

30V N-CHANNEL ENHANCEMENT MODE MOSFET

SUMMARY

 $V_{(BR)DSS}=30V$; $R_{DS(ON)}=0.015\Omega$; $I_{D}=9A$

DESCRIPTION

This new generation of high density MOSFETs from Zetex utilises a unique structure that combines the benefits of low on-resistance with fast switching speed. This makes them ideal for high efficiency, low voltage, power management applications.

SO8

FEATURES

- Low on-resistance
- · Fast switching speed
- · Low threshold
- Low gate drive
- Low profile SOIC package


APPLICATIONS

- DC DC Converters
- Power Management Functions
- Disconnect switches
- Motor control

ORDERING INFORMATION

DEVICE	REEL SIZE (inches)	TAPE WIDTH (mm)	QUANTITY PER REEL
ZXM66N03N8TA	13	12mm embossed	1000 units

G S

Top View

DEVICE MARKING

 ZXM6 6N03

ZXM66N03N8

ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	LIMIT	UNIT
Drain-Source Voltage	V _{DSS}	30	V
Gate- Source Voltage	V _{GS}	±20	V
$ \begin{array}{c} \text{Continuous Drain Current (V_{GS}=$10V; T_{A}=25°C)(b)(d) \\ (V_{GS}=$10V; T_{A}=70°C)(b)(d) \end{array} $	I _D	9.0 8.0	А
Pulsed Drain Current (c)(d)	I _{DM}	35	А
Continuous Source Current (Body Diode)(b)(d)	Is	3.1	А
Pulsed Source Current (Body Diode)(c)(d)	I _{SM}	35	А
Power Dissipation at T _A =25°C (a)(d) Linear Derating Factor	P_{D}	-	W mW/°C
Power Dissipation at T _A =25°C (a)(e) Linear Derating Factor	P_{D}	-	W mW/°C
Power Dissipation at T _A =25°C (b)(d) Linear Derating Factor	P_D	2.5 20	W mW/°C
Operating and Storage Temperature Range	T _j :T _{stg}	-55 to +150	°C

THERMAL RESISTANCE

PARAMETER	SYMBOL	VALUE	UNIT
Junction to Ambient (a)	$R_{\theta JA}$	-	°C/W
Junction to Ambient (b)	$R_{\theta JA}$	50	°C/W

NOTES

- (a) For a device surface mounted on $25 \text{mm} \times 25 \text{mm}$ FR4 PCB with high coverage of single sided 10z copper, in still air conditions
- (b) For a device surface mounted on FR4 PCB measured at t≤10 secs.
- (c) Repetitive rating pulse width limited by maximum junction temperature. Refer to Transient Thermal Impedance graph.

DRAFT ISSUE A - AUGUST 2000 ADVANCED INFORMATION

ZXM66N03N8

ELECTRICAL CHARACTERISTICS (at T_{amb} = 25°C unless otherwise stated).

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNI T	CONDITIONS.	
STATIC						•	
Drain-Source Breakdown Voltage	V _{(BR)DSS}	30			V	I _D =250μA, V _{GS} =0V	
Zero Gate Voltage Drain Current	I _{DSS}			1	μΑ	V _{DS} =24V, V _{GS} =0V	
Gate-Body Leakage	I _{GSS}			100	nA	V _{GS} =±20V, V _{DS} =0V	
Gate-Source Threshold Voltage	V _{GS(th)}	1.0			V	$I_{D} = 250 \mu A, V_{DS} = V_{GS}$	
Static Drain-Source On-State Resistance (1)	R _{DS(on)}			0.015 0.020	Ω	V _{GS} =10V, I _D =7.3A V _{GS} =4.5V, I _D =3.7A	
Forward Transconductance (3)	g _{fs}	12			s	V _{DS} =15V,I _D =3.7A	
DYNAMIC (3)							
Input Capacitance	C _{iss}		-		pF	V _{DS} =15 V, V _{GS} =0V, f=1MHz	
Output Capacitance	C _{oss}		-		pF		
Reverse Transfer Capacitance	C _{rss}		-		pF]	
SWITCHING(2) (3)							
Turn-On Delay Time	t _{d(on)}		-		ns	V_{DD} =15V, I_{D} =7.3A R_{G} =6.0 Ω , R_{D} =2.0 Ω (Refer to test circuit)	
Rise Time	t _r		-		ns		
Turn-Off Delay Time	t _{d(off)}		-		ns		
Fall Time	t _f		-		ns		
Total Gate Charge	O _g			-	nC	V _{DS} =15V,V _{GS} =10V I _D =7.3A	
Gate-Source Charge	Q _{gs}			-	nC		
Gate Drain Charge	O _{gd}			-	nC	(Refer to test circuit)	
SOURCE-DRAIN DIODE							
Diode Forward Voltage (1)	V _{SD}			0.95	V	T _j =25°C, I _S =7.3A, V _{GS} =0V	
Reverse Recovery Time (3)	t _{rr}		-		ns	T _j =25°C, I _F =7.3A, di/dt= 100A/μs	
Reverse Recovery Charge(3)	Q _{rr}		-		nC		

⁽¹⁾ Measured under pulsed conditions. Width=300 $\mu s.$ Duty cycle ${\leq}2\%$.

ZETEX

DRAFT ISSUE A - AUGUST 2000 ADVANCED INFORMATION

⁽²⁾ Switching characteristics are independent of operating junction temperature.

⁽³⁾ For design aid only, not subject to production testing.

ZXM66N03N8

Fields New Road, Chadderton, Oldham, OL9-8NP, United Kingdom. Telephone: (44)161 622 4422 (Sales), (44)161 622 4444 (General Enquiries) Fax: (44)161 622 4420

Zetex GmbH Streitfeldstraße 19 D-81673 München Germany Telefon: (49) 89 45 49 49 0 Fax: (49) 89 45 49 49 49 Zetex Inc. 47 Mall Drive, Unit 4 Commack NY 11725 USA

USA Kwai Fong, Hong Kong Telephone: (631) 543-7100 Telephone: (852) 2610 Fax: (631) 864-7630 Fax: (852) 24250 494

Zetex (Asia) Ltd. 3701-04 Metroplaza, Tower 1 Hing Fong Road, Kwai Fong, Hong Kong Telephone: (852) 26100 611

These are supported by agents and distributors in major countries world-wide ©Zetex plc 2000

Internethttp://www.zetex.com

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

DRAFT ISSUE A - AUGUST 2000 ADVANCED INFORMATION