Supertex inc.

P-Channel Enhancement-Mode Lateral MOSFET

Ordering Information

BV _{DSS} /	R _{DS(ON)}	I _{D(ON)}	V _{GS(th)}	Ord	er Number / Package		
BV	(max)	(min)	(max)	TO-92	SO-8	Die	
-16.5V	1.5Ω	-1.25A	-1.0V	LP0701N3	LP0701LG	LP0701ND	

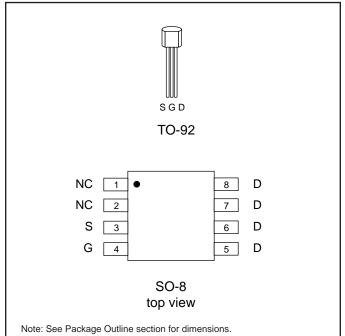
Features

- Ultra low threshold
- High input impedance
- Low input capacitance
- Fast switching speeds
- Low on resistance
- □ Freedom from secondary breakdown
- Low input and output leakage
- Complementary N- and P-channel devices

Applications

- Logic level interfaces
- Solid state relays
- Battery operated systems
- Photo voltaic drives
- Analog switches
- General purpose line drivers

Absolute Maximum Ratings


Drain-to-Source Voltage	D V DSS
Drain-to-Gate Voltage	BV _{DGS}
Gate-to-Source Voltage	± 10V
Operating and Storage Temperature	-55°C to +150°C
Soldering Temperature*	300°C

*Distance of 1.6 mm from case for 10 seconds.

Advanced MOS Technology

These enhancement-mode (normally-off) transistors utilize a lateral MOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors and with the high input impedance and negative temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, these devices are free from thermal runaway and thermally-induced secondary breakdown. The low threshold voltage and low onresistance characteristics are ideally suited for hand held battery operated applications.

Package Options

01/06/03

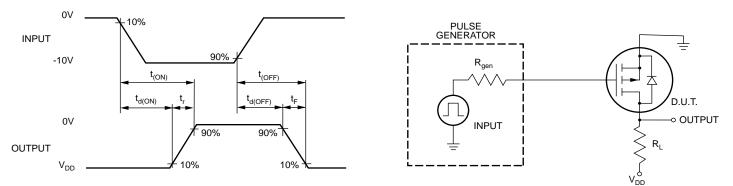
Supertex Inc. does not recommend the use of its products in life support applications and will not knowingly sell its products for use in such applications unless it receives an adequate "products liability indemnification insurance agreement." Supertex does not assume responsibility for use of devices described and limits its liability to the replacement of devices determined to be defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the Supertex website: http://www.supertex.com. For complete liability information on all Supertex products, refer to the most current databook or to the Legal/Disclaimer page on the Supertex website.

Thermal Characteristics

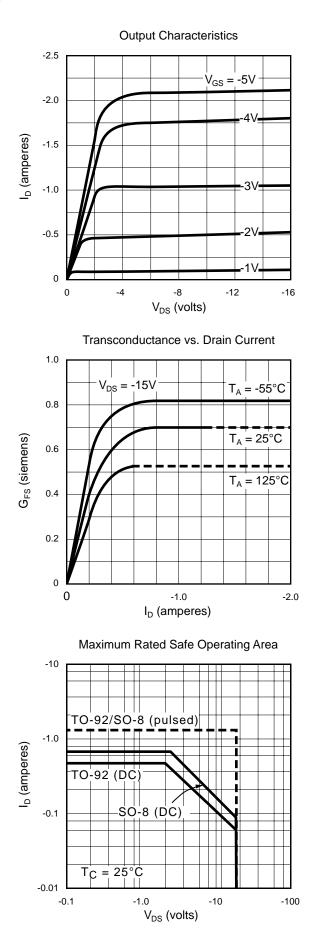
Package	I _D (continuous)*	l _D (pulsed)*	Power Dissipation @ T _c = 25°C	θ _{jc} °C/W	θ _{ja} °C/W	l _{DR}	I _{DRM} *
TO-92	-0.5A	-1.25A	1W	125	170	-0.5A	-1.25A
SO-8	-0.7A	-1.25A	1.5W [†]	83	104 [†]	-0.7A	-1.25A

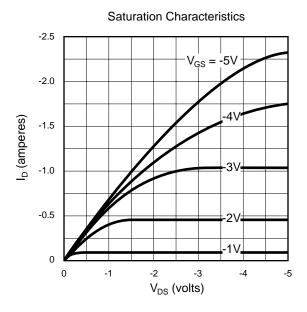
* I_{D} (continuous) is limited by max rated T_{i} .

[†] Mounted on FR4 board, 25mm x 25mm x 1.57mm.

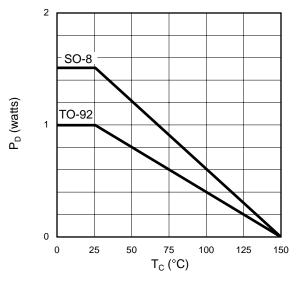

Electrical Characteristics (@ 25°C unless otherwise specified)

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	-16.5			V	$V_{GS} = 0V, I_D = -1mA$
V _{GS(th)}	Gate Threshold Voltage	-0.5	-0.7	-1.0	V	$V_{GS} = V_{DS}, I_D = -1mA$
$\Delta V_{GS(th)}$	Change in $V_{GS(th)}$ with Temperature			-4.0	mV/°C	$V_{GS} = V_{DS}, I_D = -1mA$
I _{GSS}	Gate Body Leakage			-100	nA	$V_{GS} = \pm 10V, V_{DS} = 0V$
I _{DSS}	Zero Gate Voltage Drain Current			-100	nA	$V_{DS} = -15V, V_{GS} = 0V$
				-1.0	mA	$V_{DS} = 0.8$ Max Rating, $V_{GS} = 0V$, TA = 125°C
			-0.4		А	$V_{GS} = V_{DS} = -2V$
I _{D(ON)}	ON-State Drain Current	-0.6	-1.0			$V_{GS} = V_{DS} = -3V$
		-1.25	-2.3		А	$V_{GS} = V_{DS} = -5V$
			2.0	4.0	Ω	$V_{GS} = -2V, I_{D} = -50mA$
R _{DS(ON)}	Static Drain-to-Source ON-State Resistance		1.7	2.0]	V _{GS} = -3V, I _D = -150mA
			1.3	1.5		V _{GS} = -5V, I _D = -300mA
$\Delta R_{DS(ON)}$	Change in $R_{DS(ON)}$ with temperature			0.75	%/°C	V _{GS} = -5V, I _D = -300mA
G_{FS}	Forward Transconductance	500	700		mછ	V _{DS} = -15V, I _D = -1A
C _{ISS}	Input Capacitance		120	250		
C _{OSS}	Common Source Output Capacitance		100	125	pF	$V_{GS} = 0V$, $V_{DS} = -15V$, f = 1MHz
C _{RSS}	Reverse Transfer Capacitance		40	60		
t _{d(ON)}	Turn-ON Delay Time			20	ns	
t _r	Rise Time			20		V _{DD} =-15V, I _D = -1.25A,
t _{d(OFF)}	Turn-OFF Delay Time			30		$R_{GEN} = 25\Omega$
t _f	Fall Time			30		
V _{SD}	Diode Forward Voltage Drop		-1.2	-1.5	V	V _{GS} = 0V, I _{SD} = -500mA

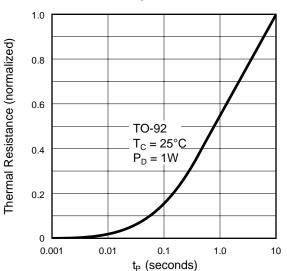

Note 1: All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: 300µs pulse, 2% duty cycle.)

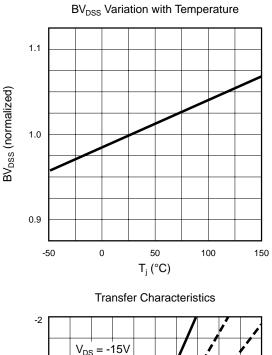

Note 2: All A.C. parameters sample tested.

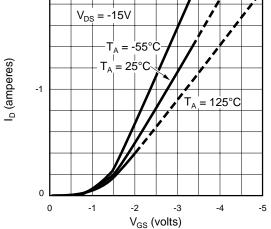
Switching Waveforms and Test Circuit



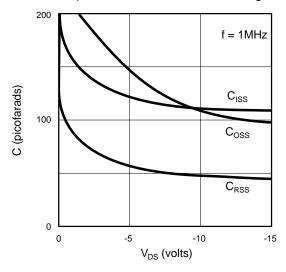
Typical Performance Curves




Power Dissipation vs. Case Temperature



Thermal Response Characteristics



Typical Performance Curves

Capacitance vs. Drain-to-Source Voltage

On-Resistance vs. Drain Current 10 $V_{GS} = -2V$ 8 $V_{GS} = -3V$ $V_{GS} = -5V$ R_{DS(ON)} (ohms) 6 4 2 0 0 -1 -3 -2 I_D (amperes) $V_{(th)}$ and R_{DS} Variation with Temperature 1.6 1.4 V_(th) @ -1mA 1.2 1.4 R_{DS(ON)} (normalized) V_{GS(th)} (normalized) 1.2 1.0 1.0 0.8 R_{DS(ON)} @ -5V, -300mÅ 0.6 0.8 0.4 0.6 -50 0 50 100 150 T_j (°C) Gate Drive Dynamic Characteristics -10 $V_{DS} = -10V$ -8 ·20 V V_{GS} (volts) -6 238pF -4 -2 $C_{ISS} = 115 pF$

0

0

1

2

01/06/03

1235 Bordeaux Drive, Sunnyvale, CA 94089 TEL: (408) 744-0100 • FAX: (408) 222-4895 www.supertex.com

4

5

3

Q_G (nanocoulombs)

LP0701