Unit: mm

TOSHIBA Field-Effect Transistor Silicon N / P Channel MOS Type

# SSM6L35FE

- High-Speed Switching Applications
- Analog Switch Applications

N-ch: 1.2-V drive
 P-ch: 1.2-V drive
 N-ch, P-ch, 2-in-1

La CN sociatara CAN ala D

• Low ON-resistance Q1 N-ch:  $R_{on}$  = 20  $\Omega$  (max) (@V<sub>GS</sub> = 1.2 V)

:  $R_{on} = 8 \Omega \text{ (max) } (@V_{GS} = 1.5 \text{ V})$ 

:  $R_{on} = 4 \Omega (max) (@V_{GS} = 2.5 V)$ 

:  $R_{on} = 3 \Omega \text{ (max) } (@V_{GS} = 4.0 \text{ V})$ 

Q2 P-ch:  $R_{on}$  = 44  $\Omega$  (max) (@V<sub>GS</sub> = -1.2 V)

:  $R_{on} = 22 \Omega \text{ (max) (@V_{GS} = -1.5 V)}$ 

:  $R_{on}$  = 11  $\Omega$  (max) (@V<sub>GS</sub> = -2.5 V)

:  $R_{on} = 8 \Omega \text{ (max) } (@V_{GS} = -4.0 \text{ V})$ 

#### Q1 Absolute Maximum Ratings (Ta = 25°C)

| Characteristic       |       | Symbol           | Rating | Unit |
|----------------------|-------|------------------|--------|------|
| Drain-source voltage |       | $V_{DSS}$        | 20     | ٧    |
| Gate-source voltage  |       | V <sub>GSS</sub> | ±10    | ٧    |
| Drain current        | DC    | $I_{D}$          | 180    | mA   |
|                      | Pulse | I <sub>DP</sub>  | 360    | IIIA |

#### Q2 Absolute Maximum Ratings (Ta = 25°C)

| Characteristic       |       | Symbol           | Rating | Unit |
|----------------------|-------|------------------|--------|------|
| Drain-source voltage |       | $V_{DSS}$        | -20    | ٧    |
| Gate-source voltage  |       | V <sub>GSS</sub> | ±10    | ٧    |
| Drain current        | DC    | I <sub>D</sub>   | -100   | mA   |
| Diam current         | Pulse | I <sub>DP</sub>  | -200   | IIIA |

#### Absolute Maximum Ratings (Ta = 25 °C) (Common to the Q1, Q2)

| Characteristic            | Symbol                  | Rating     | Unit |
|---------------------------|-------------------------|------------|------|
| Drain power dissipation   | P <sub>D</sub> (Note 1) | 150        | mW   |
| Channel temperature       | T <sub>ch</sub>         | 150        | °C   |
| Storage temperature range | T <sub>stg</sub>        | -55 to 150 | °C   |

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 1: Total rating

Mounted on an FR4 board

 $(25.4 \text{ mm} \times 25.4 \text{ mm} \times 1.6 \text{ mm}, \text{ Cu Pad: } 0.135 \text{ mm}^2 \times 6)$ 

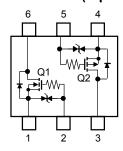
1.6±0.05 1.2±0.05 1.2±0.05 66 90.0+0.1 90.0+0.1 1.Source1 4.Source2 ES6 2.Gate1 5.Gate2 3.Drain2 6.Drain1 JEDEC 
JEITA 
TOSHIBA 2-2N1D

Weight: 3.0 mg (typ.)

# Q1 Electrical Characteristics (Ta = 25°C)

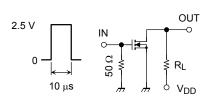
| Charac                       | cteristic     | Symbol               | Test Condition                                                                 | 1        | Min | Тур. | Max  | Unit |
|------------------------------|---------------|----------------------|--------------------------------------------------------------------------------|----------|-----|------|------|------|
| Gate leakage curre           | ent           | I <sub>GSS</sub>     | $V_{GS} = \pm 10 \text{ V}, V_{DS} = 0 \text{V}$                               |          | _   | _    | ±10  | μΑ   |
| Drain-source brea            | kdown voltage | V (BR) DSS           | $I_D = 0.1 \text{ mA}, V_{GS} = 0V$                                            |          | 20  | _    | _    | V    |
| Drain cutoff curren          | t             | I <sub>DSS</sub>     | V <sub>DS</sub> = 20 V, V <sub>GS</sub> = 0V                                   |          | _   | _    | 1    | μА   |
| Gate threshold vol           | tage          | V <sub>th</sub>      | $V_{DS} = 3 \text{ V}, I_D = 1 \text{ mA}$                                     |          | 0.4 |      | 1.0  | V    |
| Forward transfer a           | dmittance     | Y <sub>fs</sub>      | $V_{DS} = 3 \text{ V}, I_D = 50 \text{ mA}$                                    | (Note 2) | 115 | _    | _    | mS   |
| Drain-source ON-resistance   |               | R <sub>DS</sub> (ON) | $I_D = 50$ mA, $V_{GS} = 4$ V                                                  | (Note 2) | _   | 1.5  | 3    | Ω    |
|                              |               |                      | $I_D = 50 \text{ mA}, V_{GS} = 2.5 \text{ V}$                                  | (Note 2) | _   | 2    | 4    |      |
|                              |               |                      | $I_D = 5 \text{ mA}, V_{GS} = 1.5 \text{ V}$                                   | (Note 2) | _   | 3    | 8    |      |
|                              |               |                      | $I_D = 5 \text{ mA}, V_{GS} = 1.2 \text{ V}$                                   | (Note 2) | _   | 5    | 20   |      |
| Input capacitance            |               | C <sub>iss</sub>     |                                                                                |          | _   | 9.5  | _    |      |
| Reverse transfer capacitance |               | C <sub>rss</sub>     | $V_{DS}=3\ V,\ V_{GS}=0V,\ f=1\ MHz$                                           |          |     | 4.1  | _    | pF   |
| Output capacitance           |               | C <sub>oss</sub>     | -                                                                              |          | 9.5 | _    |      |      |
| Switching time               | Turn-on time  | t <sub>on</sub>      | V <sub>DD</sub> = 3 V, I <sub>D</sub> = 50 mA,<br>V <sub>GS</sub> = 0 to 2.5 V |          | _   | 115  | _    |      |
|                              | Turn-off time | t <sub>off</sub>     |                                                                                |          | _   | 300  | _    | ns   |
| Drain–source forward voltage |               | V <sub>DSF</sub>     | $I_D = -180 \text{ mA}, V_{GS} = 0V$                                           | (Note 2) | _   | -0.9 | -1.2 | V    |

# Q2 Electrical Characteristics (Ta = 25°C)


| Chara                        | ecteristic     | Symbol               | Test Condition                                                   |          | Min  | Тур. | Max  | Unit |
|------------------------------|----------------|----------------------|------------------------------------------------------------------|----------|------|------|------|------|
| Gate leakage curi            | rent           | I <sub>GSS</sub>     | $V_{GS} = \pm 10 \text{ V}, V_{DS} = 0 \text{ V}$                |          | _    | _    | ±10  | μА   |
| Drain-source brea            | akdown voltage | V (BR) DSS           | $I_D = -0.1 \text{ mA}, V_{GS} = 0 \text{ V}$                    |          | -20  | _    | _    | V    |
| Drain cutoff curre           | nt             | I <sub>DSS</sub>     | $V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}$                   |          | _    | _    | -1   | μА   |
| Gate threshold vo            | ltage          | V <sub>th</sub>      | $V_{DS} = -3 \text{ V}, I_{D} = -1 \text{ mA}$                   |          | -0.4 | _    | -1.0 | V    |
| Forward transfer             | admittance     | Y <sub>fs</sub>      | $V_{DS} = -3 \text{ V}, I_{D} = -50 \text{ mA}$                  | (Note 2) | 77   | _    | _    | mS   |
| Drain-source ON-resistance   |                | R <sub>DS</sub> (ON) | $I_D = -50 \text{ mA}, V_{GS} = -4 \text{ V}$                    | (Note 2) | _    | 4.3  | 8    | Ω    |
|                              |                |                      | $I_D = -50 \text{ mA}, V_{GS} = -2.5 \text{ V}$                  | (Note 2) | _    | 5.6  | 11   |      |
|                              |                |                      | I <sub>D</sub> = -5 mA, V <sub>GS</sub> = -1.5 V                 | (Note 2) | _    | 8.2  | 22   |      |
|                              |                |                      | $I_D = -2 \text{ mA}, V_{GS} = -1.2 \text{ V}$                   | (Note 2) | _    | 11   | 44   |      |
| Input capacitance            |                | C <sub>iss</sub>     | $V_{DS} = -3 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ |          | _    | 12.2 | _    |      |
| Reverse transfer capacitance |                | C <sub>rss</sub>     |                                                                  |          | _    | 6.5  | _    | pF   |
| Output capacitance           |                | C <sub>oss</sub>     |                                                                  |          | _    | 10.4 | _    |      |
| Switching time               | Turn-on time   | t <sub>on</sub>      | V <sub>DD</sub> = -3 V, I <sub>D</sub> = -50 mA,                 |          |      | 175  | _    |      |
|                              | Turn-off time  | t <sub>off</sub>     | V <sub>GS</sub> = 0 to -2.5 V                                    |          | _    | 251  | _    | ns   |
| Drain–source forward voltage |                | V <sub>DSF</sub>     | $I_D = 100 \text{ mA}, V_{GS} = 0 \text{ V}$                     | (Note 2) | _    | 0.83 | 1.2  | ٧    |

Note 2: Pulse test

# Marking


# LL3

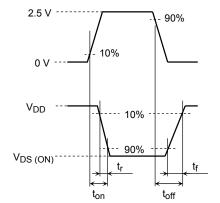
# **Equivalent Circuit (top view)**



#### **Q1 Switching Time Test Circuit**

#### (a) Test Circuit

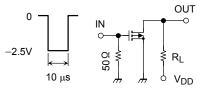



$$\begin{split} &V_{DD} = 3 \ V \\ &D.U. \le 1\% \\ &V_{IN} : t_r, \, t_f < 5 \ \text{ns} \end{split}$$

 $(Z_{out} = 50 \ \Omega)$ Common Source

Ta = 25°C

#### (b) V<sub>IN</sub>


(c) V<sub>OUT</sub>

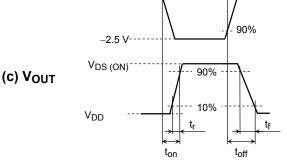


10%

#### **Q2 Switching Time Test Circuit**

#### (a) Test Circuit




 $V_{DD} = -3 V$ D.U.  $\leq 1\%$ 

 $\begin{aligned} &V_{IN}\text{: }t_{\text{r}},\,t_{\text{f}}<5\text{ ns}\\ &(Z_{out}=50\ \Omega) \end{aligned}$ 

 $(Z_{out} = 50 \Omega)$ Common Source

 $Ta=25^{\circ}C$ 

#### (b) V<sub>IN</sub>

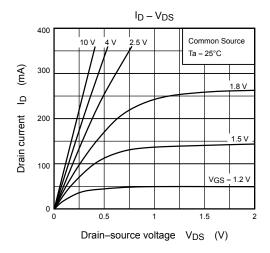


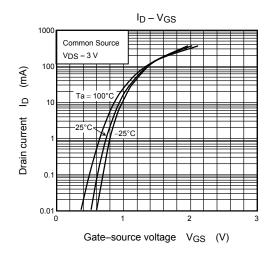
#### Q1 Usage Considerations

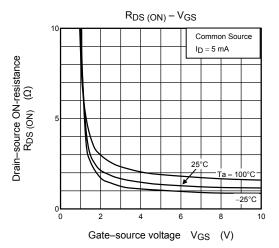
Let  $V_{th}$  be the voltage applied between gate and source that causes the drain current (I<sub>D</sub>) to below (1 mA for the Q1 of the SSM6L35FE). Then, for normal switching operation,  $V_{GS(on)}$  must be higher than  $V_{th}$ , and  $V_{GS(off)}$  must be lower than  $V_{th}$ . This relationship can be expressed as:  $V_{GS(off)} < V_{th} < V_{GS(on)}$ .

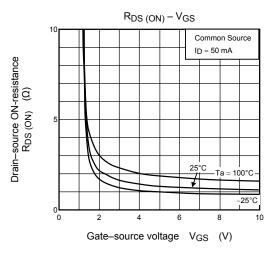
Take this into consideration when using the device.

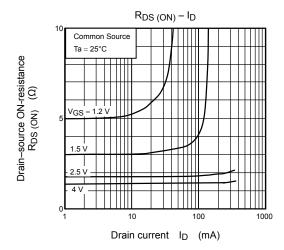
# **Q2 Usage Considerations**


Let  $V_{th}$  be the voltage applied between gate and source that causes the drain current ( $I_D$ ) to below (-1 mA for the Q2 of the SSM6L35FE). Then, for normal switching operation,  $V_{GS(on)}$  must be higher than  $V_{th}$ , and  $V_{GS(off)}$  must be lower than  $V_{th}$ . This relationship can be expressed as:  $V_{GS(off)} < V_{th} < V_{GS(on)}$ .


Take this into consideration when using the device.

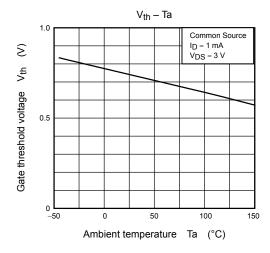

#### **Handling Precaution**

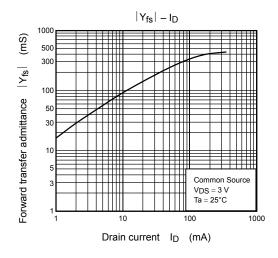

When handling individual devices that are not yet mounted on a circuit board, make sure that the environment is protected against electrostatic discharge. Operators should wear antistatic clothing, and containers and other objects that come into direct contact with devices should be made of antistatic materials.

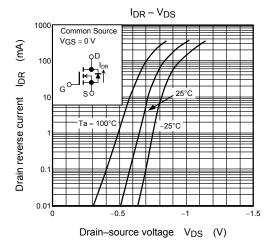

#### Q1 (N-ch MOSFET)

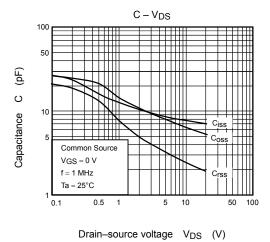


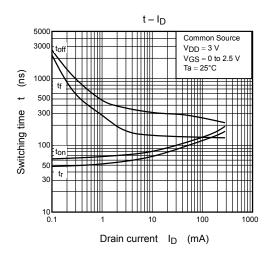




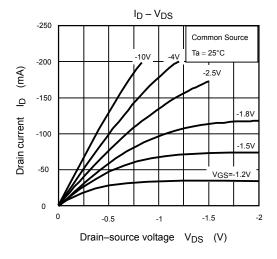



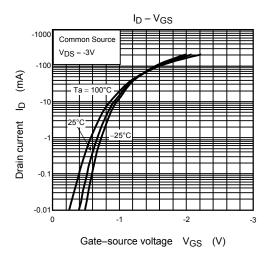



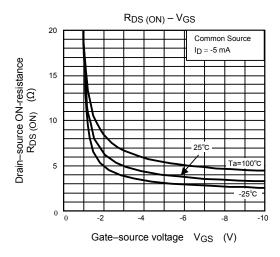



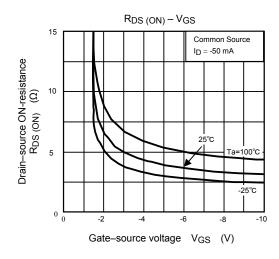


### Q1 (N-ch MOSFET)

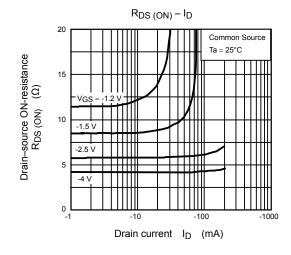


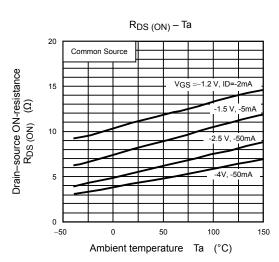


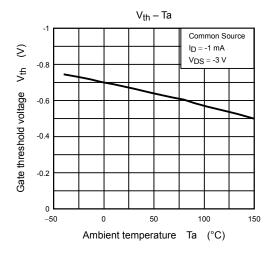



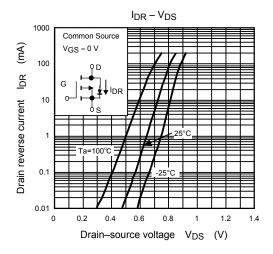


## Q2 (P-ch MOSFET)

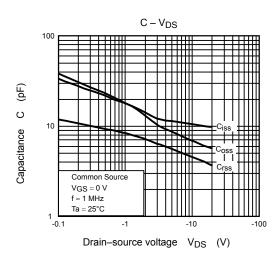


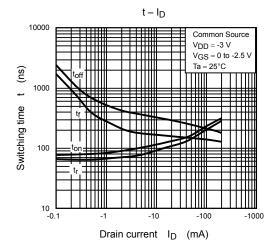


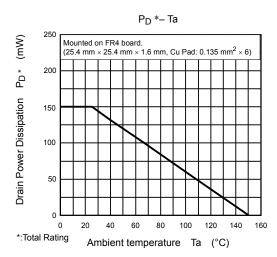







#### Q2 (P-ch MOSFET)














#### RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
  In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
  compatibility. Please use these products in this document in compliance with all applicable laws and regulations
  that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
  occurring as a result of noncompliance with applicable laws and regulations.