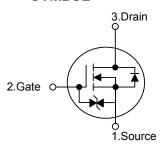


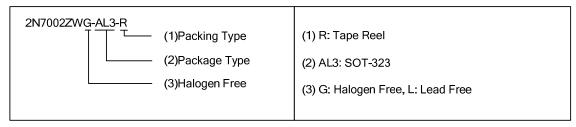
2N7002ZW Preliminary Power MOSFET

300m Amps, 60 Volts DUAL N-CHANNEL ENHANCEMENT MODE MOSFET

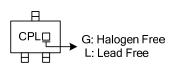

■ DESCRIPTION

The UTC **2N7002ZW** uses advanced technology to provide excellent $R_{\text{DS(ON)}}$, low gate charge and low gate voltages during operation. This device is suitable for use as a load switch or in PWM applications.

■ FEATURES


- * Low Reverse Transfer Capacitance (C_{RSS} = typical 3.0 pF)
- * ESD Protected
- * Fast Switching Capability
- * Avalanche Energy Specified
- * Improved dv/dt Capability, High Ruggedness

■ SYMBOL


ORDERING INFORMATION

Ordering Number		Packago	Pin Assignment			Packing
Lead Free	Halogen Free	Package	1	2	3	Facking
2N7002ZWL-AL3-R	2N7002ZWG-AL3-R	SOT-323	S	G	D	Tape Reel

MARKING

Downloaded from Elcodis.com electronic components distributor

www.unisonic.com.tw 1 of 4

SOT-323

■ ABSOLUTE MAXIMUM RATINGS (T_a = 25°C)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	60	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Drain Current	Continuous	· I _D	300	mA	
Jiani Current	Pulse(Note 2)		800		
Power Dissipation Derating above T _A =25°C Junction Temperature Storage Temperature		D	200	mW	
		P_{D}	1.6	mW/°C	
		TJ	+150	°C	
		T _{STG}	-55 ~ +150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (T_a=25°C)

DADAMETED	CVMDCI	TECT CONDITIONS	NAIN!	TVD	MAN	LINIT				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT				
OFF CHARACTERISTICS										
Drain-Source Breakdown Voltage	BV _{DSS}	V_{GS} =0 V , I_D =10 μ A	60			V				
Drain-Source Leakage Current	I_{DSS}	V _{DS} =60V, V _{GS} =0V			1.0	μΑ				
Gate-Source Leakage Current	I_{GSS}	V _{DS} =0V, V _{GS} =±20V			±10	μΑ				
ON CHARACTERISTICS										
Gate Threshold Voltage	$V_{GS(TH)}$	V _{DS} =10V, I _D =1mA	1.0	1.85	2.5	V				
Static Drain-Source On-Resistance (Note)	R _{DS(ON)}	V _{GS} =10V, I _D =0.5A, T _J =125°C			13.5	Ω				
Static Dialii-Source Oil-Resistance (Note)		V_{GS} =5V, I_D =0.05A			7.5	12				
DYNAMIC PARAMETERS										
Input Capacitance	C _{ISS}			25	50	pF				
Output Capacitance	Coss	V _{DS} =25V, V _{GS} =0V, f=1.0MHz		10	25	pF				
Reverse Transfer Capacitance	C_{RSS}			3.0	5.0	pF				
SWITCHING PARAMETERS										
Turn-ON Delay Time	t _{D(ON)}	I _D =0.2 A, V _{DD} =30V, V _{GS} =10V,		12	20	ns				
Turn-OFF Delay Time	t _{D(OFF)}	$R_L=150\Omega$, $R_G=10\Omega$		20	30	ns				
DRAIN-SOURCE DIODE CHARACTERIST	ICS AND MA	XIMUM RATINGS								
Drain-Source Diode Forward Voltage	V_{SD}	V _{GS} =0V, Is=115mA (Note)		0.88	1.5	V				
Maximum Pulsed Drain-Source Diode					0.0	^				
Forward Current	I _{SM}				0.8	Α				
Maximum Continuous Drain-Source Diode	ls				115	mΛ				
Forward Current	ıs				115	mA				

Note: 1. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch. Minimum land pad size.

^{2.} Pulse width ≤ 300 µs, Duty cycle ≤ 1%

■ TEST CIRCUITS AND WAVEFORMS

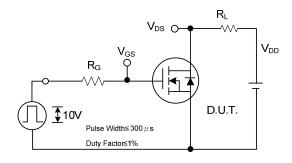


Fig. 2A Switching Test Circuit

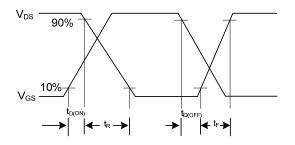


Fig. 2B Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

