symbol	Test Co	ondition	V _{CCA} (V)	V _{CCB} (V)	Ta = -40	to 85°C	Unit
Characteristics	Cyllibol	1031 00	Silution	VCCA (V)	ACCR (A)	Min	Max	Offic
H-level input voltage	V _{IHA}	DIR, OE, An		1.65 to 2.3	2.7 to 3.6	0.65 × V _{CCA}	_	V
	V _{IHB}	Bn		1.65 to 2.3	2.7 to 3.6	2.0	_	
L-level input voltage	V_{ILA}	DIR, \overline{OE} , An		1.65 to 2.3	2.7 to 3.6	_	$\begin{array}{c} 0.35 \times \\ V_{CCA} \end{array}$	V
	V _{ILB}	Bn		1.65 to 2.3	2.7 to 3.6		0.8	
	V _{OHA}		$I_{OHA} = -100 \mu A$	1.65 to 2.3	2.7 to 3.6	V _{CCA} - 0.2		
H-level output voltage		VIN = VIH or VIL	$I_{OHA} = -3 \text{ mA}$	1.65	2.7 to 3.6	1.25	_	V
Triover output voltage	V _{OHB}	VIN - VIH OI VIL	$I_{OHB} = -100 \mu A$	1.65 to 2.3	2.7 to 3.6	V _{CCB} - 0.2	_	V
			$I_{OHB} = -12 \text{ mA}$	1.65 to 2.3	3.0	2.2	_	
	Vola		$I_{OLA} = 100 \mu A$	1.65 to 2.3	2.7 to 3.6	_	0.2	
L-level output voltage	VOLA	V _{IN} = V _{IH} or V _{IL}	$I_{OLA} = 3 \text{ mA}$	1.65	2.7 to 3.6	_	0.3	V
E level output voltage	V _{OLB}	A = AIH or AIF	$I_{OLB} = 100 \ \mu A$	1.65 to 2.3	2.7 to 3.6	_	0.2	v
	VOLB		I _{OLB} = 12 mA	1.65 to 2.3	3.0	_	0.55	
	IOZA	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 ^{\circ}$	V	1.65 to 2.3	2.7 to 3.6	_	±5.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 3.6 V		1.65 to 2.3	2.7 to 3.6		±5.0	μА
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$) =	= 0 to 3.6 V	1.65 to 2.3	2.7 to 3.6	_	±2.0	μΑ
Bushold input minimum drive hold	_	V _{IN} = 0.8 V		1.65 to 2.3	3.0	75	_	
current	IHOLD	V _{IN} = 2.0 V		1.65 to 2.3	3.0	-75	_	μΑ
Bushold input over-drive current		V _{IN} = "L"→"H"		1.65 to 2.3	3.6	_	550	
to change state (Note)	liod	V _{IN} = "H"→"L"		1.65 to 2.3	3.6	_	-550	μΑ
	I _{OFF1}			0	0		5.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.65 to 2.3	0		5.0	μΑ
	I _{OFF3}			1.65 to 2.3	Open	_	5.0	
	I _{CCA}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or $V_{INB} = V_{CCB}$		1.65 to 2.3	2.7 to 3.6	_	5.0	
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or $V_{INB} = V_{CCB}$		1.65 to 2.3	2.7 to 3.6	_	5.0	μА
	I _{CCA}	V _{CCA} ≤ (V _{IN} , V _O		1.65 to 2.3	2.7 to 3.6	_	±5.0	_
	I _{CCB}	$V_{CCB} \le (V_{IN}, V_{O})$	UT) ≤ 3.6 V	1.65 to 2.3	2.7 to 3.6	_	±5.0	μА
	I _{CCTB}	V _{INB} = V _{CCB} - 0	.6 V per input	1.65 to 2.3	2.7 to 3.6	_	750.0	μА

DC Characteristics (1.4 V \leq V_{CCA} < 1.65 V, 2.7 V < V_{CCB} \leq 3.6 V)

Characteristics	Cumbal	Toot Co	andition	\/ (\)	V (V)	Ta = -40	to 85°C	Unit
Characteristics	Symbol	rest Co	ondition	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Offic
H-level input voltage	V _{IHA}	DIR, $\overline{\text{OE}}$, An		1.4 to 1.65	2.7 to 3.6	$\begin{array}{c} 0.65 \times \\ V_{CCA} \end{array}$		V
	V_{IHB}	Bn		1.4 to 1.65	2.7 to 3.6	2.0		
L-level input voltage	V_{ILA}	DIR, \overline{OE} , An		1.4 to 1.65	2.7 to 3.6		0.30 × VCCA	V
	V _{ILB}	Bn		1.4 to 1.65	2.7 to 3.6		0.8	
	V _{OHA}		$I_{OHA} = -100 \mu A$	1.4 to 1.65	2.7 to 3.6	V _{CCA} - 0.2		
H-level output voltage		VIN = VIH or VIL	$I_{OHA} = -1 \text{ mA}$	1.4	2.7 to 3.6	1.05	_	V
Ti-level output voltage	V _{OHB}	AIN = AIH OI AIL	$I_{OHB} = -100 \mu A$	1.4 to 1.65	2.7 to 3.6	V _{CCB} – 0.2		V
			$I_{OHB} = -12 \text{ mA}$	1.4 to 1.65	3.0	2.2	_	
	Vola		$I_{OLA} = 100 \ \mu A$	1.4 to 1.65	2.7 to 3.6		0.2	
L-level output voltage	VOLA	V _{IN} = V _{IH} or V _{IL}	I _{OLA} = 1 mA	1.4	2.7 to 3.6		0.35	V
L-level output voltage	\/	AIN - AIH OI AIL	$I_{OLB} = 100 \; \mu A$	1.4 to 1.65	2.7 to 3.6		0.2	V
	V _{OLB}		I _{OLB} = 12 mA	1.4 to 1.65	3.0		0.55	
	I _{OZA}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 ^{\circ}$	V	1.4 to 1.65	2.7 to 3.6		±5.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$		1.4 to 1.65	2.7 to 3.6	_	±5.0	μА
Input leakage current	I _{IN}	V _{IN} (DIR, \overline{OE}) =		1.4 to 1.65	2.7 to 3.6	_	±2.0	μА
Bushold input minimum drive hold		V _{IN} = 0.8 V		1.4 to 1.65	3.0	75	_	
current	IHOLD	V _{IN} = 2.0 V		1.4 to 1.65	3.0	-75	_	μΑ
Bushold input over-drive current		V _{IN} = "L"→"H"		1.4 to 1.65	3.6	_	550	
to change state (Note)	liod	V _{IN} = "H"→"L"		1.4 to 1.65	3.6	_	-550	μΑ
	l _{OFF1}			0	0	_	5.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.4 to 1.65	0	_	5.0	μΑ
	I _{OFF3}			1.4 to 1.65	Open	_	5.0	
	ICCA	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or V_{CCB}		1.4 to 1.65	2.7 to 3.6	_	5.0	
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or $V_{INB} = V_{CCB}$	GND	1.4 to 1.65	2.7 to 3.6	_	5.0	μА
	I _{CCA}	$V_{CCA} \le (V_{IN}, V_{O})$	UT) ≤ 3.6 V	1.4 to 1.65	2.7 to 3.6	_	±5.0	^
	I _{CCB}	$V_{CCB} \le (V_{IN}, V_{O})$	UT) ≤ 3.6 V	1.4 to 1.65	2.7 to 3.6	_	±5.0	μА
	I _{CCTB}	$V_{INB} = V_{CCB} - 0$.6 V per input	1.4 to 1.65	2.7 to 3.6		750.0	μА

DC Characteristics (1.1 V \leq V_{CCA} < 1.4 V, 2.7 V < V_{CCB} \leq 3.6 V)

Characteristics	Symbol	Toot C	ondition	V (V)	\/aa= (\/)	Ta = -40) to 85°C	Unit
Characteristics	Symbol	Test O	ondition	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Offic
H-level input voltage	V _{IHA}	DIR, \overline{OE} , An		1.1 to 1.4	2.7 to 3.6	0.65 × V _{CCA}		V
	V _{IHB}	Bn		1.1 to 1.4	2.7 to 3.6	2.0	_	
L-level input voltage	V _{ILA}	DIR, \overline{OE} , An		1.1 to 1.4	2.7 to 3.6	_	0.30 × VCCA	V
	V_{ILB}	Bn		1.1 to 1.4	2.7 to 3.6		0.8	
	V _{OHA}		$I_{OHA} = -100 \mu A$	1.1 to 1.4	2.7 to 3.6	V _{CCA} - 0.2	_	
H-level output voltage	V _{OHB}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OHB} = -100 \mu A$	1.1 to 1.4	2.7 to 3.6	V _{CCB} – 0.2		V
			$I_{OHB} = -12 \text{ mA}$	1.1 to 1.4	3.0	2.2		
	V_{OLA}		$I_{OLA} = 100 \ \mu A$ 1.1		2.7 to 3.6		0.2	
L-level output voltage	Volb	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OLB} = 100 \ \mu A$	1.1 to 1.4	2.7 to 3.6		0.2	V
	VOLB		$I_{OLB} = 12 \text{ mA}$	1.1 to 1.4	3.0	—	0.55	
	IOZA	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6$	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 3.6 V		2.7 to 3.6	_	±5.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 3.6	V	1.1 to 1.4	2.7 to 3.6	_	±5.0	μА
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$) :	= 0 to 3.6 V	1.1 to 1.4	2.7 to 3.6	_	±2.0	μА
Bushold input minimum drive hold	lu . a . a	V _{IN} = 0.8 V		1.1 to 1.4	3.0	75	_	^
current	IHOLD	V _{IN} = 2.0 V		1.1 to 1.4	3.0	-75	_	μΑ
Bushold input over-drive current	lion	V _{IN} = "L"→"H"		1.1 to 1.4	3.6	_	550	μΑ
to change state (Note)	liod	V _{IN} = "H"→"L"		1.1 to 1.4	3.6		-550	μΑ
	I _{OFF1}			0	0	—	5.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.1 to 1.4	0	_	5.0	μΑ
	I _{OFF3}			1.1 to 1.4	Open		5.0	
	I _{CCA}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or		1.1 to 1.4	2.7 to 3.6	_	5.0	
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or	GND	1.1 to 1.4	2.7 to 3.6	_	5.0	μА
	I _{CCA}	$V_{CCA} \le (V_{IN}, V_{CCA})$	_{OUT}) ≤ 3.6 V	1.1 to 1.4	2.7 to 3.6	_	±5.0	
	I _{CCB}	$V_{CCB} \le (V_{IN}, V_{C})$	_{OUT}) ≤ 3.6 V	1.1 to 1.4	2.7 to 3.6	_	±5.0	μΑ
	Ісств	$V_{INB} = V_{CCA} - 0$	0.6 V per input	1.1 to 1.4	2.7 to 3.6	_	750.0	

DC Characteristics (1.65 V \leq V_{CCA} < 2.3 V, 2.3 V \leq V_{CCB} \leq 2.7 V)

Characteristics	Symbol	Test Co	ondition	V _{CCA} (V)	V _{CCB} (V)	Ta = -40	to 85°C	Unit
	ĺ			00/((/	005 ()	Min	Max	
H-level input voltage	V_{IHA}	DIR, $\overline{\text{OE}}$, An		1.65 to 2.3	2.3 to 2.7	0.65 × V _{CCA}	-	V
	V _{IHB}	Bn		1.65 to 2.3	2.3 to 2.7	1.6	_	
L-level input voltage	V _{ILA}	DIR, \overline{OE} , An		1.65 to 2.3	2.3 to 2.7	_	0.35 × VCCA	٧
	V _{ILB}	Bn		1.65 to 2.3	2.3 to 2.7	_	0.7	
	V _{OHA}		$I_{OHA} = -100 \mu A$	1.65 to 2.3	2.3 to 2.7	V _{CCA} - 0.2	_	
H-level output voltage		VIN = VIH or VIL	$I_{OHA} = -3 \text{ mA}$	1.65	2.3 to 2.7	1.25	1	V
n-level output voltage	V _{OHB}	VIN = VIH OI VIL	I _{OHB} = -100 μA	1.65 to 2.3	2.3 to 2.7	V _{CCB} - 0.2	_	V
			I _{OHB} = -9 mA	1.65 to 2.3	2.3	1.7	_	
	Vol.		$I_{OLA} = 100 \ \mu A$	1.65 to 2.3	2.3 to 2.7	_	0.2	
L-level output voltage	Vola	\/ \/ or \/	I _{OLA} = 3 mA	1.65	2.3 to 2.7	_	0.3	V
L-level output voltage	Volb	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OLB} = 100 \ \mu A$	1.65 to 2.3	2.3 to 2.7	_	0.2	V
	VOLB		I _{OLB} = 9mA	1.65 to 2.3	2.3	_	0.6	
	loza	$V_{IN} = V_{IH}$ or V_{IL}		1.65 to 2.3	2.3 to 2.7	_	±5.0	
3-state output OFF state current		V _{OUT} = 0 to 3.6 V						μА
·	I _{OZB}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 3.6 V		1.65 to 2.3	2.3 to 2.7	_	±5.0	
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$) =	= 0 to 3.6 V	1.65 to 2.3	2.3 to 2.7	_	±2.0	μΑ
Bushold input minimum drive hold	1	V _{IN} = 0.7 V		1.65 to 2.3	2.3	45	_	
current	IHOLD	V _{IN} = 1.6 V		1.65 to 2.3	2.3	-45	_	μΑ
Bushold input over-drive current	lias	V _{IN} = "L"→"H"		1.65 to 2.3	2.7	_	450	^
to change state (Note)	liod	V _{IN} = "H"→"L"		1.65 to 2.3	2.7	_	-450	μΑ
	I _{OFF1}			0	0	_	5.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.65 to 2.3	0	_	5.0	μΑ
	I _{OFF3}			1.65 to 2.3	Open	—	5.0	
	I _{CCA}	$V_{INA} = V_{CCA}$ or	GND	1.65 to 2.3	2.3 to 2.7	_	5.0	
		$V_{INB} = V_{CCB}$ or			2.0 10 2.1			μΑ
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or $V_{INB} = V_{CCB}$		1.65 to 2.3	2.3 to 2.7	_	5.0	μΑ
	ICCA	$V_{CCA} \le (V_{IN}, V_{CI})$	_{UT}) ≤ 3.6 V	1.65 to 2.3	2.3 to 2.7	_	±5.0	μА
	I _{CCB}	$V_{CCB} \le (V_{IN}, V_{CO})$	_{UT}) ≤ 3.6 V	1.65 to 2.3	2.3 to 2.7	_	±5.0	μА

DC Characteristics (1.4 V \leq V_{CCA} < 1.65 V, 2.3 V \leq V_{CCB} \leq 2.7 V)

Characteristics	Symbol	Test Co	ondition	V _{CCA} (V)	V _{CCB} (V)	Ta = -40	to 85°C	Unit
	,			00/()	005 ()	Min	Max	
H-level input voltage	V_{IHA}	DIR, \overline{OE} , An		1.4 to 1.65	2.3 to 2.7	0.65 × V _{CCA}	-	V
	V _{IHB}	Bn		1.4 to 1.65	2.3 to 2.7	1.6	_	
L-level input voltage	V _{ILA}	DIR, \overline{OE} , An		1.4 to 1.65	2.3 to 2.7		0.30 × VCCA	V
	V _{ILB}	Bn		1.4 to 1.65	2.3 to 2.7	_	0.7	
	V _{OHA}		$I_{OHA} = -100 \mu A$	1.4 to 1.65	2.3 to 2.7	V _{CCA} - 0.2	_	
H-level output voltage		VIN = VIH or VIL	$I_{OHA} = -1 \text{ mA}$	1.4	2.3 to 2.7	1.05	_	V
ri-level output voltage	V _{OHB}	AIN = AIH OL AIL	$I_{OHB} = -100 \mu A$	1.4 to 1.65	2.3 to 2.7	V _{CCB} – 0.2		V
			$I_{OHB} = -9 \text{ mA}$	1.4 to 1.65	2.3	1.7		
	Vol.		$I_{OLA} = 100 \ \mu A$	1.4 to 1.65	2.3 to 2.7	_	0.2	
L-level output voltage	Vola	\/ \/ or \/	I _{OLA} = 1 mA	1.4	2.3 to 2.7	_	0.35	V
L-level output voltage	Volb	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OLB} = 100 \ \mu A$	1.4 to 1.65	2.3 to 2.7	_	0.2	
	VOLB		I _{OLB} = 9mA	1.4 to 1.65	2.3	_	0.6	
	loza	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 ^{\circ}$	V	1.4 to 1.65	2.3 to 2.7		±5.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 ^{\circ}$		1.4 to 1.65	2.3 to 2.7	_	±5.0	μА
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$) =	= 0 to 3.6 V	1.4 to 1.65	2.3 to 2.7	_	±2.0	μΑ
Bushold input minimum drive hold		V _{IN} = 0.7 V		1.4 to 1.65	2.3	45	_	
current	IHOLD	V _{IN} = 1.6 V		1.4 to 1.65	2.3	-45	_	μΑ
Bushold input over-drive current		V _{IN} = "L"→"H"		1.4 to 1.65	2.7	_	450	
to change state (Note)	liod	V _{IN} = "H"→"L"		1.4 to 1.65	2.7	_	-450	μΑ
	I _{OFF1}			0	0	_	5.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.4 to 1.65	0	_	5.0	μΑ
	I _{OFF3}			1.4 to 1.65	Open	_	5.0	
	ICCA	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or $V_{INB} = V_{CCB}$		1.4 to 1.65	2.3 to 2.7	_	5.0	
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or $V_{INB} = V_{CCB}$	GND	1.4 to 1.65	2.3 to 2.7	_	5.0	μА
	I _{CCA}	$V_{CCA} \leq (V_{IN}, V_O$	UT) ≤ 3.6 V	1.4 to 1.65	2.3 to 2.7	_	±5.0	μА
	I _{CCB}	$V_{CCB} \le (V_{IN}, V_{O})$	UT) ≤ 3.6 V	1.4 to 1.65	2.3 to 2.7	_	±5.0	μА

DC Characteristics (1.1 V \leq V_{CCA} < 1.4 V, 2.3 V \leq V_{CCB} \leq 2.7 V)

Characteristics	Symbol	Tost Co	ondition	V _{CCA} (V)	\/aa= (\/)	Ta = -40) to 85°C	Unit
Characteristics	Syllibol	Test Of	oridition	VCCA (V)	V _{CCB} (V)	Min	Max	Offic
H-level input voltage	V _{IHA}	DIR, $\overline{\text{OE}}$, An		1.1 to 1.4	2.3 to 2.7	0.65 × V _{CCA}		V
	V _{IHB}	Bn		1.1 to 1.4	2.3 to 2.7	1.6		
L-level input voltage	V _{ILA}	DIR, \overline{OE} , An		1.1 to 1.4	2.3 to 2.7	_	0.30 × VCCA	V
	V _{ILB}	Bn		1.1 to 1.4	2.3 to 2.7		0.7	
	V _{OHA}		$I_{OHA} = -100 \mu A$	1.1 to 1.4	2.3 to 2.7	V _{CCA} - 0.2		
H-level output voltage	V _{OHB}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OHB} = -100 \mu A$	1.1 to 1.4	2.3 to 2.7	V _{CCB} - 0.2		V
			$I_{OHB} = -9 \text{ mA}$	1.1 to 1.4	2.3	1.7	_	
	V _{OLA}		I _{OLA} = 100 μA 1.		2.3 to 2.7		0.2	
L-level output voltage	V _{OLB}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OLB} = 100 \ \mu A$	1.1 to 1.4	2.3 to 2.7		0.2	V
	VOLB		I _{OLB} = 9 mA	1.1 to 1.4	2.3		0.6	
	loza	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 3.6 V		1.1 to 1.4	2.3 to 2.7	_	±5.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 3.6 V		1.1 to 1.4	2.3 to 2.7	_	±5.0	μΑ
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$) =	= 0 to 3.6 V	1.1 to 1.4	2.3 to 2.7	_	±2.0	μА
Bushold input minimum drive hold		V _{IN} = 0.7 V		1.1 to 1.4	2.3	45	_	
current	IHOLD	V _{IN} = 1.6 V		1.1 to 1.4	2.3	-45	_	μΑ
Bushold input over-drive current		V _{IN} = "L"→"H"		1.1 to 1.4	2.7	_	450	
to change state (Note)	liod	V _{IN} = "H"→"L"		1.1 to 1.4	2.7	_	-450	μΑ
	I _{OFF1}			0	0	_	5.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.1 to 1.4	0	_	5.0	μА
	I _{OFF3}			1.1 to 1.4	Open		5.0	
	ICCA	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or		1.1 to 1.4	2.3 to 2.7	_	5.0	
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or		1.1 to 1.4	2.3 to 2.7	_	5.0	μА
	ICCA	$V_{CCA} \le (V_{IN}, V_{CI})$	UT) ≤ 3.6 V	1.1 to 1.4	2.3 to 2.7	_	±5.0	^
	I _{CCB}	$V_{CCB} \le (V_{IN}, V_{CB})$	UT) ≤ 3.6 V	1.1 to 1.4	2.3 to 2.7	_	±5.0	μΑ

DC Characteristics (1.1 V \leq V_{CCA} < 1.4 V, 1.65 V \leq V_{CCB} < 2.3 V)

Characteristics	Cumbal	Toot Co	andition	V (V)	\/ (\/)	Ta = -40) to 85°C	Unit
Characteristics	Symbol	rest Co	ondition	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Offic
H-level input voltage	V_{IHA}	DIR, $\overline{\text{OE}}$, An		1.1 to 1.4	1.65 to 2.3	0.65 × V _{CCA}		V
ri-ievei iliput voltage	V _{IHB}	Bn		1.1 to 1.4	1.65 to 2.3	0.65 × V _{CCB}		V
L-level input voltage	V_{ILA}	DIR, $\overline{\text{OE}}$, An		1.1 to 1.4	1.65 to 2.3	ı	0.30 × V _{CCA}	V
L-level iliput voltage	V_{ILB}	Bn		1.1 to 1.4	1.65 to 2.3		$\begin{array}{c} 0.35 \times \\ V_{CCB} \end{array}$	V
	V _{OHA}		$I_{OHA} = -100 \mu A$	1.1 to 1.4	1.65 to 2.3	V _{CCA} - 0.2		
H-level output voltage	V _{OHB}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OHB} = -100 \mu A$	1.1 to 1.4	1.65 to 2.3	V _{CCB} - 0.2	_	V
			$I_{OHB} = -3 \text{ mA}$	1.1 to 1.4	1.65	1.25	_	
	V _{OLA}		$I_{OLA} = 100 \mu A$	1.1 to 1.4	1.65 to 2.3	_	0.2	
L-level output voltage	Vara	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OLB} = 100 \ \mu A$	1.1 to 1.4	1.65 to 2.3	_	0.2	٧
	V _{OLB}		I _{OLB} = 3 mA	1.1 to 1.4	1.65	_	0.3	
	I _{OZA}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 ^{\circ}$	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 3.6 V		1.65 to 2.3		±5.0	
3-state output OFF state current	I _{OZB}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = 0$ to 3.6 V		1.1 to 1.4	1.65 to 2.3		±5.0	μΑ
Input leakage current	I _{IN}	V _{IN} (DIR, $\overline{\text{OE}}$) =	= 0 to 3.6 V	1.1 to 1.4	1.65 to 2.3	_	±2.0	μА
Bushold input minimum drive hold		V _{IN} = 0.58 V		1.1 to 1.4	1.65	20	_	
current	IHOLD	V _{IN} = 1.07 V		1.1 to 1.4	1.65	-20	_	μА
Bushold input over-drive current		V _{IN} = "L"→"H"		1.1 to 1.4	1.95	_	300	
to change state (Note)	liod	V _{IN} = "H"→"L"		1.1 to 1.4	1.95		-300	μА
	I _{OFF1}			0	0	_	5.0	
Power-off leakage current	I _{OFF2}	V_{IN} , $V_{OUT} = 0$ to	3.6 V	1.1 to 1.4	0		5.0	μΑ
	I _{OFF3}			1.1 to 1.4	Open	_	5.0	
	I _{CCA}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or $V_{INB} = V_{CCB}$		1.1 to 1.4	1.65 to 2.3	_	5.0	
Quiescent supply current	I _{CCB}	$V_{INA} = V_{CCA}$ or $V_{INB} = V_{CCB}$ or V_{CCB}		1.1 to 1.4	1.65 to 2.3		5.0	μΑ
	ICCA	V _{CCA} ≤ (V _{IN} , V _O	UT) ≤ 3.6 V	1.1 to 1.4	1.65 to 2.3	_	±5.0	
	I _{CCB}	$V_{CCB} \le (V_{IN}, V_{O})$	UT) ≤ 3.6 V	1.1 to 1.4	1.65 to 2.3	_	±5.0	μА

AC Characteristics (Ta = -40 to 85°C, Input: $t_r = t_f = 2.0$ ns)

 $V_{CCA} = 2.5 \pm 0.2$ V, $V_{CCB} = 3.3 \pm 0.3$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	5.4	
$(Bn \rightarrow An)$	t_{pHL}	rigare 1, rigare 2	1.0	5.	
3-state output enable time	t_{pZL}	Figure 1, Figure 3	1.0	8.4	ns
$(\overline{OE} \to An)$	t _{pZH}	rigure 1, rigure 5	1.0	0.4	110
3-state output disable time	t_{pLZ}	Figure 1 Figure 2	1.0	6.7	
$(\overline{OE} \to An)$	t_{pHZ}	Figure 1, Figure 3	1.0	0.7	
Propagation delay time	t _{pLH}	Figure 4 Figure 2	1.0	6.8	
$(An \rightarrow Bn)$	t_{pHL}	Figure 1, Figure 2	1.0	0.8	
3-state output enable time	t _{pZL}	Figure 4 Figure 2	1.0	0.7	20
$(\overline{OE} \to Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	8.7	ns
3-state output disable time	t _{pLZ}	Figure 4 Figure 0	4.0	0.0	
$(\overline{OE} \to Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	3.9	
Output to output allow	t _{osLH}	(Note)		0.5	no
Output to output skew	t _{osHL}	(Note)		0.5	ns

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{PLHm} - t_{PLHn}|, \, t_{OSHL} = |t_{PHLm} - t_{PHLn}|)$

 $V_{CCA} = 1.8 \pm 0.15$ V, $V_{CCB} = 3.3 \pm 0.3$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	8.9	
$(Bn \rightarrow An)$	t _{pHL}	rigule 1, rigule 2	1.0	0.9	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	13.4	ns
$(\overline{OE} \to An)$	t _{pZH}	rigule 1, rigule 3	1.0	13.4	113
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	10.9	
$(\overline{OE} \to An)$	t _{pHZ}	rigule 1, rigule 3	1.0	10.9	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	7.8	
$(An \rightarrow Bn)$	t _{pHL}	Figure 1, Figure 2	1.0	7.0	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	10.7	ns
$(\overline{OE} \to Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	10.7	115
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	5.2	
$(\overline{OE} \to Bn)$	t _{pHZ}	rigule 1, rigule 3	1.0	5.2	
Output to output skew	t _{osLH}	(Note)		0.5	ns
Output to output skew	t _{osHL}	(Note)		0.5	119

Note: Parameter guaranteed by design.

 $(t_{\text{OSLH}} = |t_{\text{PLHm}} - t_{\text{PLHn}}|, \, t_{\text{OSHL}} = |t_{\text{PHLm}} - t_{\text{PHLn}}|)$

 $V_{CCA} = 1.5 \pm 0.1$ V, $V_{CCB} = 3.3 \pm 0.3$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	10.3	
$(Bn \rightarrow An)$	t _{pHL}	rigule 1, rigule 2	1.0	10.3	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	18.5	ns
$(\overline{OE} \to An)$	t _{pZH}	rigule 1, rigule 3	1.0	10.5	113
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	13.0	
$(\overline{OE} \to An)$	t_{pHZ}	rigule 1, rigule 3	1.0	13.0	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	8.6	
$(An \rightarrow Bn)$	t _{pHL}	Figure 1, Figure 2	1.0	0.0	
3-state output enable time	t _{pZL}	Figure 4 Figure 2	1.0	14.3	20
$(\overline{OE} \to Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	14.3	ns
3-state output disable time	t _{pLZ}	Figure 4 Figure 2	1.0	6.6	
$(\overline{OE} \to Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	0.0	
Output to output skow	t _{osLH}	/Notal		1.5	ne
Output to output skew	tosHL	(Note)		1.5	ns

Note: Parameter guaranteed by design.

 $(t_{\text{OSLH}} = |t_{\text{PLHm}} - t_{\text{PLHn}}|, \, t_{\text{OSHL}} = |t_{\text{PHLm}} - t_{\text{PHLn}}|)$

 $V_{CCA} = 1.2 \pm 0.1$ V, $V_{CCB} = 3.3 \pm 0.3$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	61	
$(Bn \rightarrow An)$	t _{pHL}	rigare 1, rigare 2	1.0	01	
3-state output enable time	t_{pZL}	Figure 1, Figure 3	1.0	95	ns
$(\overline{OE} \to An)$	t _{pZH}	rigule 1, rigule 3	1.0	90	113
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	44	
$(\overline{OE} \to An)$	t_{pHZ}	rigule 1, rigule 3	1.0	44	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	22	
$(An \rightarrow Bn)$	t_{pHL}	rigule 1, rigule 2	1.0	22	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	52	ns
$(\overline{OE} \to Bn)$	t _{pZH}	rigule 1, rigule 3	1.0	52	113
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	18	
$(\overline{OE} \to Bn)$	t_{pHZ}	rigule 1, rigule 3	1.0	10	
Output to output alcow	t _{osLH}	(Note)		1.5	20
Output to output skew	t _{osHL}	(Note)		1.5	ns

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$

 $V_{CCA} = 1.8 \pm 0.15$ V, $V_{CCB} = 2.5 \pm 0.2$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	9.1	
$(Bn \rightarrow An)$	t _{pHL}	Figure 1, Figure 2	1.0	9.1	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	13.5	ns
$(\overline{OE} \to An)$	t _{pZH}	rigule 1, rigule 3	1.0	13.5	113
3-state output disable time	t _{pLZ}	Figure 1 Figure 2	1.0	11.8	
$(\overline{OE} \to An)$	t _{pHZ}	Figure 1, Figure 3	1.0	11.8	
Propagation delay time	t _{pLH}	Figure 1 Figure 2	1.0	9.5	
$(An \rightarrow Bn)$	t _{pHL}	Figure 1, Figure 2	1.0	9.5	
3-state output enable time	t _{pZL}	Figure 4 Figure 2	1.0	10.0	20
$(\overline{OE} \to Bn)$	t _{pZH}	Figure 1, Figure 3	1.0	12.6	ns
3-state output disable time	t _{pLZ}	Figure 4 Figure 2	1.0	F 1	
$(\overline{OE} \to Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	5.1	
Output to output allow	t _{osLH}	(Note 1)		0.5	20
Output to output skew	tosHL	(Note 1)		0.5	ns

Note: Parameter guaranteed by design.

 $(t_{\text{OSLH}} = |t_{\text{PLHm}} - t_{\text{PLHn}}|, \, t_{\text{OSHL}} = |t_{\text{PHLm}} - t_{\text{PHLn}}|)$

 $V_{CCA} = 1.5 \pm 0.1$ V, $V_{CCB} = 2.5 \pm 0.2$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	10.8	
$(Bn \rightarrow An)$	t _{pHL}	rigare 1, rigare 2	1.0	10.0	
3-state output enable time	t_{pZL}	Figure 1, Figure 3	1.0	18.3	ns
$(\overline{OE} \to An)$	t _{pZH}	rigule 1, rigule 3	1.0	10.3	113
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	14.2	
$(\overline{OE} \to An)$	t _{pHZ}	rigule 1, rigule 3	1.0	14.2	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	10.5	
$(An \rightarrow Bn)$	t _{pHL}	rigule 1, rigule 2	1.0	10.5	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	15.4	ns
$(\overline{OE} \to Bn)$	t _{pZH}	rigule 1, rigule 3	1.0	13.4	113
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	6.4	
$(\overline{OE} \to Bn)$	t _{pHZ}	rigule 1, rigule 3	1.0	0.4	
Output to output skow	t _{osLH}	(Mata)		1.5	ne
Output to output skew	t _{osHL}	(Note)		1.5	ns

Note: Parameter guaranteed by design.

 $(t_{OSLH} = |t_{PLHm} - t_{PLHn}|, \, t_{OSHL} = |t_{PHLm} - t_{PHLn}|)$

 $V_{CCA} = 1.2 \pm 0.1$ V, $V_{CCB} = 2.5 \pm 0.2$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	60	
$(Bn \rightarrow An)$	t _{pHL}	- igano i, i igano -			
3-state output enable time	t_{pZL}	Figure 1, Figure 3	1.0	95	ns
$(\overline{OE} \rightarrow An)$	t _{pZH}	rigure 1, rigure 3	1.0	3	110
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	45	
$(\overline{OE} \to An)$	t _{pHZ}	rigule 1, rigule 3	1.0	45	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	23	
$(An \rightarrow Bn)$	t _{pHL}	rigule 1, rigule 2	1.0	23	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	54	ns
$(\overline{OE} \to Bn)$	t _{pZH}	rigule 1, rigule 3	1.0	54	115
3-state output disable time	t _{pLZ}	Figure 1 Figure 2	1.0	17	
$(\overline{OE} \to Bn)$	t _{pHZ}	Figure 1, Figure 3	1.0	17	
Output to output alcow	t _{osLH}	(Note)	_	1.5	20
Output to output skew	t _{osHL}	(Note)		1.5	ns

Note: Parameter guaranteed by design.

 $(t_{\text{OSLH}} = |t_{\text{PLHm}} - t_{\text{PLHn}}|, \, t_{\text{OSHL}} = |t_{\text{PHLm}} - t_{\text{PHLn}}|)$

 $V_{CCA} = 1.2 \pm 0.1$ V, $V_{CCB} = 1.8 \pm 0.15$ V

Characteristics	Symbol	Test Condition	Min	Max	Unit
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	58	
$(Bn \rightarrow An)$	t _{pHL}	rigure 1, rigure 2	1.0	00	
3-state output enable time	t_{pZL}	Figure 1, Figure 3	1.0	92	ns
$(\overline{OE} \to An)$	t _{pZH}	rigule 1, rigule 3	1.0	92	113
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	47	
$(\overline{OE} \to An)$	t _{pHZ}	rigule 1, rigule 3	1.0	47	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	1.0	30	
$(An \rightarrow Bn)$	t _{pHL}	rigule 1, rigule 2	1.0	30	
3-state output enable time	t _{pZL}	Figure 1, Figure 3	1.0	55	ns
$(\overline{OE} \to Bn)$	t _{pZH}	rigule 1, rigule 3	1.0	55	113
3-state output disable time	t _{pLZ}	Figure 1, Figure 3	1.0	17	
$(\overline{OE} \to Bn)$	t _{pHZ}	rigule 1, rigule 3	1.0	17	
Output to output skow	t _{osLH}	(Noto)		1.5	20
Output to output skew	t _{osHL}	(Note)		1.5	ns

Note: Parameter guaranteed by design.

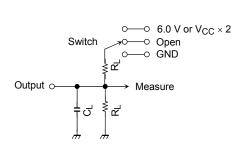
 $(t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|)$

Dynamic Switching Characteristics (Ta = 25°C, Input: $t_r = t_f = 2.0$ ns, $C_L = 30$ pF)

Characteristics		Symbol	Test Condition V _{CCA} (V) V _{CCI}			Тур.	Unit							
Characteristics		Symbol			V _{CCA} (V) V _{CCB} (V		V _{CCB} (V)	ι yp.	Offic					
					2.5	3.3	8.0							
	$A\toB$				1.8	3.3	8.0							
Quiet output maximum		V _{OLP}	$V_{IH} = V_{CC}, V_{IL} = 0 V$		1.8	2.5	0.6	V						
dynamic V _{OL}		VOLP		(Note)	2.5	3.3	0.6	V						
	$B\toA$				1.8	3.3	0.25							
					1.8	2.5	0.25							
					2.5	3.3	-0.8							
	$A\toB$				1.8	3.3	-0.8							
Quiet output minimum		V _{OLV}	V _{OLV}	V _{OLV}	$V_{IH} = V_{CC}, V_{IL} = 0 V$		1.8	2.5	-0.6	V				
dynamic V _{OL}					VOLV	▼OLV	VOLV	▼OLV		(Note)	2.5	3.3	-0.6	V
B -	$B\toA$				1.8	3.3	-0.25							
					1.8	2.5	-0.25							
		VOHP	V _{ОНР}	V _{ОНР}			2.5	3.3	4.6					
	$A\toB$				VOHP	VOHP			1.8	3.3	4.6			
Quiet output maximum							V _{OHP}	\/a	$V_{IH} = V_{CC}, V_{IL} = 0 V$		1.8	2.5	3.3	V
dynamic V _{OH}									(Note)	2.5	3.3	3.3	V	
	$B\toA$				1.8	3.3	2.3	-						
					1.8	2.5	2.3							
					2.5	3.3	2.0							
Quiet output minimum dynamic V _{OH}	$A\toB$				1.8	3.3	2.0							
		V	$V_{IH} = V_{CC}, V_{IL} = 0 V$		1.8	2.5	1.7	.,						
	$B \rightarrow A$	V _{OHV}		(Note)	2.5	3.3	1.7	V						
					1.8	3.3	1.3							
					1.8	2.5	1.3							

Note: Parameter guaranteed by design.

Capacitive Characteristics (Ta = 25°C)


Characteristics		Cymbol		Took Circuit			Typ	Llmit				
Characteristics		Symbol Test Circuit $V_{CCA}(V) V_{CCB}(V)$		Test Circuit		Тур.	Unit					
Input capacitance		C _{IN}	DIR, OE		2.5	3.3	7	pF				
Bus I/O capacitance		C _{I/O}	An, Bn		2.5	3.3	8	pF				
			OE = "L"	$A \rightarrow B (DIR = "H")$	2.5	3.3	3					
		C _{PDA}	OE = L	$B \rightarrow A (DIR = L")$	2.5	3.3	16					
			OE = "H"	$A \rightarrow B (DIR = "H")$	2.5	3.3	0					
Power dissipation capacitance			OE = H	$B \rightarrow A (DIR = L")$	2.5	3.3	0	pF				
	(Note)		OE = "L"	$A \rightarrow B (DIR = "H")$	2.5	3.3	16	þΓ				
		C		$B \rightarrow A (DIR = "L")$	2.5	3.3	5					
		C _{PDB} -		$A \rightarrow B (DIR = "H")$	2.5	3.3	0					
									B → A (DIR = "L")	2.5	3.3	1

Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $ICC (opr) = CPD \cdot VCC \cdot fIN + ICC/4 (per bit)$

AC Test Circuit

Parameter		Switch
t _{pLH} , t _{pHL}		Open
	6.0 V	@ $V_{CC} = 3.3 \pm 0.3 \text{ V}$
	V _{CC} × 2	@ $V_{CC} = 2.5 \pm 0.2 \text{ V}$
t_{pLZ},t_{pZL}		$@V_{CC} = 1.8 \pm 0.15 V$
		$@V_{CC} = 1.5 \pm 0.1 \text{ V}$
		$@V_{CC} = 1.2 \pm 0.1 \text{ V}$
t _{pHZ} , t _{pZH}		GND

	V _{CC} (output)							
Symbol	$3.3 \pm 0.3 \text{ V}$ $2.5 \pm 0.2 \text{ V}$	1.8 ± 0.15 V	1.5 ± 0.1 V	1.2 ± 0.1 V				
RL	500 Ω	1 kΩ	2 kΩ	10 kΩ				
CL	30 pF	30 pF	15 pF	15 pF				

Figure 1

AC Waveform



Figure 2 t_{pLH}, t_{pHL}

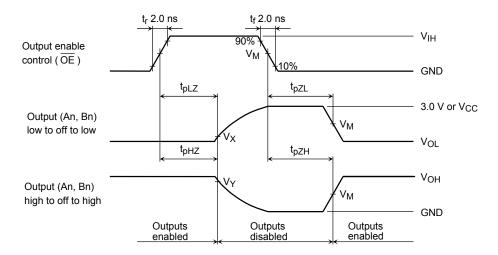
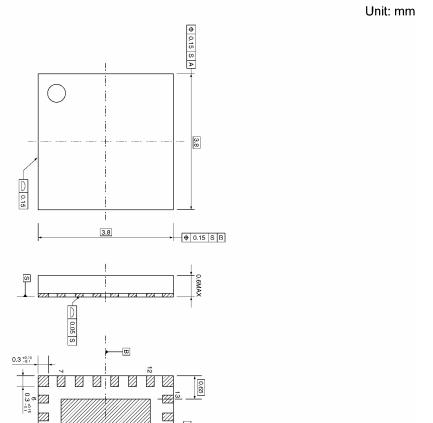



Figure 3 $t_{\text{pLZ}},\,t_{\text{pHZ}},\,t_{\text{pZL}},\,t_{\text{pZH}}$

Symbol	V _{CC}		
	$3.3\pm0.3~\textrm{V}$	2.5 ± 0.2 V 1.8 ± 0.15 V	1.5 ± 0.1 V 1.2 ± 0.1 V
V_{IH}	2.7 V	V _{CC}	V _{CC}
V_{M}	1.5 V	V _{CC} /2	V _{CC} /2
V_X	$V_{OL} + 0.3 V$	V _{OL} + 0.15 V	V _{OL} + 0.1 V
VY	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.1 V

Package Dimensions

VQON24-P-0404-0.50

•

0.5

Weight: 0.03 g (typ.)

 \overline{z}

 \overline{Z}

0.65

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.