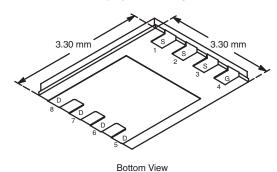


N-Channel 30-V (D-S) Fast Switching MOSFET

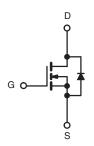
PRODUCT SUMMARY				
V _{DS} (V)	$r_{DS(on)}\left(\Omega\right)$	I _D (A)		
30	0.0075 at V _{GS} = 10 V	17.8		
	$0.0082 \text{ at V}_{GS} = 4.5 \text{ V}$	17.0		


FEATURES

- TrenchFET[®] Power MOSFET
- New Low Thermal Resistance PowerPAK® Package with Low 1.07 mm Profile

- 100 % R_a Tested
- Lead (Pb)-free Version is RoHS Compliant

PowerPAK 1212-8



Ordering Information: Si7112DN-T1

Si7112DN-T1-E3 (Lead (Pb)-free)

APPLICATIONS

· Synchronous Rectification

N-Channel MOSFET

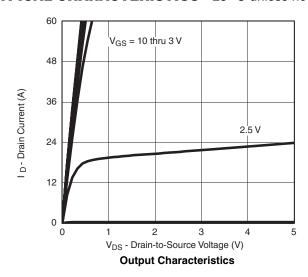
ABSOLUTE MAXIMUM RATINGS $T_A = 25$ °C, unless otherwise noted					
Parameter		Symbol	10 sec	Steady State	Unit
Drain-Source Voltage		V _{DS}	30		V
Gate-Source Voltage		V _{GS}	± 12		
Continuous Drain Current /T 150 °C\a	T _A = 25 °C	I _D	17.8	11.3	
Continuous Drain Current (T _J = 150 °C) ^a	T _A = 70 °C		14.2	9.1	
Pulsed Drain Current		I _{DM}	60		Α
Continuous Source Current (Diode Conduction) ^a		I _S	3.2	1.3	
Single Avalanche Current	L = 0.1 mH	I _{AS}	20		
Single Avalanche Energy	L=0.11IIII	E _{AS} 20		mJ	
Mariana Barra Birata di ad	T _A = 25 °C	I D	3.8	1.5	W
Maximum Power Dissipation ^a	T _A = 70 °C		2.0	0.8	VV
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150		°C
Soldering Recommendations (Peak Temperature) ^{b, c}			260		

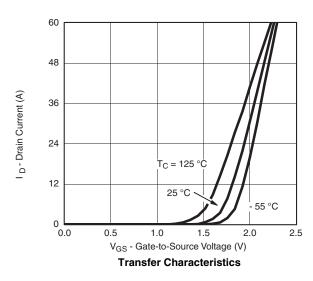
THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Manipania Ingation to Applicati	t ≤ 10 sec	- R _{thJA}	24	33	°C/W
Maximum Junction-to-Ambient ^a	Steady State		65	81	
Maximum Junction-to-Case (Drain)	Steady State	R _{thJC}	1.9	2.4	

a. Surface Mounted on 1" x 1" FR4 Board.
b. See Solder Profile (http://www.vishay.com/ppg?73257). The PowerPAK 1212-8 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
c. Rework Conditions: manual soldering with a soldering iron is not recommended for leadless components.

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply.

Vishay Siliconix

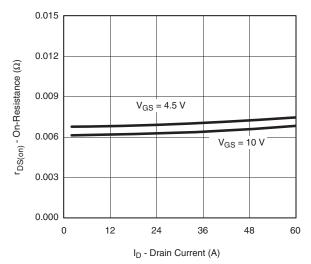

MOSFET SPECIFICATIONS T _J = 25 °C, unless otherwise noted							
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Static							
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	0.6		1.5	٧	
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 12 V$			± 100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ	
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$			5		
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	40			Α	
	r	V _{GS} = 10 V, I _D = 17.8 A		0.006	0.0075		
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 4.5 V, I _D = 17 A		0.0065	0.0082	Ω	
Forward Transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 17.8 A		97		S	
Diode Forward Voltage ^a	V_{SD}	$I_S = 3.2 \text{ A}, V_{GS} = 0 \text{ V}$		0.7	1.2	V	
Dynamic ^b							
Input Capacitance	C _{iss}			260		pF	
Output Capacitance	C _{oss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		340			
Reverse Transfer Capacitance	C _{rss}			145			
Total Gate Charge	Q_g			18	27	nC	
Gate-Source Charge	Q _{gs}	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 17.8 \text{ A}$		6.2			
Gate-Drain Charge	Q_{gd}			3.1			
Gate Resistance	R_g	f = 1 MHz	0.5	1.2	1.8	Ω	
Turn-On Delay Time	t _{d(on)}			10	15		
Rise Time	t _r	V_{DD} = 15 V, R_L = 15 Ω		10	15	ns	
Turn-Off Delay Time	t _{d(off)}	$I_D\cong$ 1 A, V_{GEN} = 10 V, R_g = 6 Ω		65	100		
Fall Time	t _f			10	15		
Body Diode Reverse Recovery Time	t _{rr}	I _F = 3.2 A, di/dt = 100 A/μs		30	60		
Body Diode Reverse Recovery Charge	Q _{rr}	$I_F = 3.2 \text{ A}$, $U/UI = 100 \text{ A}/\mu\text{S}$		18		nC	

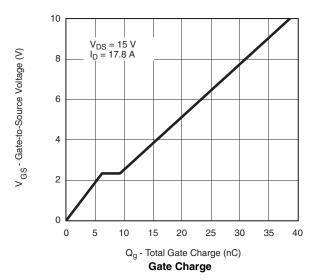

Notes:

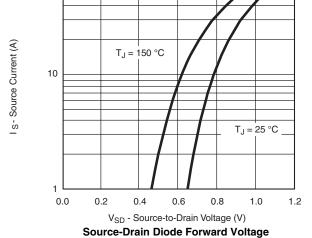
- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS 25 °C unless noted

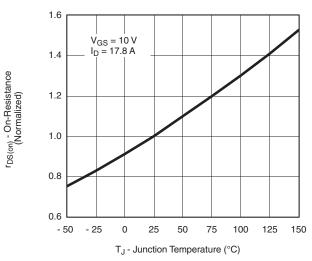


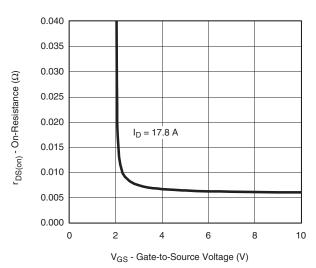




TYPICAL CHARACTERISTICS 25 °C unless noted

On-Resistance vs. Drain Current

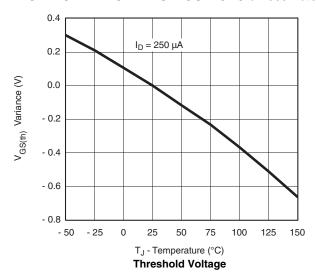


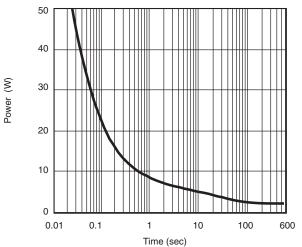

3500 3000 C_{iss} 2500 C - Capacitance (pF) 2000 1500 1000 500 0 5 10 0 15 20 25 30

V_{DS} - Drain-to-Source Voltage (V)

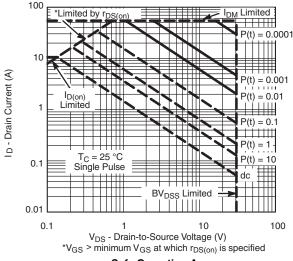
Capacitance

On-Resistance vs. Junction Temperature

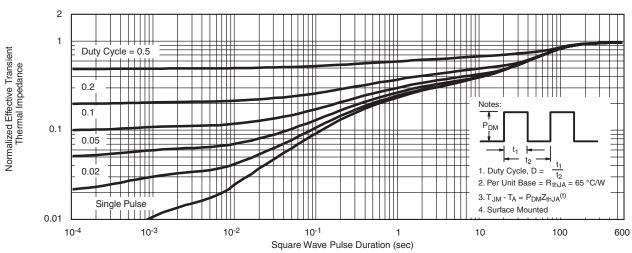

On-Resistance vs. Gate-to-Source Voltage


60

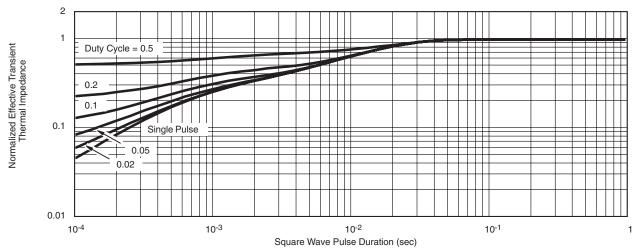
Vishay Siliconix


VISHAY.

TYPICAL CHARACTERISTICS 25 °C unless noted



Single Pulse Power, Junction-to-Ambient



Normalized Thermal Transient Impedance, Junction-to-Ambient

TYPICAL CHARACTERISTICS 25 °C unless noted

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?72864.

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000 www.vishay.com
Revision: 08-Apr-05 1