35V N-CHANNEL ENHANCEMENT MODE MOSFET

SUMMARY

V(BR)DSS = 35V: RDS(on) = 0.050Ω: ID = 6.7A

DESCRIPTION

This new generation of high cell density planar MOSFETs from Zetex utilises a unique structure that combines the benefits of low on-resistance with fast switching speed. This makes them ideal for high efficiency, low voltage, power management applications.

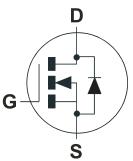
FEATURES

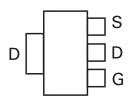
- Low on-resistance
- Fast switching speed
- · Low threshold
- Low gate drive
- SOT223 package

APPLICATIONS

- 50W Class D Audio Output Stage
- Motor Control

ORDERING INFORMATION


DEVICE	REEL SIZE	TAPE WIDTH	QUANTITY PER REEL
ZXM64N035GTA	7″	12mm	1000 units
ZXM64N035GTC	13″	12mm	4000 units


DEVICE MARKING

• ZXM6

4N035

PROVISIONAL ISSUE A - JANUARY 2002

Top View

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	LIMIT	UNIT
Drain-Source Voltage	VDSS	35	V
Gate-Source Voltage	VGS	±20	V
Continuous Drain Current (V _{GS} =10V; T _A =25°C)(b) (V _{GS} =10V; T _A =70°C)(b) (V _{GS} =10V; T _A =25°C)(a)	ID	6.7 5.4 4.8	A
Pulsed Drain Current (c)	IDM	30	А
Continuous Source Current (Body Diode) (b)	IS	2.4	А
Pulsed Source Current (Body Diode)(c)	ISM	30	А
Power Dissipation at T _A =25°C (a) Linear Derating Factor	PD	2.0 16	W mW/°C
Power Dissipation at T _A =25°C (b) Linear Derating Factor	PD	3.9 31	W mW/°C
Operating and Storage Temperature Range	Tj:Tstg	-55 to +150	°C

THERMAL RESISTANCE

PARAMETER	SYMBOL	VALUE	UNIT
Junction to Ambient (a)	R _{0JA}	62.5	°C/W
Junction to Ambient (b)	R _{0JA}	32	°C/W

NOTES

(a) For a device surface mounted on 25mm x 25mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions

(c) Repetitive rating 25mm x 25mm FR4 PCB, D=0.05 pulse width limited by maximum junction temperature.

2

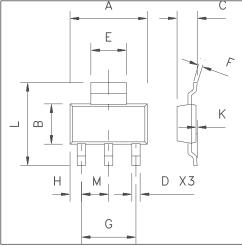
PROVISIONAL ISSUE A - JANUARY 2002

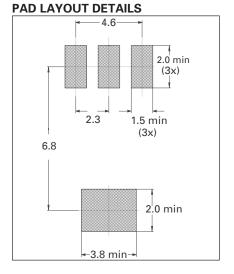
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS.	
STATIC			-1				
Drain-Source Breakdown Voltage	V(BR)DSS	35			V	ID=250µA, VGS=0V	
Zero Gate Voltage Drain Current	IDSS			1	μA	V _{DS} =35V, V _{GS} =0V	
Gate-Body Leakage	IGSS			100	nA	$V_{GS}=\pm 20V, V_{DS}=0V$	
Gate-Source Threshold Voltage	VGS(th)	1.0			V	I _D =250μA, V _{DS} = V _{GS}	
Static Drain-Source On-State Resistance (1)	R _{DS(on)}			0.050 0.062	Ω_{Ω}	V _{GS} =10V, I _D =3.7A V _{GS} =4.5V, I _D =1.9A	
Forward Transconductance (1)(3)	9fs	4.3			S	V _{DS} =10V,I _D =1.9A	
DYNAMIC (3)							
Input Capacitance	C _{iss}		950		pF	V _{DS} =25V, V _{GS} =0V, f=1MHz	
Output Capacitance	C _{oss}		200		pF		
Reverse Transfer Capacitance	C _{rss}		50		pF		
SWITCHING(2) (3)							
Turn-On Delay Time	^t d(on)		4.2		ns		
Rise Time	t _r		4.6		ns	V _{DD} =15V, I _D =3.7A	
Turn-Off Delay Time	^t d(off)		20.5		ns	$R_{G}=6.0\Omega, V_{GS}=10V$	
Fall Time	tf		8		ns	-	
Total Gate Charge	٥ _g			27	nC	VDS=24V,VGS=10V, I _D =3.7A	
Gate-Source Charge	0 _{gs}			5	nC		
Gate-Drain Charge	Q _{gd}			4.5	nC		
SOURCE-DRAIN DIODE							
Diode Forward Voltage (1)	V _{SD}			0.95	V	TJ=25°C, IS=3.7A, VGS=0V	
Reverse Recovery Time (3)	t _{rr}		24.5		ns	Tj=25°C, Iբ=3.7A, di/dt= 100A/μs	
Reverse Recovery Charge (3)	0 _{rr}		19.1		nC		

ELECTRICAL CHARACTERISTICS (at $T_A = 25^{\circ}C$ unless otherwise stated).

NOTES

(1) Measured under pulsed conditions. Width=300 $\mu s.$ Duty cycle $\leq 2\%$.


(2) Switching characteristics are independent of operating junction temperature.


(3) For design aid only, not subject to production testing.

PROVISIONAL ISSUE A - JANUARY 2002

PACKAGE DIMENSIONS

DIM	Millimetres		Inches	
	Min	Max	Min	Max
A	6.3	6.7	0.248	0.264
В	3.3	3.7	0.130	0.146
С	-	1.7	-	0.067
D	0.6	0.8	0.024	0.031
E	2.9	3.1	0.114	0.122
F	0.24	0.32	0.009	0.13
G	NOM 4.6		NOM 0.181	
н	0.85	1.05	0.033	0.041
К	0.02	0.10	0.0008	0.004
L	6.7	7.3	0.264	0.287
М	NOM 2.3		NOM 0.0905	

© Zetex plc 2001

Zetex plc	Zetex GmbH	Zetex Inc	Zetex (Asia) Ltd
Fields New Road	Streitfeldstraße 19	700 Veterans Memorial Hwy	3701-04 Metroplaza, Tower 1
Chadderton	D-81673 München	Hauppauge, NY11788	Hing Fong Road
Oldham, OL9 8NP			Kwai Fong
United Kingdom	Germany	USA	Hong Kong
Telephone (44) 161 622 4422	Telefon: (49) 89 45 49 49 0	Telephone: (631) 360 2222	Telephone: (852) 26100 611
Fax: (44) 161 622 4420	Fax: (49) 89 45 49 49 49	Fax: (631) 360 8222	Fax: (852) 24250 494

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to www.zetex.com

PROVISIONAL ISSUE A - JANUARY 2002