## DATA SHEET

## TZA1000 <br> QIC read-write amplifier

Preliminary specification
Supersedes data of 1998 Mar 11
File under Integrated Circuits, IC01

## FEATURES

- 3-wire serial interface for programming
- On-chip Digital-to-Analog Converters (DAC) for:
- MR (Magneto Resistive) sense bias current
- MR DC bias current
- Write current
- Low noise differential input stage: typically $0.65 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\left(Z_{i}=0 \Omega\right)$
- Magnetic feedback circuit to handle large output signals
- MR DC bias current circuit
- Very fast write current rise and fall times with near rail-to-rail voltage swing
- Maximum write current of 100 mA : ready for high coercivity tape
- Low noise read amplifier for reading track height servo signals with the write coil
- Very few external components required
- On board registers for easy format or bit rate selection
- Fast read-after-write recovery time
- Test circuit for yoke-type heads
- Switchable differentiator for yoke-type heads, with programmable cut-off frequencies
- Anti-aliasing low-pass filter, with programmable cut-off frequencies
- AGC (Automatic Gain Control) options: internally (digitally) controlled, externally controlled or fixed gain
- Hold input for fast AGC freeze
- Input for fast reader/writer (track height servo) signal selection
- Power fail detection on both 5 and 12 V lines (status can be read from the read register)
- Write unsafe detection
- Provides an accurate reference voltage (for AD conversion)
- Very simple interconnection with the SZA1000 QIC digital equalizer
- $+5 \mathrm{~V} \pm 10 \%$ and $+12 \mathrm{~V} \pm 10 \%$ supply voltages
- Low power standby, active and test modes.


## RELATED DOCUMENTS

- SZA1000 QIC digital equalizer data sheet
- Application notes for TZA1000 and SZA1000.

Both are available from Philips Semiconductors.

## GENERAL DESCRIPTION

The TZA1000 is a single-chip read-write amplifier for single-channel QIC (Quarter Inch Cartridge) systems with MR heads. It can be used with both SIG (Sensor in Gap)and yoke-type MR heads and is designed to be used in conjunction with the Philips SZA1000 digital equalizer IC (although it can also function as a stand alone unit). This combination is flexible enough to be used with all popular tape backup formats including QIC 80, QIC 3010, QIC 3020, QIC 3080, QIC 5010, Travan 1, Travan 2, Travan 3 and Travan 4 and to be forward compatible with their single channel successors.

## QUICK REFERENCE DATA

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD} 1}$ | read circuit supply voltage |  | 4.5 | 5 | 5.5 | V |
| $\mathrm{V}_{\text {DD2 }}$ | FB and write circuit supply voltage |  | 4.5 | 5 | 5.5 | V |
| $V_{\text {DD3 }}$ | sense current circuit supply voltage |  | 10.8 | 12 | 13.2 | V |
| $\mathrm{I}_{\mathrm{DD} 1} ; \mathrm{I}_{\mathrm{DD} 2}$ | read/FB and write circuit supply current <br> Read mode <br> Write mode | $\mathrm{I}_{\text {write }}=30 \mathrm{~mA}$ |  | $\begin{array}{\|l\|} \hline 69 \\ 105 \\ \hline \end{array}$ | \|- | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| $\mathrm{I}_{\text {DD3 }}$ | sense current circuit supply current | $\mathrm{I}_{\text {sense }}=16 \mathrm{~mA}$ | 15.0 | 16.2 | 19.0 | mA |
| $\mathrm{V}_{\mathrm{n} \text { (i) (eq) }}$ | equivalent input noise voltage | $\mathrm{Z}_{\text {source }}=0 \Omega$ | - | 0.65 | 0.8 | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| $\mathrm{f}_{\text {clk }}$ | clock frequency |  | - | - | 24 | MHz |
| $\mathrm{T}_{\text {amb }}$ | recommended operating temperature |  | 0 | - | 70 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{j}}$ | recommended junction temperature |  | 0 | - | 125 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{a})}$ | thermal resistance from junction to ambient | in free air | - | 66 | - | K/W |

QIC read-write amplifier

ORDERING INFORMATION

| TYPE <br> NUMBER | PACKAGE |  |  |
| :---: | :---: | :---: | :---: |
|  | NAME | DESCRIPTION | VERSION |
| TZA1000 | SO24 | plastic small outline package; 24 leads; body width 7.5 mm | SOT137-1 |

4

BLOCK DIAGRAM

[^0]Fig. 1 Block diagram.

PINNING

| SYMBOL | PIN | DESCRIPTION | TYPE ${ }^{(1)}$ |
| :---: | :---: | :---: | :---: |
| WX | 1 | write current to head | O |
| $\mathrm{V}_{\text {SS } 1}$ | 2 | large signal ground | P |
| WY | 3 | write current to head | 0 |
| WD | 4 | write data | ${ }^{(2)}$ |
| $\mathrm{V}_{\mathrm{DD} 1}$ | 5 | large signal +5 V | P |
| INA | 6 | read signal from MR | I |
| INB | 7 | read signal from MR | 1 |
| ISENSE | 8 | sense current for MR | 0 |
| $\mathrm{V}_{\text {DD3 }}$ | 9 | +12 V for sense current supply | P |
| SCLK | 10 | serial interface clock | $\mathrm{I}^{(2)}$ |
| SDEN | 11 | serial interface enable | ${ }^{(2)}$ |
| SDIO | 12 | serial interface data I/O | I/O |
| $\overline{\text { HOLD }}$ | 13 | hold AGC; active LOW | ${ }^{(2)}$ |
| WGATE | 14 | write gate; active LOW | ${ }^{(2)}$ |
| CLK | 15 | clock input | ${ }^{(2)}$ |
| $\mathrm{V}_{\text {SS2 }}$ | 16 | small signal ground | P |
| VDD2 | 17 | small signal +5 V | P |
| OUTB | 18 | output to equalizer | O |
| OUTA | 19 | output to equalizer | O |
| $\mathrm{V}_{\text {ref }}$ | 20 | 2 V reference output | O |
| $\mathrm{I}_{\text {ref }}$ | 21 | current reference resistor | note 3 |
| RESET | 22 | reset for microcontroller; active LOW | O |
| BIASB | 23 | bias current for yoke heads | 0 |
| BIASA | 24 | bias current for yoke heads | O |

## Notes

1. Pin type abbreviations: $\mathrm{O}=$ output, $\mathrm{I}=$ input, $P=$ power supply.
2. Digital inputs: LOW: $<0.3 \mathrm{~V}_{\mathrm{DD}} ; \mathrm{HIGH}:>0.7 \mathrm{~V}_{\mathrm{DD}}$.
3. Use only for connecting current reference resistor.

See Chapter "Equivalent pin circuits" for the I/O configuration of the analog pins.

## FUNCTIONAL DESCRIPTION

## The preamplifier

The gain and dynamic range of the symmetrical low noise preamplifier can be varied to accommodate a wide variation in input signal amplitude (see Table 11). The 40 dB and 34 dB gain settings are provided for normal use. The 40 dB setting offers the lowest noise figure. The 4 dB gain setting is intended for IC testing only.

## The servo preamplifier

This low noise preamplifier can be used for reading signals, such as QIC 3095 (Travan 4) servo signals, via the recording head write coil. Servo mode is selected either by resetting bits AIO and AI1 in the control register (see Table 9) or by means of the HOLD pin (the HSM control bit must be set when $\overline{\text { HOLD }}$ goes LOW; see Table 7). When servo mode is selected, the maximum total gain is set automatically regardless of, and without overwriting, gain settings. Fast switch-over from read mode to servo mode can thus be achieved without having to alter register values.

## Variable gain stage and AGC

The input to the variable gain stage can be switched to the preamplifier output, to the output of the bias/FB (Feed Back) circuit, or to the servo preamplifier output. When using magnetic feedback, the bias/FB circuit output should be selected (see Table 9).

The AGC range is 15 dB . The gain is programmable in 1 dB steps (see Table 12). If the output signal is too small, a digital control circuit will increase the gain from minimum to maximum in approximately 10 ms . If the output signal is too large, the gain will be reduced from maximum to minimum in approximately 0.2 ms . These values assume a 24 MHz clock frequency. The upper limit of the gain control range can be extended by 6 dB by setting the G6DB bit in the control register via the serial interface (see Table 13).
The AGC is frozen while the HOLD input is LOW, the TZA1000 is writing, or the IC is in servo mode.
The AGC can be operated internally, running on the CLK clock signal on pin 15 (HOLD HIGH and GFXD LOW; see Table 12), or externally by means of a software algorithm (GFXD HIGH). When operated externally, either the DN bit in the status read register (see Table 17) or the level measurement in the digital equalizer IC (SZA1000) can be used as input to the algorithm.

The AGC will maintain outputs OUTA and OUTB at 1.1 $\mathrm{V}(p-p)$. Additional level adjustment points are provided by the 34 or 40 dB preamplifier gain switch (see Table 11) and the -10 or -4 dB bias output attenuation switch (see Table 9).

## High-pass filter

The HPF (High-Pass Filter) is used to differentiate yoke-type head signals. It is followed by an additional gain stage ( 21 dB ). The HPF cut-off frequency is coupled to the cut-off frequency of the LPF (Low-Pass Filter), and is selectable in 4 steps: 1, 2, 4 and 10 MHz (see Table 2). The HPF can be bypassed for SIG heads (see Table 8).

## Low-pass filter

The second order low-pass filter is used to attenuate high frequency noise above the signal bandwidth, mainly to provide anti-aliasing filtering for the A/D converter in the digital equalizer. The cut-off frequency of the LPF is selectable in 4 steps: 1, 2, 4 and 10 MHz (see Table 2).

## Sense current circuit

The sense current circuit is a programmable current source, operating from the 12 V supply $\left(\mathrm{V}_{\mathrm{DD} 3}\right)$. It can be programmed to supply a current between 0 and 15 mA , with 7-bit resolution. The current range can be doubled, then ranging from 0 to 30 mA , by setting the SDB bit in the control register (see Table 15). The sense current circuit can be disabled by resetting the ENS bit (see Table 4).

This is the only circuit on the IC that uses the 12 V supply. The output must be decoupled with a low impedance capacitor ( $10 \mu \mathrm{~F}$ recommended) to reduce noise coupling into the head.

For the current source circuit to operate correctly, the voltage difference between $\mathrm{V}_{\text {DD3 }}(\operatorname{pin} 9)$ and ISENSE (pin 8) must be at least 1.6 V .

## Bias and magnetic feedback circuit

This circuit can be used to generate AC and DC bias currents (for a yoke-type MR head, for instance). The DC bias output voltage is programmable between 0 and 1.4 V , with 5 -bit resolution (see Table 3). The DC current generated is this voltage divided by the total bias resistance (head coil + total series resistance).

The AC signal input to the circuit can be switched to the preamplifier output (see Table 10). In this way, magnetic feedback inside the head can be achieved. This limits head distortion, and prevents head saturation from large tape signals, like QIC 80 recordings.
The open loop gain of the feedback loop depends on head sensitivity, the selected sense current (see Table 15), and the selected preamplifier gain (see Table 11). The values of the external resistors connected in series with the bias conductor can be used to set the gain. For loop stability at high frequencies, the bandwidth of the magnetic feedback amplifier is limited to 5 MHz .

In closed loop mode, the effective cut-off frequency for the playback signals will increase with the feedback factor. For this reason the read signal can be taken from the output of the bias circuit.

To prevent loop instability at low frequencies, the preamplifier input capacitors should be chosen such that the cut-off frequency at that point is well above, or well below, the internal cut-off frequency of the AC coupling between the preamplifier and the bias circuit (input impedance of the preamplifier is typically $2 \mathrm{k} \Omega$ ).
The maximum (peak $A C$ ) current that the bias circuit can deliver can be adjusted to achieve an optimum balance between required current range and power consumption (see Table 3). The AC circuit is switched off when the TZA1000 is writing, and the maximum current is switched to 10 mA . This limits power dissipation during writing.

## Test generator

This circuit generates a test signal with a frequency $1 / 16$ that of the signal at the CLK input (pin 15). By switching the AC input of the bias circuit to the internal test generator (see Table 10), the read channel can be tested. The differential output value is typically 100 mV (p-p).
This facility can also be used to adjust the DC bias voltage while monitoring the signal at the read element in the head. The optimum DC bias level setting is just before the output from the read head reaches its peak.

## Write circuit

The write circuit is a differential current source that can generate a near rail-to-rail output voltage to get the shortest current transition time. Writing is enabled when WGATE is LOW. The polarity of the current depends on the WD input pin. The WDM bit in the control register determines the write signal mode: WD (Non-Return to Zero) or WDI (Return to Zero; see Table 14). When WDI mode is selected, the polarity of the write current is reversed at every falling edge of the WD input. When WD mode is selected, the polarity of the write current is reversed when the polarity of WD changes. The write current is programmable between 0 and 125 mA , with 7-bit resolution (see Table 14).
The IC is specified for a write current of up to 100 mA . Overshoot caused by an inductive load can be minimized by means of a single external resister local to the IC.

## Write unsafe detector

The write unsafe detector will detect an open write coil, or one shorted to ground. The circuit is enabled only while the TZA1000 is writing. A resistance to GND or $V_{D D}$ of less than $10 \Omega$, or a series resistance greater that about $300 \Omega$, will be detected (these values are write-current dependant). If an error occurs, the WUS status bit is set. This bit can be read via the serial interface. The WUS bit will remain set until the status byte is read.

## Power fail detector

The power fail detector will detect a low voltage on the 5 V $\left(\mathrm{V}_{\mathrm{DD} 1}\right)$ or $12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{DD} 3}\right)$ supply lines. The thresholds are 3.75 V for $\mathrm{V}_{\mathrm{DD} 1}$ and 9 V for $\mathrm{V}_{\mathrm{DD} 3}$. A power failure is detected if the voltage is below the threshold for $1 \mu \mathrm{~s}$ or longer. If a 5 V power failure occurs, the status bit PF5 is set. If a 12 V power failure occurs, the status bit PF12 is set. These bits can be read via the serial interface, and will remain HIGH until the status byte is read.

When a 5 V power failure occurs, the RESET output goes LOW and the write circuit is disabled (in addition to PF5 being set). The RESET output has an internal $18 \mathrm{k} \Omega$ pull down resistor to guarantee a LOW level at the output even when a power failure occurs. During normal operation, the RESET pin should not be held LOW by an external circuit, since this will switch the IC into test mode.

## QIC read-write amplifier

## DACs

There are 3 internal DACs:

1. The Sense DAC: current DAC; 7-bit resolution
2. The Write DAC: current DAC; 7-bit resolution
3. The Bias DAC: voltage DAC; 5-bit resolution.

The Sense and Write DAC current settings are a function of the reference current $I_{\text {ref }}$ (at the $I_{\text {ref }} p i n$ ). $I_{\text {ref }}$ is multiplied by a 7-bit factor: S 0 to S 6 for the sense DAC, W0 to W6 for the write DAC (see Tables 14 and 15). If the resistance between $I_{\text {ref }}$ and GND is increased (or decreased), the DAC output currents will be decreased (or increased) by the same factor. In this way, the DAC output current ranges can be adjusted.

The current values specified, and the equations used to calculate Sense and Write currents (see Tables 14 and 15), are for a $430 \Omega$ resistance between $I_{\text {ref }}$ and GND. This resistance can be varied between $250 \Omega$ and $1 \mathrm{k} \Omega$, giving a $\pm 2 \times$ DAC modification range. For reasons of noise and stability, the voltage at the $\mathrm{I}_{\text {ref }}$ pin should not be used in any other part of the circuit.

## Clock handling

The TZA1000 has 2 clock inputs:
CLK: the general clock input, pin 15
SCLK: the serial interface clock input, pin 10.
CLK is used for status register read and write cycle timing and for operating the internal AGC. When the AGC is not being used and serial communications are not active, CLK may be switched off. This can help reduce crosstalk on the printed circuit board.

When accessing the status register, the CLK frequency must be at least $16 \times$ SCLK frequency. It is recommended that the 24 MHz clock supplied by the SZA1000 be used directly.

## Serial interface

The 3 wire serial interface recognizes 8-bit addresses and 8 -bit data. To read data from the status register, hex address FF must be transmitted. The IC will then respond with the contents of the 8 -bit status register.
$\bullet$

Fig. 3 Timing diagrams.
000 LVZ1

## QIC read-write amplifier

## CONTROL REGISTER

The control register contains six 8-bit entries configured as shown in Table 1.
Table 1 Control register settings

| ADDRESS | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | - | FC1 | FC0 | ENFB1 | ENFB0 | ENS | ENRD | ENREF |
| 1 | HSM | DIFF | Al1 | AI0 | FBI1 | FBI0 | PG1 | PG0 |
| 2 | - | - | G6DB | GFXD | G3 | G2 | G1 | G0 |
| 3 | - | - | - | B4 | B3 | B2 | B1 | B0 |
| 4 | WDM | W6 | W5 | W4 | W3 | W2 | W1 | W0 |
| 5 | SDB | S6 | S5 | S4 | S3 | S2 | S1 | S0 |

## Control bits

Control bit functions are detailed in Tables 2 to 17.
Table 2 HPF and LPF cut-off frequency

| FC1 | FCO | FREQUENCY |
| :---: | :---: | :---: |
| 0 | 0 | 1 MHz |
| 0 | 1 | 2 MHz |
| 1 | 0 | 4 MHz |
| 1 | 1 | 10 MHz |

Table 3 Bias current settings; note 1

| ENFB1 | ENFB0 | BIAS CIRCUIT | $\mathbf{I}_{\text {bias(min) }}$ | $\mathbf{I}_{\text {bias(max) }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | off | 0 | 0 |
| 0 | 1 | on | -10 mA | +10 mA |
| 1 | 0 | on | 0 | +10 mA |
| 1 | 1 | on | -10 mA | +20 mA |

## Note

1. Control bits B 0 to B 4 make up a 5 -bit number between 0 and 31. The DC bias voltage between BIASA and BIASB (pins 23 and 24 ) is $B \times 45 \mathrm{mV}$. BIASA is positive with respect to BIASB.

Table 4 Sense current circuit

| ENS | SENSE CURRENT CIRCUIT |
| :---: | :---: |
| 0 | disabled |
| 1 | enabled |

Table 5 Read circuits (excluding preamplifiers)

| ENRD | READ CIRCUITS |
| :---: | :---: |
| 0 | disabled |
| 1 | enabled |

Table 6 Internal reference voltages

| ENREF | INTERNAL REF. VOLTAGES |
| :---: | :---: |
| 0 | disabled |
| 1 | enabled |

Table 7 HOLD pin function

| HSM | FUNCTION |
| :---: | :---: |
| 0 | AGC hold on or off |
| 1 | select servo or data preamplifier |

Table 8 HPF circuit

| DIFF | HPF CIRCUIT |
| :---: | :---: |
| 0 | bypassed |
| 1 | on |

Table 9 Variable gain circuit input select

| HSM | $\overline{\text { HOLD }}$ | Al1 | AIO | INPUT |
| :---: | :---: | :---: | :---: | :---: |
| 0 | X | 0 | 0 | servo preamplifier |
| 0 | X | 0 | 1 | preamplifier |
| 0 | X | 1 | 0 | bias output -10 dB |
| 0 | X | 1 | 1 | bias output -4 dB |
| 1 | 1 | 0 | 0 | servo preamplifier |
| 1 | 1 | 0 | 1 | preamplifier |
| 1 | 1 | 1 | 0 | bias output -10 dB |
| 1 | 1 | 1 | 1 | bias output -4 dB |
| 1 | 0 | X | X | servo preamplifier |

Table 10 Bias circuit input

| FBI1 | FBIO | INPUT |
| :---: | :---: | :---: |
| 0 | 0 | no signal |
| 0 | 1 | preamplifier |
| 1 | 0 | test generator |
| 1 | 1 | preamplifier |

Table 11 Preamplifier gain

| PG1 | PG0 | GAIN |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 34 dB |
| 1 | 0 | 4 dB |
| 1 | 1 | 40 dB |

Table 12 AGC setting

| HSM | $\overline{\text { HOLD }}$ | GFXD | AGC |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | on |
| 0 | 0 | 0 | frozen at last value |
| 1 | 1 | 0 | on |
| 1 | 0 | 0 | no AGC at servo mode: maximum gain |
| $X$ | $X$ | 1 | off, gain set by G0 to G3; note 1 |

## Note

1. Control bits G0 to G3 make up a 4-bit number used to program the gain in 1 dB steps (from 4 to 19 dB if G 6 DB is 0 , from 10 to 25 dB if G6DB is 1 ; see Table 13).

Table 13 Variable gain circuit range select

| G6DB | RANGE |
| :---: | :---: |
| 0 | 4 to 19 dB |
| 1 | 10 to 25 dB |

## QIC read-write amplifier

Table 14 Write mode select; note 1

| WDM | EXPECTED INPUT SIGNAL | FUNCTION |
| :---: | :---: | :---: |
| 0 | WDI | on |
| 1 | WD | bypassed |

## Note

1. Control bits W0 to W6 make up a 7-bit number between 0 and 127. Write current is

$$
\frac{125 \times(\mathrm{W}+1)}{128} \mathrm{~mA}\left(\mathrm{R}_{\mathrm{ref}}=430 \Omega\right)
$$

Table 15 Sense current range select; note 1

| SDB | CURRENT |
| :---: | :---: |
| 0 | 0 to 15 mA |
| 1 | 0 to 30 mA |

## Note

1. Control bits S 0 to S 6 make up a 7 -bit number between 0 and 127 . Sense current is $\frac{15 \times(S+1)}{128} \mathrm{~mA}$ when $\mathrm{SDB}=0$ and $\frac{30 \times(\mathrm{S}+1)}{128} \mathrm{~mA}$ when $\mathrm{SDB}=1\left(\mathrm{R}_{\mathrm{ref}}=430 \Omega\right)$.

## Status

A status byte, located at address FF, contains the following status bits:
Table 16 Status byte settings

| ADDRESS | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FF | $\mathrm{AG3}^{(1)}$ | $\mathrm{AG2}^{(1)}$ | $\mathrm{AG1}^{(1)}$ | $\mathrm{AGO}^{(1)}$ | $\mathrm{DN}^{(2)}$ | $\mathrm{PF5}{ }^{(3)}$ | $\mathrm{WUS}^{(4)}$ | $\mathrm{PF} 12^{(5)}$ |

## Notes

1. Actual gain. Allows the gain to be determined while the AGC is on.
2. This bit can be used for microcontroller gain control, with the AGC off (see Table 17).
3. Power failure detected on the +5 V supply $\left(\mathrm{V}_{\mathrm{DD1}}\right)$.
4. Write unsafe detected: head open or short circuited.
5. Power failure detected on the +12 V supply ( $\mathrm{V}_{\mathrm{DD} 3}$ ).

Table 17 Sense current range select.

| DN | GAIN |
| :---: | :---: |
| 0 | can be increased |
| 1 | can be decreased |

## LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

| SYMBOL | PARAMETER | CONDITIONS | MIN. | MAX. | UNIT |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{V}_{\mathrm{DD} 1}$ | read circuit supply voltage |  | -0.3 | +5.5 | V |
| $\mathrm{~V}_{\mathrm{DD} 2}$ | FB and write circuit supply voltage |  | -0.3 | +5.5 | V |
| $\mathrm{~V}_{\mathrm{DD} 3}$ | sense current circuit supply voltage |  | -0.3 | +13.2 | V |
| $\mathrm{I}_{\mathrm{DD} 1}$ | read circuit supply current |  | - | 150 | mA |
| $\mathrm{I}_{\mathrm{DD} 2}$ | FB and write circuit supply current |  | - | 35 | mA |
| $\mathrm{I}_{\mathrm{DD} 3}$ | sense current circuit supply current |  | - | 35 | mA |
| $\mathrm{I}_{\text {(n) }}$ | input current on remaining pins |  | -10 | +10 | mA |
| $\mathrm{P}_{\text {tot }}$ | maximum total power dissipation |  | - | 1000 | mW |
| $\mathrm{~T}_{\text {amb }}$ | ambient temperature |  | 0 | +70 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{j}}$ | junction temperature |  | 0 | +135 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {stg }}$ | storage temperature |  | -50 | +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{V}_{\mathrm{ES}(\mathrm{HB})}$ | electrostatic handling: human body model | note 2 | -1000 | +1000 | V |
| $\mathrm{~V}_{\text {ES(MM) }}$ | electrostatic handling: machine model | note 3 | -200 | +200 | V |

## Notes

1. Maximum permissible ambient temperature is dependent on internal dissipation. $T_{j}$ is the discriminating factor. $T_{j}=\left(R_{\text {th }(j-a)} \times P_{\text {tot }}\right)+T_{\text {amb }}$, where $P_{\text {tot }}$ is the total dissipation in the package.
2. Equivalent to discharging a 100 pF capacitor through a $1.5 \mathrm{k} \Omega$ series resistor.
3. Equivalent to discharging a 200 pF capacitor through a $25 \Omega$ series resistor and a $2.5 \mu \mathrm{H}$ series inductance.

## THERMAL CHARACTERISTICS

| SYMBOL | PARAMETER | VALUE | UNIT |
| :--- | :--- | :---: | :---: |
| $\mathrm{R}_{\text {th }(j-a)}$ | thermal resistance from junction to ambient in free air | 66 | K/W |

## QUALITY SPECIFICATION

In accordance with "SNW-FQ-611E".

## CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{DD} 3}=12 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \pm 5 \%$; unless otherwise specified.

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{DD1}}$ | read circuit supply voltage |  | 4.5 | 5.0 | 5.5 | V |
| $\mathrm{V}_{\mathrm{DD} 2}$ | FB and write circuit supply voltage |  | 4.5 | 5.0 | 5.5 | V |
| $\mathrm{V}_{\mathrm{DD} 3}$ | sense current circuit supply voltage |  | 10.8 | 12.0 | 13.2 | V |
| IDD1 | read circuit supply current <br> Rd <br> Wr | $\mathrm{I}_{\text {bias }}=-10$ to +10 mA | - | 31 | - | mA |
|  |  | $\mathrm{I}_{\text {write }}=30 \mathrm{~mA}$ | - | 70 | - | mA |
| $\mathrm{I}_{\mathrm{DD} 2}$ | FB and write circuit supply current <br> Rd <br> Wr | max gain | - | 38 | - | mA |
|  |  |  | - | 36 | - | mA |
| $\mathrm{I}_{\text {DD3 }}$ | sense current circuit supply current | $\mathrm{I}_{\text {sense }}=16 \mathrm{~mA}$ | 15.0 | 16.2 | 19.0 | mA |
| $\mathrm{V}_{\text {ref }}$ | reference voltage | pin 20; $\mathrm{l}_{0}=0$ to 3 mA | 1.9 | 2.0 | 2.1 | V |
| $\mathrm{I}_{20}$ | ```current on pin 20(V (  source sink``` |  | - | - | 3.0 | mA |
|  |  |  | - | - | 50 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{21}$ | voltage at pin 21 ( $\mathrm{I}_{\text {ref }}$ ) |  | 1.2 | 1.3 | 1.4 | V |
| $\mathrm{I}_{\text {ref }}$ | reference current (pin 21) |  | 1 | 3 | 5 | mA |
| Read section |  |  |  |  |  |  |
| $\mathrm{G}_{\mathrm{v}(\mathrm{pa})}$ | preamplifier voltage gain | PG1 = 1; PG0 = 1 |  | 38.6 | 41 | dB |
|  |  | PG1 = 0; PG0 = 1 | 37 | 32.7 | 34 | dB |
|  |  | PG1 = 1; PG0 = 0 | 3 | 4.1 | 6 | dB |
| $\mathrm{G}_{\mathrm{v} \text { (agc) }}$ | AGC amplifier voltage gain | G6DB = 1; G = 15; <br> note 1 | 23 | 24.4 | 26 | dB |
| $\Delta \mathrm{G}_{\mathrm{v}(\mathrm{agc})}$ | AGC voltage gain control range | note 2 | - | 22 | - | dB |
| $\mathrm{G}_{\mathrm{v} \text { (yoke) }}$ | yoke amplifier voltage gain |  | 19 | 21 | 23 | dB |
| $\mathrm{f}_{\text {coupling }}$ | -3 dB AC coupling frequency | input to output | 2 | 5 | 10 | kHz |
| $\mathrm{f}_{-3 \mathrm{~dB} \text { (cutoff)(HPF) }}$ | HPF -3 dB cut-off frequency | FC1 $=$ FC1 $=0$ | - | 1.0 | - | MHz |
|  |  | FC1 $=0 ; \mathrm{FC} 1=1$ | - | 2.0 | - | MHz |
|  |  | FC1 $=1 ; \mathrm{FC} 1=0$ | - | 4.7 | - | MHz |
|  |  | $\mathrm{FC} 1=\mathrm{FC} 1=1$ | - | 10 | - | MHz |
| $\mathrm{f}_{-3 \mathrm{~dB} \text { (cutoff)(LPF) }}$ | LPF -3 dB cut-off frequency | $\mathrm{FC} 1=\mathrm{FC} 1=0$ | - | 1.1 | - | MHz |
|  |  | FC1 $=0 ; \mathrm{FC} 1=1$ | - | 2 | - | MHz |
|  |  | FC1 $=1 ; \mathrm{FC} 1=0$ | - | 4.3 | - | MHz |
|  |  | $\mathrm{FC} 1=\mathrm{FC} 1=1$ | - | 11 | - | MHz |
| $\mathrm{V}_{\mathrm{n}(\mathrm{i}) \text { (eq)(preamp) }}$ | equivalent input noise voltage: preamplifier | $\mathrm{Z}_{\text {source }}=0 \Omega$ | - | 0.65 | 0.8 | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |

QIC read-write amplifier

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Z}_{\mathrm{i}}$ | input impedance |  | 1 | 1.84 | 4 | $\mathrm{k} \Omega$ |
| $\mathrm{V}_{1(6,7)}$ | DC input voltage; pins 6 and 7 |  | 1.2 | 1.3 | 1.4 | V |
| THD | total harmonic distortion | at 34 and 40 dB gain settings; $\mathrm{V}_{\mathrm{o}(\mathrm{p}-\mathrm{p})}=1 \mathrm{~V}$ | - | - | -40 | dB |
| $\mathrm{G}_{\mathrm{v} \text { (servo) }}$ | servo preamplifier voltage gain | WX-WY to output | 62 | 66 | 70 | dB |
| $\mathrm{V}_{\mathrm{n} \text { (i) (eq) (servo) }}$ | equivalent input noise voltage: servo pre-amp | $Z_{\text {source }}=0 \Omega$ | - | 1.8 | 2.8 | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ |
| $\mathrm{V}_{1(1,3))}$ | DC input voltage pins 1 and 3 |  | 2.4 | 2.5 | 2.6 | V |
| $\mathrm{I}_{\text {sense }}$ | sense current | $\mathrm{R}_{\mathrm{ref}}=430 \Omega ; \mathrm{S}=64 ;$ note 3 | 14.6 | 15.2 | 15.8 | mA |
| $\mathrm{I}_{\text {sense(max) }}$ | maximum sense current | all conditions; note 4 | 33 | - | - | mA |
| $\Delta \mathrm{V}_{\text {VDD3-ISENSE }}$ | voltage difference between <br> $V_{\text {DD3 }}$ and ISENSE <br> (pins 9 and 8) |  | 1.6 | - | 13.2 | V |
| RES ${ }_{\text {DAC(SENSE) }}$ | sense DAC resolution |  | - | 7 | - | bits |
| $\mathrm{Z}_{\text {O(sense) }}$ | output impedance of sense current source | $\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} ; \\ & \mathrm{I}_{\mathrm{o}(\mathrm{sen})}=16 \mathrm{~mA} \end{aligned}$ | 10 | - | - | $\mathrm{k} \Omega$ |
| $\mathrm{G}_{\mathrm{v}(\mathrm{FB})}$ | FB amplifier voltage gain |  | 11.5 | 13 | 14.5 | dB |
| $\mathrm{B}_{(-3 \mathrm{~dB})}$ | -3 dB bandwidth of FB amplifier |  | - | 5 | - | MHz |
| $\mathrm{f}_{\text {coupling(FBamp) }}$ | -3 dB AC coupling of FB amplifier |  | - | 3 | - | kHz |
| $\mathrm{l}_{\text {bias }}$ | bias current amplitude (peak-to-peak) | ENFB1 = 0; ENFB0 = 1 | -10 | - | +10 | mA |
|  |  | ENFB1 = 1; ENFB0 = 0 | 0 | - | +9 | mA |
|  |  | ENFB1 = ENFB0 = 1 | -10 | - | +20 | mA |
| $\mathrm{V}_{\mathrm{O}(23,24)}$ | DC voltage level of FB outputs (pins 23 and 24) | B = 0; see Table 3 | 1.6 | 1.8 | 2.0 | V |
| $\Delta \mathrm{V}_{\text {BIASA-BIASB }}$ | voltage difference between BIASA and BIASB (pins 23 and 24) at maximum DC bias voltage | B = 31; see Table 3; bias load $88 \Omega$ | 1.4 | 1.52 | 1.6 | V |
| RES ${ }_{\text {DAC(BIAS }}$ | bias DAC resolution |  | - | 5 | - | bits |
| $\mathrm{V}_{\mathrm{O}(18,19)}$ | read amplifier DC output voltage (pins 18 and 19) |  | 2.4 | 2.5 | 2.6 | V |
| $\Delta \mathrm{V}_{\text {OO(18,19) }}$ | read amplifier DC offset voltage (voltage change at pins 18 and 19) |  | - | - | 100 | mV |
| $\mathrm{V}_{\mathrm{o}(\mathrm{mss})(18,19)}$ | output voltage (RMS value; pins 18 and 19) |  | - | - | 0.5 | V |
| $\mathrm{I}_{0}$ | guaranteed output current |  | 1.5 | - | - | mA |
| $\mathrm{V}_{\text {O(AGCL) }}$ | lower AGC detection voltage level at OUTB |  | 2.15 | 2.2 | 2.25 | V |
| $\mathrm{V}_{\text {O(AGCH) }}$ | upper AGC detection voltage level at OUTB |  | 2.75 | 2.8 | 2.85 | V |

QIC read-write amplifier

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {hys(AGC) }}$ | hysteresis in AGC detection level |  | 65 | 75 | 85 | mV |
| $\mathrm{B}_{\text {AGC }}$ | AGC bandwidth |  | - | 1.5 | - | MHz |
| $\mathrm{f}_{\mathrm{clk}}$ | operational clock | note 5 | 0 | 24 | 24 | MHz |
| Write section |  |  |  |  |  |  |
| $\mathrm{I}_{\text {write }}$ | write current | $\begin{array}{\|l} \hline \mathrm{R}_{\text {head }}=10 \Omega ; \\ \mathrm{R}_{\text {ref }}=430 \Omega ; \\ 0 \text {-peak; } \mathrm{W}=32 ; \text { note } 6 \\ \hline \end{array}$ | 27.3 | 28.8 | 30.3 | mA |
| $\mathrm{I}_{\text {write(max) }}$ | maximum write current | $\mathrm{R}_{\text {head }}=10 \Omega$; note 7 | 60 | 80 | - | mA |
| $\Delta l_{\text {write }}$ | difference between positive and negative write currents | $\mathrm{I}_{\text {write }}=30 \mathrm{~mA}$; | - | 0 | 5 | \% |
| $\mathrm{t}_{\text {(tiwrite)(Rload) }}$ | write current transition time resistive load head load | note 8 <br> resistive load, $10 \Omega$ | - | 4 | - | ns |
|  |  | $\begin{aligned} & \mathrm{R}_{\text {head }}=10 \Omega ; \\ & \mathrm{L}_{\text {head }}=200 \mathrm{nH} \\ & \hline \end{aligned}$ | - | 6 | 12 | ns |
| $\mathrm{V}_{\mathrm{o}}(\mathrm{p}-\mathrm{p}(1,3)$ | output voltage swing (peak-to-peak value) |  | 3 | - | - | V |
| $t_{\text {R-W }}$ | read to write time |  | - | 0.2 | - | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {W-R }}$ | write to read time |  | - | 10 | - | $\mu \mathrm{s}$ |
| $\Delta \mathrm{t}_{\text {WD }}$ | WD pulse asymmetry | in WDI mode; note 9 | - | 0 | 1 | ns |
| $\mathrm{t}_{\text {WDIH }}$ | WDI pulse time HIGH |  | 5 | - | - | ns |
| $\mathrm{t}_{\text {WDIL }}$ | WDI pulse time LOW |  | 5 | - | - | ns |
| $\mathrm{R}_{\text {det(WUS) }}$ | WUS detection resistance level | short circuited to $\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\mathrm{SS}} ; \mathrm{I}_{\text {write }}=30 \mathrm{~mA}$ | - | - | 10 | $\Omega$ |
|  |  | open; $\mathrm{l}_{\text {write }}=30 \mathrm{~mA}$ | 150 | - | - | $\Omega$ |

## Notes

1. G is a 4-bit number contained in control bits G 0 to G 3 (see Table 12).
2. 6 dB step via a fixed setting, and 16 dB (in 1 dB steps) via AGC control.
3. S is a 7-bit number contained in control bits S 0 to S 6 (see Table 15).
4. The TZA1000 is guaranteed to operate reliably with sense currents of up to 33 mA .
5. The operational clock frequency (pin 15) must be $>16$ times higher the SCLK frequency to ensure reliable serial transfer.
6. $W$ is a 7-bit number contained in control bits W 0 to W 6 (see Table 14). A more accurate calculation of the write current would be given by: $I_{c}=I_{t}-0.003 \times I_{t}{ }^{2}$, where $I_{t}=125(W+1) / 128, I_{t}$ the target current and $I_{c}$ the write current.
7. The TZA1000 is guaranteed to supply a write current of up to 60 mA .
8. 10 to $90 \%$ of a total current reversal.
9. Difference between negative-to-positive and positive-to-negative current slopes.

| QIC read-write amplifier | TZA1000 |
| :--- | :--- |

EQUIVALENT PIN CIRCUITS
PIN

## QIC read-write amplifier

| PIN | DESCRIPTION | EQUIVALENT PIN CIRCUIT |
| :---: | :---: | :---: |
| 10 | digital input configuration |  |
| 11 | digital input configuration |  |
| 13 | digital input configuration |  |
| 14 | digital input configuration |  |
| 15 | digital input configuration |  |

## QIC read-write amplifier

| PIN | DESCRIPTION | EQUIVALENT PIN CIRCUIT |  |  |
| :---: | :--- | :--- | :--- | :--- |
| 18 | output configuration |  |  |  |
| 19 | output configuration |  |  |  |
| 20 |  |  |  |  |
|  |  |  |  |  |

## PACKAGE OUTLINE

SO24: plastic small outline package; 24 leads; body width 7.5 mm
SOT137-1


DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT | $\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\mathrm{b}_{\mathrm{p}}$ | c | $D^{(1)}$ | $E^{(1)}$ | e | $\mathrm{H}_{\mathrm{E}}$ | L | $\mathrm{L}_{\mathrm{p}}$ | Q | v | w | y | $z^{(1)}$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 2.65 | $\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$ | $\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$ | 0.25 | $\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$ | $\begin{aligned} & \hline 15.6 \\ & 15.2 \end{aligned}$ | $\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$ | 1.27 | $\begin{aligned} & \hline 10.65 \\ & 10.00 \end{aligned}$ | 1.4 | $\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$ | 0.25 | 0.25 | 0.1 | $\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$ |
| inches | 0.10 | $\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$ | 0.01 | $\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$ | $\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$ | $\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$ | 0.050 | $\begin{array}{\|l\|} \hline 0.419 \\ 0.394 \end{array}$ | 0.055 | $\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$ | $\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$ | 0.01 | 0.01 | 0.004 | $\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$ |  |

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

| OUTLINE VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |
| SOT137-1 | 075E05 | MS-013AD |  | $\square$ ¢ | $\begin{array}{r} -95-01-24 \\ 97-05-22 \end{array}$ |

## QIC read-write amplifier

## SOLDERING

## Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

## Reflow soldering

Reflow soldering techniques are suitable for all SO packages.
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to $250^{\circ} \mathrm{C}$.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45^{\circ} \mathrm{C}$.

## Wave soldering

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is $260^{\circ} \mathrm{C}$, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than $150^{\circ} \mathrm{C}$ within 6 seconds. Typical dwell time is 4 seconds at $250^{\circ} \mathrm{C}$.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

## Repairing soldered joints

Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V ) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and $320^{\circ} \mathrm{C}$.

## QIC read-write amplifier

## DEFINITIONS

| Data sheet status |  |
| :--- | :--- |
| Objective specification | This data sheet contains target or goal specifications for product development. |
| Preliminary specification | This data sheet contains preliminary data; supplementary data may be published later. |
| Product specification | This data sheet contains final product specifications. |
| Limiting values |  |
| Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or <br> more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation <br> of the device at these or at any other conditions above those given in the Characteristics sections of the specification <br> is not implied. Exposure to limiting values for extended periods may affect device reliability. |  |
| Application information |  |
| Where application information is given, it is advisory and does not form part of the specification. |  |

## LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

## NOTES

## Philips Semiconductors - a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,
Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2689 211, Fax. +359 2689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 3288 2636, Fax. +45 31570044
Finland: Sinikalliontie 3, FIN-02630 ESPOO
Tel. +358 9 615800, Fax. +358 961580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 14894 339/239, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22493 8541, Fax. +91 224930966
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 33740 5130, Fax. +81 337405077

Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL
Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 4027 82785, Fax. +31 402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 2274 8000, Fax. +47 22748341
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474

## Poland: UI. Lukiska 10, PL 04-123 WARSZAWA,

Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095755 6918, Fax. +7 0957556919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 2516500

## Slovakia: see Austria

Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000
Tel. +2711470 5911, Fax. +27114705494
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118212382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1488 2686, Fax. +41 14883263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 22134 2865, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380 442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors,
Internet: http://www.semiconductors.philips.com
International Marketing \& Sales Communications, Building BE-p, P.O. Box 218,
5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1998
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights
Printed in The Netherlands


PHILIPS


[^0]:    $0001 \forall Z 1$
    

