(if) N-Channel Depletion-Mode MOSFET

Ordering Information

| $\mathrm{BV}_{\mathrm{DSX}} /$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{BV}_{\mathrm{DGX}}$ |

Product marking for SOT-23:
NDE $*$
where $*=$ 2-week alpha date code

*Same as SOT-23. All units shipped on 3,000 piece carrier tape reels.

Features

- ESD gate protection
- Free from secondary breakdown
- Low power drive requirement
- Ease of paralleling
- Excellent thermal stability
- Integral source-drain diode
- High input impedance and low $\mathrm{C}_{\text {ISS }}$

Applications

- Solid state relays
- Normally-on switches
- Converters
- Power supply circuits
- Constant current sources
- Input protection circuits

Absolute Maximum Ratings	
Drain-to-Source Voltage	$\mathrm{BV}_{\mathrm{DSX}}$
Drain-to-Gate Voltage	$\mathrm{BV}_{\mathrm{DGX}}$
Gate-to-Source Voltage	$\pm 20 \mathrm{~V}$
Operating and Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Temperature*	$300^{\circ} \mathrm{C}$

* Distance of 1.6 mm from case for 10 seconds.

Advanced DMOS Technology

The LND2 is a high voltage N -channel depletion mode (normallyon) transistor utilizing Supertex's lateral DMOS technology. The gate is ESD protected.
The LND2 is ideal for high voltage applications in the areas of normally-on switches, precision constant current sources, voltage ramp generation and amplification.

Package Options

Thermal Characteristics

Package	I_{D} (continuous)*	$I_{\text {d }}$ (pulsed)	Power Dissipation $@ T_{A}=25^{\circ} \mathrm{C}$	$\begin{gathered} \boldsymbol{\theta}_{\text {ic }} \\ { }^{\circ} \mathbf{C} / \mathbf{W} \end{gathered}$	$\begin{gathered} \boldsymbol{\theta}_{\mathrm{ida}} \\ { }^{\circ} \mathbf{C} / \mathbf{W} \end{gathered}$	I_{DR}	$\mathrm{I}_{\text {DRM }}{ }^{*}$
TO-236AB	13 mA	30 mA	0.36W	200	350	13 mA	30 mA

Electrical Characteristics (@ $25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Min	Typ	Max	Unit	Conditions
$B V_{\text {DSX }}$	Drain-to-Source Breakdown Voltage	500			V	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{GS}(\mathrm{OFF})}$	Gate-to-Source OFF Voltage	-1.0		-3.0	V	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{nA}$
$\Delta \mathrm{V}_{\text {GS(OFF) }}$	Change in $\mathrm{V}_{\mathrm{GS} \text { (OFF) }}$ with Temperature			5.0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{nA}$
$\mathrm{I}_{\text {GSS }}$	Gate Body Leakage Current			100	nA	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{D} \text { (OFF) }}$	Drain-to-Source Leakage Current			100	nA	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=450 \mathrm{~V}$
				100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.8 \mathrm{~V} \text { max rating } \\ & \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\text {DSS }}$	Saturated Drain-to-Source Current	1.0		3.0	mA	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=25 \mathrm{~V}$
$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	Static Drain-to-Source ON-State Resistance		850	1K	Ω	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$
$\Delta \mathrm{R}_{\text {DS(ON) }}$	Change in $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ with Temperature			1.2	\%/ ${ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$
$\mathrm{G}_{\text {FS }}$	Forward Transconductance	1.0	2.0		m	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}$
$\mathrm{C}_{\text {ISS }}$	Input Capacitance		7.5	10	pF	$\begin{aligned} & V_{G S}=-10 \mathrm{~V}, V_{D S}=25 \mathrm{~V} \\ & f=1 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {oss }}$	Output Capacitance		2.0	3.5		
$\mathrm{C}_{\text {RSS }}$	Reverse Transfer Capacitance		0.5	1.0		
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-ON Delay Time		0.09		$\mu \mathrm{S}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{GEN}}=25 \Omega \end{aligned}$
tr	Rise Time		0.45			
$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$	Turn-OFF Delay Time		0.1			
t_{f}	Fall Time		1.3			
$\mathrm{V}_{\text {SD }}$	Diode Forward Voltage Drop			0.9	V	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\text {SD }}=1.0 \mathrm{~mA}$
t_{rr}	Reverse Recovery Time		200		ns	$\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{SD}}=1.0 \mathrm{~mA}$

Notes:

1. All D.C. parameters 100% tested at $25^{\circ} \mathrm{C}$ unless otherwise stated. (Pulse test: $300 \mu \mathrm{~s}$ pulse, 2% duty cycle.)
2. All A.C. parameters sample tested.

Switching Waveforms and Test Circuit

PULSE GENERATOR

12/13/010

