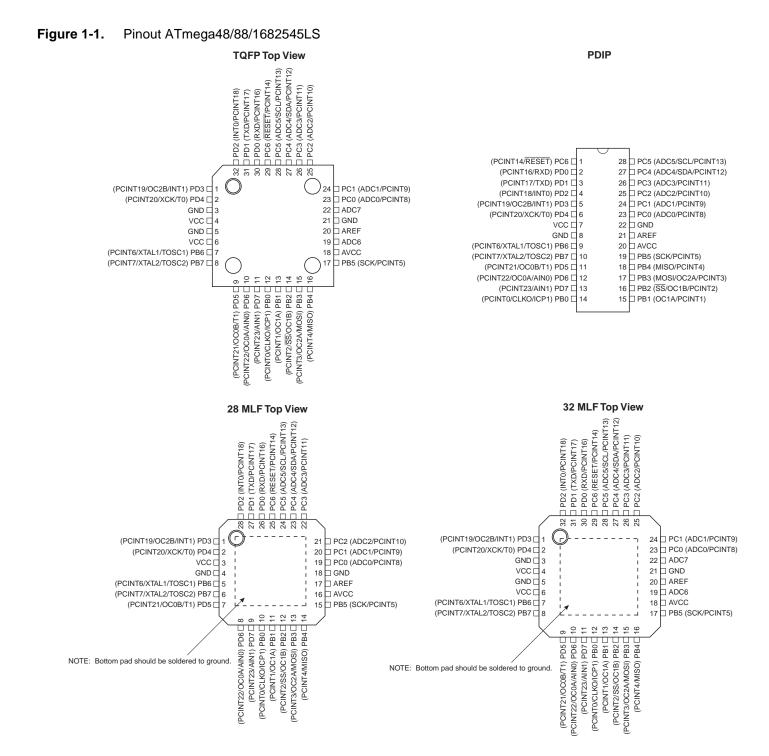
Features

- High Performance, Low Power AVR[®] 8-Bit Microcontroller
- Advanced RISC Architecture
 - 131 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 20 MIPS Throughput at 20 MHz
 - On-chip 2-cycle Multiplier
- High Endurance Non-volatile Memory segments
 - 4/8/16K Bytes of In-System Self-programmable Flash program memory
 - 256/512/512 Bytes EEPROM
 - 512/1K/1K Bytes Internal SRAM
 - Write/Erase cyles: 10,000 Flash/100,000 EEPROM (1)(3)
 - Data retention: 20 years at 85°C/100 years at 25°C (2)(3)
 - Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation
 - Programming Lock for Software Security
- Peripheral Features
 - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
 - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
 - Real Time Counter with Separate Oscillator
 - Six PWM Channels
 - 8-channel 10-bit ADC in TQFP and QFN/MLF package
 - 6-channel 10-bit ADC in PDIP Package
 - Programmable Serial USART
 - Master/Slave SPI Serial Interface
 - Byte-oriented 2-wire Serial Interface (Philips I²C compatible)
 - Programmable Watchdog Timer with Separate On-chip Oscillator
 - On-chip Analog Comparator
 - Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
 - Power-on Reset and Programmable Brown-out Detection
 - Internal Calibrated Oscillator
 - External and Internal Interrupt Sources
 - Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Standby
- I/O and Packages
 - 23 Programmable I/O Lines
 - 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF
- Operating Voltage:
 - 1.8 5.5V for ATmega48V/88V/168V
 - 2.7 5.5V for ATmega48/88/168
- Temperature Range:
- − -40°C to 85°C
- Speed Grade:
 - ATmega48V/88V/168V: 0 4 MHz @ 1.8 5.5V, 0 10 MHz @ 2.7 5.5V
 - ATmega48/88/168: 0 10 MHz @ 2.7 5.5V, 0 20 MHz @ 4.5 5.5V
- Low Power Consumption
 - Active Mode:
 - 250 µA at 1 MHz, 1.8V
 - 15 µA at 32 kHz, 1.8V (including Oscillator)
 - Power-down Mode:
 - 0.1µA at 1.8V
- Notes: 1. Worst case temperature. Guaranteed after last write cycle.
 - 2. Failure rate less than 1 ppm.
 - 3. Characterized through accelerated tests.


8-bit **AVR**[®] Microcontroller with 8K Bytes In-System Programmable Flash

ATmega48/V ATmega88/V ATmega168/V

Summary

1. Pin Configurations

² ATmega48/88/168

1.1 Pin Descriptions

1.1.1 VCC

Digital supply voltage.

1.1.2 GND

Ground.

1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier.

If the Internal Calibrated RC Oscillator is used as chip clock source, PB7..6 is used as TOSC2..1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.

The various special features of Port B are elaborated in "Alternate Functions of Port B" on page 78 and "System Clock and Clock Options" on page 27.

1.1.4 Port C (PC5:0)

Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC5..0 output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

1.1.5 PC6/RESET

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C.

If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in Table 27-3 on page 307. Shorter pulses are not guaranteed to generate a Reset.

The various special features of Port C are elaborated in "Alternate Functions of Port C" on page 81.

1.1.6 Port D (PD7:0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

The various special features of Port D are elaborated in "Alternate Functions of Port D" on page 84.

1.1.7 AV_{cc}

 AV_{CC} is the supply voltage pin for the A/D Converter, PC3:0, and ADC7:6. It should be externally connected to V_{CC} , even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter. Note that PC6..4 use digital supply voltage, V_{CC} .

1.1.8 AREF AREF is the analog reference pin for the A/D Converter.

1.1.9 ADC7:6 (TQFP and QFN/MLF Package Only)

In the TQFP and QFN/MLF package, ADC7:6 serve as analog inputs to the A/D converter. These pins are powered from the analog supply and serve as 10-bit ADC channels.

ATmega48/88/168

4

2. Overview

The ATmega48/88/168 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega48/88/168 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

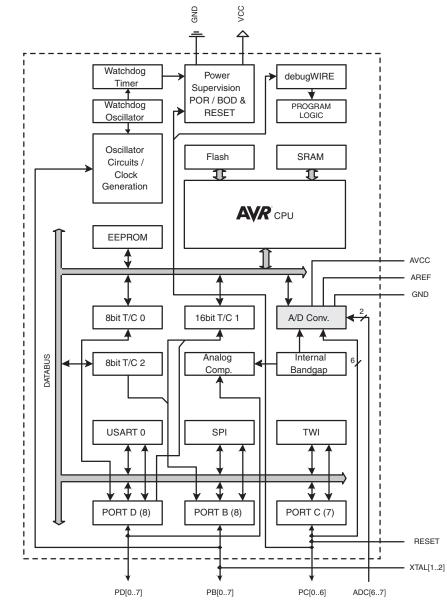


Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting

architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega48/88/168 provides the following features: 4K/8K/16K bytes of In-System Programmable Flash with Read-While-Write capabilities, 256/512/512 bytes EEPROM, 512/1K/1K bytes SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte-oriented 2-wire Serial Interface, an SPI serial port, a 6-channel 10-bit ADC (8 channels in TQFP and QFN/MLF packages), a programmable Watchdog Timer with internal Oscillator, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, USART, 2-wire Serial Interface, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega48/88/168 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega48/88/168 AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

2.2 Comparison Between ATmega48, ATmega88, and ATmega168

The ATmega48, ATmega88 and ATmega168 differ only in memory sizes, boot loader support, and interrupt vector sizes. Table 2-1 summarizes the different memory and interrupt vector sizes for the three devices.

Device	Flash	EEPROM	RAM	Interrupt Vector Size
Device	FIASII			Interrupt vector Size
ATmega48	4K Bytes	256 Bytes	512 Bytes	1 instruction word/vector
ATmega88	8K Bytes	512 Bytes	1K Bytes	1 instruction word/vector
ATmega168	16K Bytes	512 Bytes	1K Bytes	2 instruction words/vector

 Table 2-1.
 Memory Size Summary

ATmega88 and ATmega168 support a real Read-While-Write Self-Programming mechanism. There is a separate Boot Loader Section, and the SPM instruction can only execute from there. In ATmega48, there is no Read-While-Write support and no separate Boot Loader Section. The SPM instruction can execute from the entire Flash.

ATmega48/88/168

6

3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.

4. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	-	-	-	-	_	-	-	-	
(0xFE)	Reserved	_	_	_	_	_	_	_	_	
(0xFD)	Reserved	-	-	-	-	-	-	-	-	
(0xFC)	Reserved	-	-	-	-	-	-	-	-	
(0xFB)	Reserved	-	-	-	-	-	-	-	-	
(0xFA)	Reserved	-	-	-	-	-	-	-	-	
(0xF9)	Reserved	-	-	-	-	-	-	-	-	
(0xF8)	Reserved	-	-	-	-	-	-	-	-	
(0xF7)	Reserved	-	-	-	-	-	-	-	-	
(0xF6)	Reserved	-	-	-	-	-	-	-	-	
(0xF5)	Reserved	-	-	-	-	-	-	-	-	
(0xF4)	Reserved	-	-	-	-	-	-	-	-	
(0xF3) (0xF2)	Reserved Reserved	-	-	_	_	-	_			
(0xF2) (0xF1)	Reserved	_	_	_		_	_	_		
(0xF0)	Reserved									
(0xEF)	Reserved	_	_	_	_	_	_	_		
(0xEE)	Reserved	_	_	_	_	_	_	_	_	
(0xED)	Reserved	_	_	_	_	_	_	_	_	
(0xEC)	Reserved	-	_	_	_	_	_	_	_	
(0xEB)	Reserved	_	-	-	-	_	_	_	-	
(0xEA)	Reserved	-	-	-	-	-	-	-	-	
(0xE9)	Reserved	-	_	_	_	_	_	-	-	
(0xE8)	Reserved	_	-	-	-	_	-	-	_	
(0xE7)	Reserved	-	-	-	-	-	-	-	-	
(0xE6)	Reserved	-	-	-	-	-	-	-	-	
(0xE5)	Reserved	-	-	-	-	-	-	-	-	
(0xE4)	Reserved	-	-	-	-	-	-	-	-	
(0xE3)	Reserved	-	-	-	-	-	-	-	-	
(0xE2)	Reserved	-	-	-	-	-	-	-	-	
(0xE1)	Reserved	-	-	-	-	-	-	-	-	
(0xE0)	Reserved	-	-	-	-	-	-	-	-	
(0xDF)	Reserved	-	-	-	-	-	-	-	-	
(0xDE)	Reserved	-	-	-	-	-	-	-	-	
(0xDD) (0xDC)	Reserved Reserved	-	-	-	-	-	-	-	-	
(0xDC) (0xDB)	Reserved				_					
(0xDA)	Reserved						_			
(0xD9)	Reserved	_	_	_	_	_	_	_	_	
(0xD8)	Reserved	_	_	_	_	_	_	_	_	
(0xD7)	Reserved	_	_	_	_	_	_	_	_	
(0xD6)	Reserved	-	-	-	-	_	-	-	-	
(0xD5)	Reserved	-	-	-	-	-	-	-	-	
(0xD4)	Reserved	-	-	-	-	-	-	-	-	
(0xD3)	Reserved	-	-	-	_	-	-	_	_	
(0xD2)	Reserved	-	-	-	-	-	-	-	-	
(0xD1)	Reserved	-	-	-	-	-	-	-	-	
(0xD0)	Reserved	-	-	-	-	-	-	-	-	
(0xCF)	Reserved	-	-	-	-	-	-	-	-	
(0xCE)	Reserved	-	-	_	-	-	-	_	_	
(0xCD)	Reserved	-	-	-	-	-	-	-	-	
(0xCC)	Reserved	-	-	-	-	-	-	-	-	
(0xCB)	Reserved	-	-	-	-	-	-	-	-	
(0xCA)	Reserved	-	-	-	-	-	-	-	-	
(0xC9)	Reserved	-	-	-	-	-	-	-	_	
(0xC8)	Reserved	-	-	-	-	-	-	-	-	
(0xC7)	Reserved	-	-	-		-	-	-	-	400
(0xC6)	UDR0				USART I/O	Data Register		loto Dogister Li-h		190
(0xC5)	UBRR0H UBRR0L				LIGART Dourd D	ato Pogiator Law		ate Register High	1	194 194
(0xC4)		_	_	_	USART Baud R	ate Register Low		_	_	194
(0xC3) (0xC2)	Reserved UCSR0C	– UMSEL01	– UMSEL00	- UPM01	- UPM00	USBS0	- UCSZ01 /UDORD0	UCSZ00 / UCPHA0	– UCPOL0	192/207
(0xC2) (0xC1)	UCSROC	RXCIE0	TXCIE0	UDRIE0	RXEN0	TXEN0	UCSZ0170D0RD0	RXB80	TXB80	192/207
(0xC0)	UCSR0A	RXCIEU RXC0	TXCIEU TXC0	UDRE0	FE0	DOR0	UPE0	U2X0	MPCM0	191
(0,00)	UCSKUA	RAGU	1700	UDKEU	FEV	DUKU	UPEU	0270		190

ATmega48/88/168 8

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xBF)	Reserved				-				-	i age
(0xBF) (0xBE)	Reserved	-	-	-		-	-	-	_	
(0xBD)	TWAMR	TWAM6	TWAM5	TWAM4	TWAM3	TWAM2	TWAM1	TWAM0	_	239
(0xBC)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	236
(0xBB)	TWDR			-	2-wire Serial Inter	face Data Regist				238
(0xBA)	TWAR	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	239
(0xB9)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	238
(0xB8)	TWBR		_	-	2-wire Serial Interfa	ace Bit Rate Regi	ster		-	236
(0xB7)	Reserved	-		-	-	-	-	-	-	
(0xB6)	ASSR	-	EXCLK	AS2	TCN2UB	OCR2AUB	OCR2BUB	TCR2AUB	TCR2BUB	159
(0xB5)	Reserved	-	-		-	-	-	-	-	
(0xB4)	OCR2B				mer/Counter2 Outp					158
(0xB3)	OCR2A			11	mer/Counter2 Outp	· · · · ·	ster A			157
(0xB2) (0xB1)	TCNT2 TCCR2B	FOC2A	FOC2B	_	–	nter2 (8-bit) WGM22	CS22	CS21	CS20	157 156
(0xB1) (0xB0)	TCCR2B	COM2A1	COM2A0	COM2B1	COM2B0	-	-	WGM21	WGM20	153
(0xAF)	Reserved	-	-	-	-	_	_	-	-	100
(0xAE)	Reserved	_	_	_	_	_	_	_	_	
(0xAD)	Reserved	-	-	-	-	-	-	-	-	
(0xAC)	Reserved	_	-	-	_	_	-	-	-	
(0xAB)	Reserved	-	-	-	-	-	-	-	-	
(0xAA)	Reserved	-	-	-	-	-	-	-	-	
(0xA9)	Reserved	-	-	-	-	-	-	-	-	
(0xA8)	Reserved	-	-	-	-	-	-	-	-	<u> </u>
(0xA7)	Reserved	-	-	-	-	_	-	-	-	<u> </u>
(0xA6)	Reserved	-	-	_	-	-	-	-	-	
(0xA5)	Reserved	-	-	-	-	-	-	-	-	
(0xA4) (0xA3)	Reserved	-	-	_	-	-	-	-	-	
(0xA3) (0xA2)	Reserved Reserved	_	_	_		_	_		_	
(0xA1)	Reserved	_	_	_	_	_	_	_	_	
(0xA0)	Reserved	_	_	_	_	_	_	_	_	
(0x9F)	Reserved	-	-	-	-	-	-	-	-	
(0x9E)	Reserved	_	-	_	_	_	_	-	-	
(0x9D)	Reserved	-	-	-	-	-	-	-	-	
(0x9C)	Reserved	-	-	-	-	-	-	-	-	
(0x9B)	Reserved	-	-	-	-	-	-	-	-	
(0x9A)	Reserved	-	-	-	-	-	-	-	-	
(0x99)	Reserved	-	-	-	-	-	-	-	-	
(0x98)	Reserved	-	-	-	-	-	-	-	-	
(0x97) (0x96)	Reserved Reserved	-	-	-	-	-	-	-	-	
(0x95)	Reserved			_						
(0x94)	Reserved	_	_	_	_	_	_	_	_	
(0x93)	Reserved	_	_	_	_	_	_	_	_	
(0x92)	Reserved	-	-	-	-	-	-	-	-	
(0x91)	Reserved	-	_	-	_	-	-	_	_	
(0x90)	Reserved	-	-	-	-	-	-	-	-	
(0x8F)	Reserved	-	-	-	-	-	-	-	-	
(0x8E)	Reserved	-	-	-	-	-	-	-	-	
(0x8D)	Reserved	-	-	-	-	-	-	-	-	
(0x8C)	Reserved	-	-	-	-	-	-	-	-	
(0x8B)	OCR1BH				ounter1 - Output Co					134
(0x8A)	OCR1BL OCR1AH				ounter1 - Output Co					134 134
(0x89) (0x88)	OCR1AH OCR1AL				ounter1 - Output Co ounter1 - Output Co	, ,				134
(0x88) (0x87)	ICR1H				/Counter1 - Input C	i î	,			134
(0x87) (0x86)	ICR1L				/Counter1 - Input C					135
(0x85)	TCNT1H				ner/Counter1 - Cou					134
(0x84)	TCNT1L				ner/Counter1 - Cou					134
(0x83)	Reserved	-	_	-	_	-	-	_	_	
(0x82)	TCCR1C	FOC1A	FOC1B	-	-	-	-	-	-	133
(0x81)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	132
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	WGM11	WGM10	130
(0x7F)	DIDR1	-	-	-	-	-	-	AIN1D	AINOD	243
(0x7E)	DIDR0	-	-	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D	259

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x7D)	Reserved	-	-	-	-	-	-	-	-	
(0x7C)	ADMUX	REFS1	REFS0	ADLAR	-	MUX3	MUX2	MUX1	MUX0	255
(0x7B)	ADCSRB	-	ACME	-	-	-	ADTS2	ADTS1	ADTS0	258
(0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	256
(0x79)	ADCH			•	ADC Data Reg	gister High byte	•	•	•	258
(0x78)	ADCL					gister Low byte				258
(0x77)	Reserved	-	-	-	_		-	-	-	
(0x76)	Reserved	_	_	_	_	_	_	_	_	
(0x75)	Reserved	_	_	_	-	_	_	_	_	
(0x74)	Reserved	-	-	-	_	_	-	-	-	
(0x73)	Reserved	_	_	_	_	_	_	_	_	
(0x72)	Reserved	-	-	-	_	_	-	-	-	
(0x71)	Reserved	-	-	-	_	_	-	-	-	
(0x70)	TIMSK2	-	-	-	_	_	OCIE2B	OCIE2A	TOIE2	158
(0x6F)	TIMSK1	-	-	ICIE1	_	_	OCIE1B	OCIE1A	TOIE1	135
(0x6E)	TIMSK0	_	_	_	-	_	OCIE0B	OCIE0A	TOIE0	106
(0x6D)	PCMSK2	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	70
(0x6C)	PCMSK1	-	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	70
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	70
(0x6A)	Reserved	-	-	-	-	-	-	-	-	
(0x69)	EICRA	_	_	_	_	ISC11	ISC10	ISC01	ISC00	67
(0x69) (0x68)	PCICR	_		_		-	PCIE2	PCIE1	PCIE0	07
, ,	Reserved	_	_	_		_	-	-		
(0x67) (0x66)	OSCCAL	_	_	_	Oscillator Calib	- pration Register	_	-	-	37
(0x65)	Reserved	_	_	_	–	–	_	_	-	51
(0x64)	PRR	PRTWI	PRTIM2	PRTIM0		PRTIM1	PRSPI	PRUSART0	PRADC	41
	Reserved		PRIIMZ					PRUSARIU		41
(0x63)		-	-	-	-	-	-	_	-	
(0x62)	Reserved		-		-		-	1	-	
(0x61)	CLKPR	CLKPCE	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPS0	37
(0x60)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	53
0x3F (0x5F)	SREG	1	Т	Н	S	V	N (0.540) 5	Z	C	11
0x3E (0x5E)	SPH	-	-	-	-	-	(SP10) ^{5.}	SP9	SP8	13
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	13
0x3C (0x5C)	Reserved	-	-	-	-	-	-	-	-	
0x3B (0x5B)	Reserved	-	-	-	-	-	-	-	-	
0x3A (0x5A)	Reserved	-	-	-	-	-	-	-	-	
0x39 (0x59)	Reserved	-	-	-	-	-	-	-	-	
0x38 (0x58)	Reserved	-	-	-	-	-	-	-	-	
0x37 (0x57)	SPMCSR	SPMIE	(RWWSB) ^{5.}	-	(RWWSRE) ^{5.}	BLBSET	PGWRT	PGERS	SELFPRGEN	283
0x36 (0x56)	Reserved	-	-	-	-	-	-	-	-	
0x35 (0x55)	MCUCR	-	-	-	PUD	-	-	IVSEL	IVCE	
0x34 (0x54)	MCUSR	-	-	-	-	WDRF	BORF	EXTRF	PORF	
0x33 (0x53)	SMCR	-	-	-	-	SM2	SM1	SM0	SE	39
0x32 (0x52)	Reserved	-	-	-	-	-	-	-	-	
0x31 (0x51)	Reserved	-	-	-	-	-	-	-	-	
0x30 (0x50)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	242
0x2F (0x4F)	Reserved	-	-	-	-	-	-	-	-	4=-
0x2E (0x4E)	SPDR		11100			a Register				170
0x2D (0x4D)	SPSR	SPIF	WCOL	-	-	-	-	-	SPI2X	169
0x2C (0x4C)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	168
0x2B (0x4B)	GPIOR2					se I/O Register 2				26
0x2A (0x4A)	GPIOR1					se I/O Register 1				26
0x29 (0x49)	Reserved	-	-	-	-	-	-	-	-	
0x28 (0x48)	OCR0B				mer/Counter0 Outp					
0x27 (0x47)	OCR0A	l		Ti	mer/Counter0 Outp		ster A			
0x26 (0x46)	TCNT0		1 -			nter0 (8-bit)	[
0x25 (0x45)	TCCR0B	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00	
0x24 (0x44)	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	
0x23 (0x43)	GTCCR	TSM	-	-	-	-	-	PSRASY	PSRSYNC	139/160
		1		(EEPROM Address	* * *				22
0x22 (0x42)	EEARH				EEPROM Address	Register Low By	te			22
0x22 (0x42) 0x21 (0x41)	EEARL									
0x22 (0x42) 0x21 (0x41) 0x20 (0x40)	EEARL EEDR				EEPROM D	ata Register				22
0x22 (0x42) 0x21 (0x41)	EEARL	-	-	EEPM1		ata Register EERIE	EEMPE	EEPE	EERE	22 22
0x22 (0x42) 0x21 (0x41) 0x20 (0x40)	EEARL EEDR	_	-	EEPM1	EEPROM D EEPM0		EEMPE	EEPE	EERE	
0x22 (0x42) 0x21 (0x41) 0x20 (0x40) 0x1F (0x3F)	EEARL EEDR EECR		-	EEPM1	EEPROM D EEPM0	EERIE	EEMPE	EEPE INT1	EERE INT0	22

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1B (0x3B)	PCIFR	-	-	-	-	-	PCIF2	PCIF1	PCIF0	
0x1A (0x3A)	Reserved	-	-	-	-	-	-	-	-	
0x19 (0x39)	Reserved	-	-	-	-	-	-	-	-	
0x18 (0x38)	Reserved	-	-	-	-	-	-	-	-	
0x17 (0x37)	TIFR2	-	-	-	-	-	OCF2B	OCF2A	TOV2	158
0x16 (0x36)	TIFR1	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1	136
0x15 (0x35)	TIFR0	-	-	-	-	-	OCF0B	OCF0A	TOV0	
0x14 (0x34)	Reserved	-	-	-	-	-	-	-	-	
0x13 (0x33)	Reserved	-	-	-	-	-	-	-	-	
0x12 (0x32)	Reserved	-	-	-	-	-	-	-	-	
0x11 (0x31)	Reserved	-	-	-	-	-	-	-	-	
0x10 (0x30)	Reserved	-	-	-	-	-	-	-	-	
0x0F (0x2F)	Reserved	-	-	-	-	-	-	-	-	
0x0E (0x2E)	Reserved	-	-	-	-	-	-	-	-	
0x0D (0x2D)	Reserved	-	-	-	-	-	-	-	-	
0x0C (0x2C)	Reserved	-	-	-	-	-	-	-	-	
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	88
0x0A (0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	88
0x09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	88
0x08 (0x28)	PORTC	-	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	87
0x07 (0x27)	DDRC	-	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	87
0x06 (0x26)	PINC	-	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	87
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	87
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	87
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	87
0x02 (0x22)	Reserved	-	-	-	-	-	-	-	-	
0x01 (0x21)	Reserved	-	-	-	-	-	-	-	-	
0x0 (0x20)	Reserved	-	-	-	-	-	-	-	-	

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

- Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega48/88/168 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.
- 5. Only valid for ATmega88/168

5. Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND L	OGIC INSTRUCTIONS	3			
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	$Rdh:Rdl \leftarrow Rdh:Rdl + K$	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd \text{-} K \text{-} C$	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	$Rdh:Rdl \leftarrow Rdh:Rdl - K$	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \lor Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \gets Rd \lor K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow 0xFF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← 0x00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \gets Rd \lor K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (0xFF - K)$	Z,N,V	1
INC	Rd	Increment	$Rd \leftarrow Rd + 1$	Z,N,V	1
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	$Rd \leftarrow 0xFF$	None	1
MUL	Rd, Rr	Multiply Unsigned	$R1:R0 \leftarrow Rd x Rr$	Z,C	2
MULS	Rd, Rr	Multiply Signed	$R1:R0 \leftarrow Rd x Rr$	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
BRANCH INSTRUCT				,-	. –
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
IJMP		Indirect Jump to (Z)	PC ← Z	None	2
JMP ⁽¹⁾	k	Direct Jump	PC ← k	None	3
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3
ICALL	ĸ	Indirect Call to (Z)	$PC \leftarrow Z$	None	3
CALL ⁽¹⁾	k	Direct Subroutine Call	PC ← k	None	4
RET		Subroutine Return	PC ← STACK	None	4
RETI		Interrupt Return	PC ← STACK		4
CPSE	Rd,Rr	Compare, Skip if Equal	if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(\text{Rr}(b)=0)$ PC \leftarrow PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(Rr(b)=0)$ PC \leftarrow PC + 2 or 3 if $(Rr(b)=1)$ PC \leftarrow PC + 2 or 3	None	1/2/3
SBIC	P, b			None	1/2/3
SBIS		Skip if Bit in I/O Register Cleared Skip if Bit in I/O Register is Set	if $(P(b)=0) PC \leftarrow PC + 2 \text{ or } 3$ if $(P(b)=1) PC \leftarrow PC + 2 \text{ or } 3$	None	
BRBS	P, b s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC \leftarrow PC + 2 or 3 if (SREG(s) = 1) then PC \leftarrow PC+k + 1	None	1/2/3 1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 1) then $PC \leftarrow PC+k+1$ if (SREG(s) = 0) then $PC \leftarrow PC+k+1$	None	1/2
BREQ	s, к k	Branch if Equal	if $(Z = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRNE	k k	Branch if Not Equal	if (Z = 0) then PC \leftarrow PC + k + 1 if (Z = 0) then PC \leftarrow PC + k + 1	None	1/2
BRCS	k k	Branch if Carry Set	if ($Z = 0$) then PC \leftarrow PC + k + 1 if (C = 1) then PC \leftarrow PC + k + 1		1/2
	k k		if (C = 1) then PC \leftarrow PC + K + 1 if (C = 0) then PC \leftarrow PC + K + 1	None	
BRCC BRSH	k k	Branch if Carry Cleared Branch if Same or Higher		None None	1/2 1/2
			if (C = 0) then PC \leftarrow PC + k + 1		
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1 if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1 if (N = 0) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if $(N = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(N \oplus V = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if $(N \oplus V=1)$ then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC \leftarrow PC + k + 1	None	1/2
BRVS BRVC	k k	Branch if Overflow Flag is Set Branch if Overflow Flag is Cleared	if (V = 1) then PC \leftarrow PC + k + 1 if (V = 0) then PC \leftarrow PC + k + 1	None	1/2 1/2

12 ATmega48/88/168

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2
BIT AND BIT-TEST	INSTRUCTIONS				
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	s	Flag Set	$SREG(s) \leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	$C \leftarrow 0$	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	l ← 1	1	1
CLI		Global Interrupt Disable	l ← 0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER I					1 .
MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
MOVW	Rd, Rr	Copy Register Word	Rd+1:Rd ← Rr+1:Rr	None	1
LDI	Rd, K	Load Immediate	$\begin{array}{l} Rd \leftarrow K \\ Rd \leftarrow (X) \end{array}$	None	1
LD	Rd, X	Load Indirect Load Indirect and Post-Inc.		None	2
LD LD	Rd, X+		$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X Rd, Y	Load Indirect and Pre-Dec.	$X \leftarrow X - 1, Rd \leftarrow (X)$ Rd \leftarrow (Y)	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.		None	2
LD	Rd, - Y		$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None None	2
LDD	Rd,Y+q	Load Indirect and Pre-Dec. Load Indirect with Displacement	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$ $Rd \leftarrow (Y + q)$	None	2
LDD	Rd, Z	Load Indirect with Displacement	$Rd \leftarrow (T + q)$ $Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1, Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect and Pre-Dec.	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (Z + q)$ $Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	$\begin{array}{c} Ku \leftarrow (K) \\ (X) \leftarrow Rr \end{array}$	None	2
ST	X, RI X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Ri$ $(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect and FIE-Dec.	$(Y) \leftarrow Rr$	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect and Pre-Dec. Store Indirect with Displacement	$Y \leftarrow Y - Y, (Y) \leftarrow RY$ (Y + q) $\leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect with Displacement	$(T+q) \leftarrow Rr$	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$(Z) \leftarrow RI, Z \leftarrow Z + I$ $Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect and FIE-Dec. Store Indirect with Displacement	$(Z+q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	$(2+q) \leftarrow Rr$ (k) $\leftarrow Rr$	None	2
	Ν, ΝΙ		$(k) \leftarrow Rr$ $R0 \leftarrow (Z)$		3
LPM	Rd, Z	Load Program Memory Load Program Memory		None	3
			$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	
SPM	Pd D	Store Program Memory	$(Z) \leftarrow R1:R0$	None	-
	Rd, P	In Port	$Rd \leftarrow P$	None	1
OUT	P, Rr	Out Port	$P \leftarrow Rr$	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2

Mnemonics	Operands	Description	Operation	Flags	#Clocks
POP	Rd	Pop Register from Stack	$Rd \leftarrow STACK$	None	2
MCU CONTROL INS	TRUCTIONS				
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

Note: 1. These instructions are only available in ATmega168.

6. Ordering Information

6.1 ATmega48

Speed (MHz)	Power Supply	Ordering Code	Package ⁽¹⁾	Operational Range
		ATmega48V-10AI	32A	
		ATmega48V-10MI	32M1-A	
		ATmega48V-10PI	28P3	la du otrial
10 ⁽³⁾	1.8 - 5.5	ATmega48V-10AU ⁽²⁾	32A	Industrial
		ATmega48V-10MMU ⁽²⁾	28M1	(-40°C to 85°C)
		ATmega48V-10MU ⁽²⁾	32M1-A	
		ATmega48V-10PU ⁽²⁾	28P3	
		ATmega48-20AI	32A	
		ATmega48-20MI	32M1-A	
		ATmega48-20PI	28P3	ا منه با ما
20 ⁽³⁾	2.7 - 5.5	ATmega48-20AU ⁽²⁾	32A	Industrial
		ATmega48-20MMU ⁽²⁾	28M1	(-40°C to 85°C)
		ATmega48-20MU ⁽²⁾	32M1-A	
		ATmega48-20PU ⁽²⁾	28P3	

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. See Figure 27-1 on page 305 and Figure 27-2 on page 305.

	Package Type
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
28M1	28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)

6.2 ATmega88

Speed (MHz)	Power Supply	Ordering Code	Package ⁽¹⁾	Operational Range
		ATmega88V-10AI	32A	
		ATmega88V-10MI	32M1-A	
10 ⁽³⁾		ATmega88V-10PI	28P3	Industrial
10(-)	1.8 - 5.5	ATmega88V-10AU ⁽²⁾	32A	(-40°C to 85°C)
		ATmega88V-10MU ⁽²⁾	32M1-A	
		ATmega88V-10PU ⁽²⁾	28P3	
		ATmega88-20AI	32A	
		ATmega88-20MI	32M1-A	
20 ⁽³⁾		ATmega88-20PI	28P3	Industrial
20(**	2.7 - 5.5	ATmega88-20AU ⁽²⁾	32A	(-40°C to 85°C)
		ATmega88-20MU ⁽²⁾	32M1-A	
		ATmega88-20PU ⁽²⁾	28P3	

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. See Figure 27-1 on page 305 and Figure 27-2 on page 305.

	Package Type
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)

6.3 ATmega168

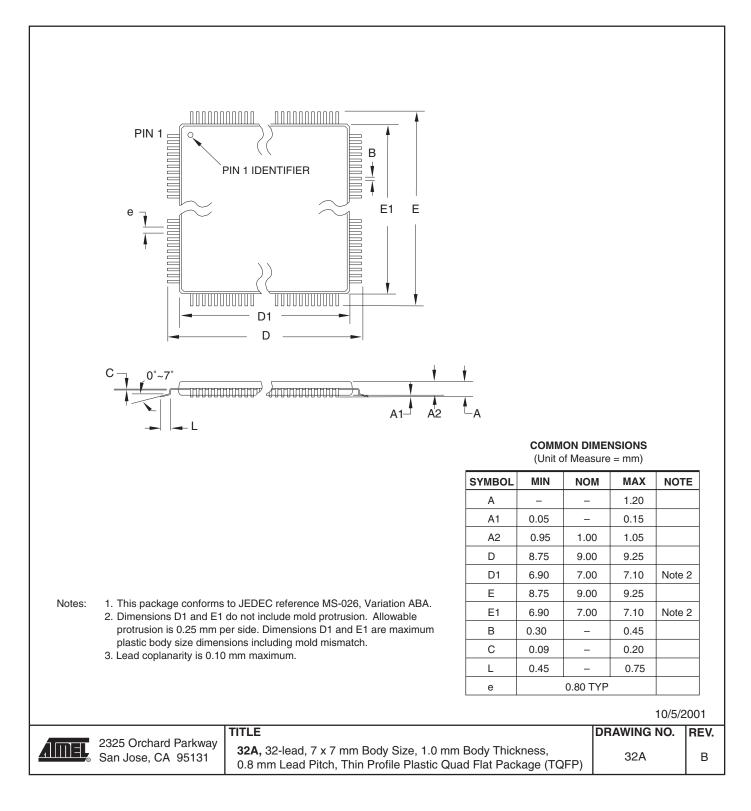
Speed (MHz) ⁽³⁾	Power Supply	Ordering Code	Package ⁽¹⁾	Operational Range
10	1.8 - 5.5	ATmega168V-10AI	32A	
		ATmega168V-10MI	32M1-A	
		ATmega168V-10PI	28P3	Industrial
		ATmega168V-10AU ⁽²⁾	32A	(-40°C to 85°C)
		ATmega168V-10MU ⁽²⁾	32M1-A	
		ATmega168V-10PU ⁽²⁾	28P3	
20	2.7 - 5.5	ATmega168-20AI	32A	
		ATmega168-20MI	32M1-A	
		ATmega168-20PI	28P3	Industrial
		ATmega168-20AU ⁽²⁾	32A	(-40°C to 85°C)
		ATmega168-20MU ⁽²⁾	32M1-A	
		ATmega168-20PU ⁽²⁾	28P3	

Note: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

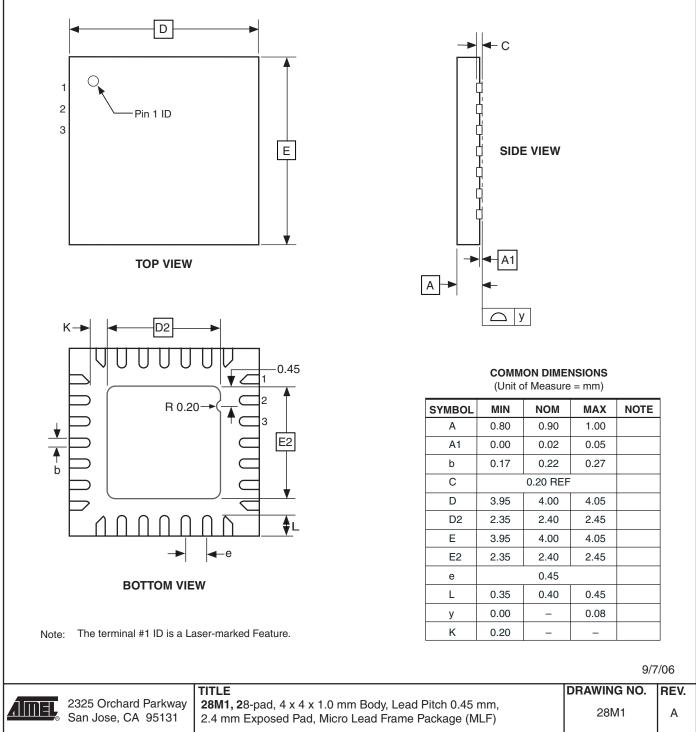
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. See Figure 27-1 on page 305 and Figure 27-2 on page 305.

Package Type			
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)		
32M1-A	32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)		
28P3	28-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)		



2545LS-AVR-08/07


7. Packaging Information

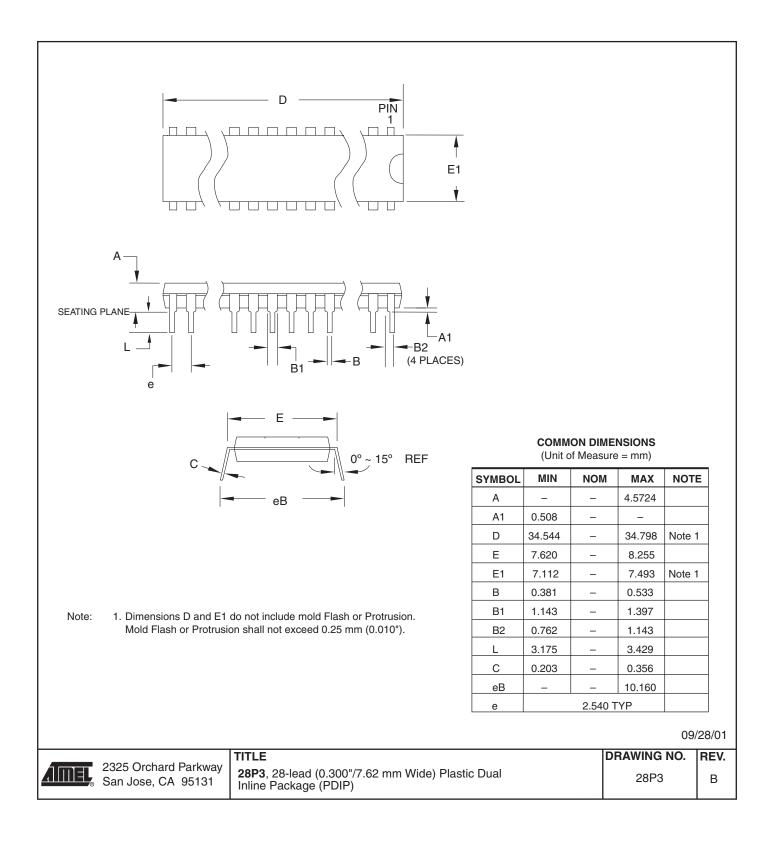
7.1 32A

7.2

28M1



2545LS-AVR-08/07



7.3 32M1-A

²⁰ ATmega48/88/168

7.4 28P3

8. Errata

8.1 Errata ATmega48

The revision letter in this section refers to the revision of the ATmega48 device.

8.1.1 Rev. D

• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer If one of the timer registers which is synchronized to the asynchronous timer2 clock is written in the cycle before an overflow interrupt occurs, the interrupt may be lost.

Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2.

The only safe time to write to any of the Timer2 registers in asynchronous mode is in a compare interrupt routine where the compare register is not 0xFF, or if the compare register is 0xFF, after a delay of at least one asynchronous clock cycle from the start of the interrupt.

8.1.2 Rev. C

- Reading EEPROM when system clock frequency is below 900 kHz may not work
- · Interrupts may be lost when writing the timer registers in the asynchronous timer
- Reading EEPROM when system clock frequency is below 900 kHz may not work Reading Data from the EEPROM at system clock frequency below 900 kHz may result in wrong data read.

Problem Fix/Workaround

Avoid using the EEPROM at clock frequency below 900 kHz.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer If one of the timer registers which is synchronized to the asynchronous timer2 clock is written in the cycle before an overflow interrupt occurs, the interrupt may be lost.

Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2.

The only safe time to write to any of the Timer2 registers in asynchronous mode is in a compare interrupt routine where the compare register is not 0xFF, or if the compare register is 0xFF, after a delay of at least one asynchronous clock cycle from the start of the interrupt.

8.1.3 Rev. B

• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer If one of the timer registers which is synchronized to the asynchronous timer2 clock is written in the cycle before an overflow interrupt occurs, the interrupt may be lost.

²² ATmega48/88/168

Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2.

The only safe time to write to any of the Timer2 registers in asynchronous mode is in a compare interrupt routine where the compare register is not 0xFF, or if the compare register is 0xFF, after a delay of at least one asynchronous clock cycle from the start of the interrupt.

8.1.4 Rev A

- Part may hang in reset
- Wrong values read after Erase Only operation
- Watchdog Timer Interrupt disabled
- Start-up time with Crystal Oscillator is higher than expected
- High Power Consumption in Power-down with External Clock
- Asynchronous Oscillator does not stop in Power-down
- · Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Part may hang in reset

Some parts may get stuck in a reset state when a reset signal is applied when the internal reset state-machine is in a specific state. The internal reset state-machine is in this state for approximately 10 ns immediately before the part wakes up after a reset, and in a 10 ns window when altering the system clock prescaler. The problem is most often seen during In-System Programming of the device. There are theoretical possibilities of this happening also in run-mode. The following three cases can trigger the device to get stuck in a reset-state:

- Two succeeding resets are applied where the second reset occurs in the 10ns window before the device is out of the reset-state caused by the first reset.

- A reset is applied in a 10 ns window while the system clock prescaler value is updated by software.

- Leaving SPI-programming mode generates an internal reset signal that can trigger this case.

The two first cases can occur during normal operating mode, while the last case occurs only during programming of the device.

Problem Fix/Workaround

The first case can be avoided during run-mode by ensuring that only one reset source is active. If an external reset push button is used, the reset start-up time should be selected such that the reset line is fully debounced during the start-up time.

The second case can be avoided by not using the system clock prescaler.

The third case occurs during In-System programming only. It is most frequently seen when using the internal RC at maximum frequency.

If the device gets stuck in the reset-state, turn power off, then on again to get the device out of this state.

2. Wrong values read after Erase Only operation

At supply voltages below 2.7 V, an EEPROM location that is erased by the Erase Only operation may read as programmed (0x00).

Problem Fix/Workaround

If it is necessary to read an EEPROM location after Erase Only, use an Atomic Write operation with 0xFF as data in order to erase a location. In any case, the Write Only operation can be used as intended. Thus no special considerations are needed as long as the erased location is not read before it is programmed.

3. Watchdog Timer Interrupt disabled

If the watchdog timer interrupt flag is not cleared before a new timeout occurs, the watchdog will be disabled, and the interrupt flag will automatically be cleared. This is only applicable in interrupt only mode. If the Watchdog is configured to reset the device in the watchdog timeout following an interrupt, the device works correctly.

Problem fix / Workaround

Make sure there is enough time to always service the first timeout event before a new watchdog timeout occurs. This is done by selecting a long enough time-out period.

4. Start-up time with Crystal Oscillator is higher than expected

The clock counting part of the start-up time is about 2 times higher than expected for all start-up periods when running on an external Crystal. This applies only when waking up by reset. Wake-up from power down is not affected. For most settings, the clock counting parts is a small fraction of the overall start-up time, and thus, the problem can be ignored. The exception is when using a very low frequency crystal like for instance a 32 kHz clock crystal.

Problem fix / Workaround

No known workaround.

5. High Power Consumption in Power-down with External Clock

The power consumption in power down with an active external clock is about 10 times higher than when using internal RC or external oscillators.

Problem fix / Workaround

Stop the external clock when the device is in power down.

6. Asynchronous Oscillator does not stop in Power-down

The Asynchronous oscillator does not stop when entering power down mode. This leads to higher power consumption than expected.

Problem fix / Workaround

Manually disable the asynchronous timer before entering power down.

7. Interrupts may be lost when writing the timer registers in the asynchronous timer

If one of the timer registers which is synchronized to the asynchronous timer2 clock is written in the cycle before an overflow interrupt occurs, the interrupt may be lost.

Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2.

The only safe time to write to any of the Timer2 registers in asynchronous mode is in a compare interrupt routine where the compare register is not 0xFF, or if the compare register is 0xFF, after a delay of at least one asynchronous clock cycle from the start of the interrupt.

²⁴ ATmega48/88/168

8.2 Errata ATmega88

The revision letter in this section refers to the revision of the ATmega88 device.

8.2.1 Rev. D

Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer If one of the timer registers which is synchronized to the asynchronous timer2 clock is writ-

ten in the cycle before an overflow interrupt occurs, the interrupt may be lost.

The only safe time to write to any of the Timer2 registers in asynchronous mode is in a compare interrupt routine where the compare register is not 0xFF, or if the compare register is 0xFF, after a delay of at least one asynchronous clock cycle from the start of the interrupt.

Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2.

8.2.2 Rev. B/C

Not sampled.

8.2.3 Rev. A

- Writing to EEPROM does not work at low Operating Voltages
- Part may hang in reset
- Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Writing to EEPROM does not work at low operating voltages Writing to the EEPROM does not work at low voltages.

Problem Fix/Workaround

Do not write the EEPROM at voltages below 4.5 Volts. This will be corrected in rev. B.

2. Part may hang in reset

Some parts may get stuck in a reset state when a reset signal is applied when the internal reset state-machine is in a specific state. The internal reset state-machine is in this state for approximately 10 ns immediately before the part wakes up after a reset, and in a 10 ns window when altering the system clock prescaler. The problem is most often seen during In-System Programming of the device. There are theoretical possibilities of this happening also in run-mode. The following three cases can trigger the device to get stuck in a reset-state:

- Two succeeding resets are applied where the second reset occurs in the 10ns window before the device is out of the reset-state caused by the first reset.

- A reset is applied in a 10 ns window while the system clock prescaler value is updated by software.

- Leaving SPI-programming mode generates an internal reset signal that can trigger this case.

The two first cases can occur during normal operating mode, while the last case occurs only during programming of the device.

Problem Fix/Workaround

The first case can be avoided during run-mode by ensuring that only one reset source is active. If an external reset push button is used, the reset start-up time should be selected such that the reset line is fully debounced during the start-up time.

The second case can be avoided by not using the system clock prescaler.

The third case occurs during In-System programming only. It is most frequently seen when using the internal RC at maximum frequency.

If the device gets stuck in the reset-state, turn power off, then on again to get the device out of this state.

3. Interrupts may be lost when writing the timer registers in the asynchronous timer

If one of the timer registers which is synchronized to the asynchronous timer2 clock is written in the cycle before an overflow interrupt occurs, the interrupt may be lost.

Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2.

The only safe time to write to any of the Timer2 registers in asynchronous mode is in a compare interrupt routine where the compare register is not 0xFF, or if the compare register is 0xFF, after a delay of at least one asynchronous clock cycle from the start of the interrupt.

8.3 Errata ATmega168

The revision letter in this section refers to the revision of the ATmega168 device.

8.3.1 Rev C

Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer If one of the timer registers which is synchronized to the asynchronous timer2 clock is written in the cycle before an overflow interrupt occurs, the interrupt may be lost.

Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2.

The only safe time to write to any of the Timer2 registers in asynchronous mode is in a compare interrupt routine where the compare register is not 0xFF, or if the compare register is 0xFF, after a delay of at least one asynchronous clock cycle from the start of the interrupt.

8.3.2 Rev B

• Part may hang in reset

· Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Part may hang in reset

Some parts may get stuck in a reset state when a reset signal is applied when the internal reset state-machine is in a specific state. The internal reset state-machine is in this state for approximately 10 ns immediately before the part wakes up after a reset, and in a 10 ns window when altering the system clock prescaler. The problem is most often seen during In-

²⁶ ATmega48/88/168

System Programming of the device. There are theoretical possibilities of this happening also in run-mode. The following three cases can trigger the device to get stuck in a reset-state:

- Two succeeding resets are applied where the second reset occurs in the 10ns window before the device is out of the reset-state caused by the first reset.

- A reset is applied in a 10 ns window while the system clock prescaler value is updated by software.

- Leaving SPI-programming mode generates an internal reset signal that can trigger this case.

The two first cases can occur during normal operating mode, while the last case occurs only during programming of the device.

Problem Fix/Workaround

The first case can be avoided during run-mode by ensuring that only one reset source is active. If an external reset push button is used, the reset start-up time should be selected such that the reset line is fully debounced during the start-up time.

The second case can be avoided by not using the system clock prescaler.

The third case occurs during In-System programming only. It is most frequently seen when using the internal RC at maximum frequency.

If the device gets stuck in the reset-state, turn power off, then on again to get the device out of this state.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

If one of the timer registers which is synchronized to the asynchronous timer2 clock is written in the cycle before an overflow interrupt occurs, the interrupt may be lost.

Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2.

The only safe time to write to any of the Timer2 registers in asynchronous mode is in a compare interrupt routine where the compare register is not 0xFF, or if the compare register is 0xFF, after a delay of at least one asynchronous clock cycle from the start of the interrupt.

8.3.3 Rev A

• Wrong values read after Erase Only operation

- · Part may hang in reset
- · Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Wrong values read after Erase Only operation

At supply voltages below 2.7 V, an EEPROM location that is erased by the Erase Only operation may read as programmed (0x00).

Problem Fix/Workaround

If it is necessary to read an EEPROM location after Erase Only, use an Atomic Write operation with 0xFF as data in order to erase a location. In any case, the Write Only operation can be used as intended. Thus no special considerations are needed as long as the erased location is not read before it is programmed.

2. Part may hang in reset

Some parts may get stuck in a reset state when a reset signal is applied when the internal reset state-machine is in a specific state. The internal reset state-machine is in this state for approximately 10 ns immediately before the part wakes up after a reset, and in a 10 ns window when altering the system clock prescaler. The problem is most often seen during In-System Programming of the device. There are theoretical possibilities of this happening also in run-mode. The following three cases can trigger the device to get stuck in a reset-state:

- Two succeeding resets are applied where the second reset occurs in the 10ns window before the device is out of the reset-state caused by the first reset.

- A reset is applied in a 10 ns window while the system clock prescaler value is updated by software.

- Leaving SPI-programming mode generates an internal reset signal that can trigger this case.

The two first cases can occur during normal operating mode, while the last case occurs only during programming of the device.

Problem Fix/Workaround

The first case can be avoided during run-mode by ensuring that only one reset source is active. If an external reset push button is used, the reset start-up time should be selected such that the reset line is fully debounced during the start-up time.

The second case can be avoided by not using the system clock prescaler.

The third case occurs during In-System programming only. It is most frequently seen when using the internal RC at maximum frequency.

If the device gets stuck in the reset-state, turn power off, then on again to get the device out of this state.

2. Interrupts may be lost when writing the timer registers in the asynchronous timer

If one of the timer registers which is synchronized to the asynchronous timer2 clock is written in the cycle before an overflow interrupt occurs, the interrupt may be lost.

Problem Fix/Workaround

Always check that the Timer2 Timer/Counter register, TCNT2, does not have the value 0xFF before writing the Timer2 Control Register, TCCR2, or Output Compare Register, OCR2.

The only safe time to write to any of the Timer2 registers in asynchronous mode is in a compare interrupt routine where the compare register is not 0xFF, or if the compare register is 0xFF, after a delay of at least one asynchronous clock cycle from the start of the interrupt.

9. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

9.1 Rev. 2545L-08/07

- 1. Updated "Features" on page 1.
- 2. Updated code example in "MCUCR MCU Control Register" on page 64.
- 3. Updated "System and Reset Characteristics" on page 307.
- 4. Updated Note in Table 7-3 on page 30, Table 7-5 on page 31, Table 7-8 on page 33, Table 7-10 on page 34.

9.2 Rev. 2545K-04/07

- 1. Updated "Interrupts" on page 56.
- 2. Updated"Errata ATmega48" on page 356.
- 3. Changed description in "Analog-to-Digital Converter" on page 244.

9.3 Rev. 2545J-12/06

- 1. Updated "Features" on page 1.
- 2. Updated Table 1-1 on page 2.
- 3. Updated "Ordering Information" on page 349.
- 4. Updated "Packaging Information" on page 352.

9.4 Rev. 2545I-11/06

- 1. Updated "Features" on page 1.
- 2. Updated Features in "2-wire Serial Interface" on page 209.
- 3. Fixed typos in Table 27-3 on page 307.

9.5 Rev. 2545H-10/06

- 1. Updated typos.
- 2. Updated "Features" on page 1.
- 3. Updated "Calibrated Internal RC Oscillator" on page 33.
- 4. Updated "System Control and Reset" on page 45.
- 5. Updated "Brown-out Detection" on page 47.
- 6. Updated "Fast PWM Mode" on page 121.
- Updated bit description in "TCCR1C Timer/Counter1 Control Register C" on page 133.
- 8. Updated code example in "SPI Serial Peripheral Interface" on page 161.

- 9. Updated Table 13-3 on page 101, Table 13-6 on page 102, Table 13-8 on page 103, Table 14-2 on page 130, Table 14-3 on page 131, Table 14-4 on page 132, Table 16-3 on page 154, Table 16-6 on page 155, Table 16-8 on page 156, and Table 26-5 on page 287.
- 10. Added Note to Table 24-1 on page 265, Table 25-5 on page 279, and Table 26-17 on page 300.
- 11. Updated "Setting the Boot Loader Lock Bits by SPM" on page 277.
- 12. Updated "Signature Bytes" on page 288
- 13. Updated "Electrical Characteristics" on page 303.
- 14. Updated "Errata" on page 356.

9.6 Rev. 2545G-06/06

- 1. Added Addresses in Registers.
- 2. Updated "Calibrated Internal RC Oscillator" on page 33.
- 3. Updated Table 7-12 on page 35, Table 8-1 on page 39, Table 9-1 on page 54, Table 12-3 on page 78.
- 4. Updated "ADC Noise Reduction Mode" on page 40.
- 5. Updated note for Table 8-2 on page 43.
- 6. Updatad "Bit 2 PRSPI: Power Reduction Serial Peripheral Interface" on page 44.
- 7. Updated "TCCR0B Timer/Counter Control Register B" on page 104.
- 8. Updated "Fast PWM Mode" on page 121.
- 9. Updated "Asynchronous Operation of Timer/Counter2" on page 151.
- 10. Updated "SPI Serial Peripheral Interface" on page 161.
- 11. Updated "UCSRnA USART MSPIM Control and Status Register n A" on page 206.
- 12. Updated note in "Bit Rate Generator Unit" on page 216.
- 13. Updated "Bit 6 ACBG: Analog Comparator Bandgap Select" on page 242.
- 14. Updated Features in "Analog-to-Digital Converter" on page 244.
- 15. Updated "Prescaling and Conversion Timing" on page 247.
- 16. Updated "Limitations of debugWIRE" on page 261.
- 17 Added Table 27-1 on page 306.
- 18. Updated Figure 14-7 on page 122, Figure 28-44 on page 338.
- 19. Updated rev. A in "Errata ATmega48" on page 356.
- 20. Added rev. C and D in "Errata ATmega48" on page 356.

9.7 Rev. 2545F-05/05

- 1. Added Section 3. "Resources" on page 7
- 2. Update Section 7.6 "Calibrated Internal RC Oscillator" on page 33.
- 3. Updated Section 26.8.3 "Serial Programming Instruction set" on page 300.
- 4. Table notes in Section 27.2 "DC Characteristics ATmega48/88/168*" on page 303 updated.
- 5. Updated Section 33. "Errata" on page 356.

9.8 Rev. 2545E-02/05

- 1. MLF-package alternative changed to "Quad Flat No-Lead/Micro Lead Frame Package QFN/MLF".
- 2. Updated "EECR The EEPROM Control Register" on page 22.
- 3. Updated "Calibrated Internal RC Oscillator" on page 33.
- 4. Updated "External Clock" on page 35.
- 5. Updated Table 27-3 on page 307, Table 27-6 on page 309, Table 27-2 on page 306and Table 26-16 on page 300
- 6. Added "Pin Change Interrupt Timing" on page 66
- 7. Updated "8-bit Timer/Counter Block Diagram" on page 90.
- 8. Updated "SPMCSR Store Program Memory Control and Status Register" on page 267.
- 9. Updated "Enter Programming Mode" on page 291.
- 10. Updated "DC Characteristics ATmega48/88/168*" on page 303.
- 11. Updated "Ordering Information" on page 349.
- 12. Updated "Errata ATmega88" on page 359 and "Errata ATmega168" on page 360.

9.9 Rev. 2545D-07/04

- 1. Updated instructions used with WDTCSR in relevant code examples.
- 2. Updated Table 7-5 on page 31, Table 27-4 on page 307, Table 25-9 on page 282, and Table 25-11 on page 283.
- 3. Updated "System Clock Prescaler" on page 36.
- Moved "TIMSK2 Timer/Counter2 Interrupt Mask Register" and "TIFR2 – Timer/Counter2 Interrupt Flag Register" to "Register Description" on page 153.
- 5. Updated cross-reference in "Electrical Interconnection" on page 210.
- 6. Updated equation in "Bit Rate Generator Unit" on page 216.
- 7. Added "Page Size" on page 289.
- 8. Updated "Serial Programming Algorithm" on page 299.
- 9. Updated Ordering Information for "ATmega168" on page 351.
- 10. Updated "Errata ATmega88" on page 359 and "Errata ATmega168" on page 360.
- 11. Updated equation in "Bit Rate Generator Unit" on page 216.

9.10 Rev. 2545C-04/04

- 1. Speed Grades changed: 12MHz to 10MHz and 24MHz to 20MHz
- 2. Updated "Speed Grades" on page 305.
- 3. Updated "Ordering Information" on page 349.
- 4. Updated "Errata ATmega88" on page 359.

9.11 Rev. 2545B-01/04

- 1. Added PDIP to "I/O and Packages", updated "Speed Grade" and Power Consumption Estimates in 34."Features" on page 1.
- 2. Updated "Stack Pointer" on page 13 with RAMEND as recommended Stack Pointer value.
- 3. Added section "Power Reduction Register" on page 41 and a note regarding the use of the PRR bits to 2-wire, Timer/Counters, USART, Analog Comparator and ADC sections.
- 4. Updated "Watchdog Timer" on page 49.
- 5. Updated Figure 14-2 on page 130 and Table 14-3 on page 131.
- 6. Extra Compare Match Interrupt OCF2B added to features in section "8-bit Timer/Counter2 with PWM and Asynchronous Operation" on page 140
- 7. Updated Table 8-1 on page 39, Table 22-5 on page 259, Table 26-4 to Table 26-7 on page 286 to 288 and Table 22-1 on page 249. Added note 2 to Table 26-1 on page 285. Fixed typo in Table 11-1 on page 67.
- 8. Updated whole "Typical Characteristics Preliminary Data" on page 315.
- 9. Added item 2 to 5 in "Errata ATmega48" on page 356.
- 10. Renamed the following bits:
 - SPMEN to SELFPRGEN
 - PSR2 to PSRASY
 - PSR10 to PSRSYNC
 - Watchdog Reset to Watchdog System Reset
- 11. Updated C code examples containing old IAR syntax.
- 12. Updated BLBSET description in "SPMCSR Store Program Memory Control and Status Register" on page 283.

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com Technical Support avr@atmel.com Sales Contact www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2007 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof AVR[®], and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.