MITSUBISHI RF POWER TRANSISTOR

2SC3241

NPN EPITAXIAL PLANAR TYPE

DISCRIPTION

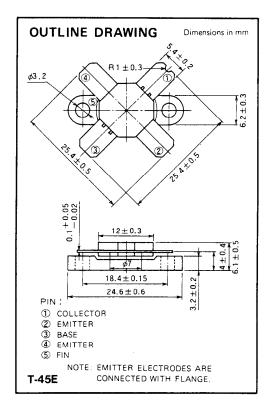
2SC3241 is a silicon NPN epitaxial planar type transistor specifically designed for high power amplifiers in HF band.

FEATURES

• High gain: $G_{pe} \ge 12.3dB$

@f = 30MHz, $V_{CC} = 12.5V$, $P_{in} = 4W$

• High ruggedness: Ability to withstand 20:1 load VSWR when operated at f = 30MHz, V_{CC} = 15.2V, P_0 = 75W, T_C = 25°C.


• Emitter ballasted construction

• Low thermal resistance ceramic package with flange

• Input-output impedance: Z_{in} = 0.5 – j1.0(Ω), Z_{out} = 1.15 – j1.4(Ω) @f = 30MHz, V_{CC} = 12.5V, P_{O} = 75W

APPLICATION

Output stage of transmitter in HF band SSB mobile radio sets.

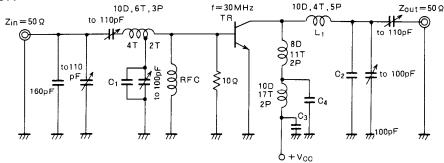
ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit	
V _{CBO}	Collector to base voltage		50	V	
VEBO	Emitter to base voltage		5	V	
V _{CEO}	Collector to emitter voltage	R _{BE} = ∞	20	V	
1 _C	Collector current		18	Α	
Pc	Collector dissipation	Ta = 25°C	7.5	W	
		T _C = 25°C	180	W	
Ti	Junction temperature		175	°c	
Tsta	Storage temperature		-55 to 175	°C	
Rth-a		Junction to ambient	20	°C/W	
Rth-c	Thermal resistance	Junction to case	0.83	*c/w	

Note. Above parameters are guaranteed independently.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

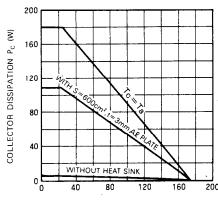
Symbol	Parameter	Test conditions	Limits			
			Min	Тур	Max	Unit
V _{(BR)EBO}	Emitter to base breakdown voltage	I _E =20 mA, I _C =0	5			V
V(BR)CBO	Collector to base breakdown voltage	$I_C = 10 \text{ mA}, I_E = 0$	50			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =100mA, R _{RE} =∞	20			٧
СВО	Collector cutoff current	V _{CE} = 25V, I _E = 0			5	mΑ
1EBO	Emitter cutoff current	V _{EB} =2V,1 _C =0			4	mA
hFE	DC forward current gain *	V _{CE} =10V, I _C =0.1A	10	50	180	
Po	Output power	f=30MHz, V _{CC} =12.5V, P _{in} =4W	75	85		W
η_{C}	Collector efficiency		55	65		%


Note. *Pulse test, $P_W = 150\mu s$, duty=5%.

Above parameters, ratings, limits and conditions are subject to change.

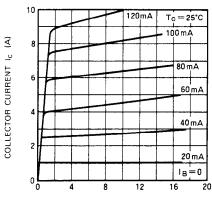
NPN EPITAXIAL PLANAR TYPE

TEST CIRCUIT

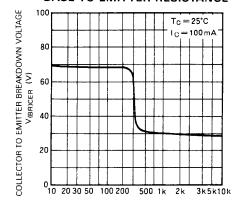

- C1: 160pF, 160pF, 82pF in parallel
- C2: 82pF, 82pF, 82pF in parallel
- C_3 : 100pF, 4700pF, 4700pF, 0.22 μ F, 0.22 μ F, 33 μ F, 330 μ F in parallel
- RFC: 27 Turns 1¢ enameled wire
- C₄: 100pF, 220pF, 4700pF, 0.1μF, 330μF in parallel
- NOTES: All coils but L₁ are made from 1.5 mm silver plated coper wire, L₁ is made from 2.3 mm copper wire.

 D: Inner diameter of coil

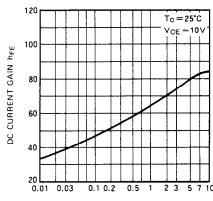
 P: Pitch of coil
 - D: Inner diameter of coil T: Turn number of coil
- Dimension is milli-meter


TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE


AMBIENT TEMPERATURE Ta (°C)

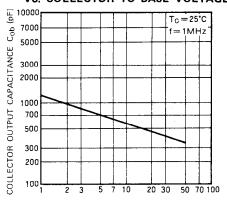
COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE


COLLECTOR TO EMITTER VOLTAGE V_{CE} (V)

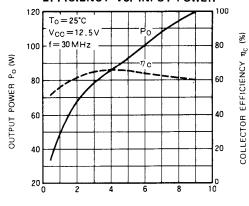
COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS. BASE TO EMITTER RESISTANCE

BASE TO EMITTER RESISTANCE R_{BE} (Ω)

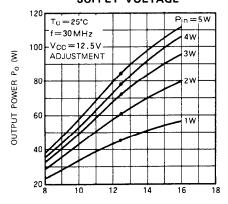
DC CURRENT GAIN VS. COLLECTOR CURRENT



COLLECTOR CURRENT Ic (A)


NPN EPITAXIAL PLANAR TYPE

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE


COLLECTOR TO BASE VOLTAGE V_{CB} (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE V_{CC} (V)